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Abstract
•Context Among natural disturbances, wind storms cause the
greatest damage to forests in Austria.
• Aim The aim of this study is to quantify the effects of site,
stand and meteorological attributes on the wind disturbance
regime at the operational scale of forest stands.
• Methods We used binomial generalized linear mixed
models (GLMMs) to quantify the probability of damage
events and linear mixed models (LMMs) to explain the dam-
age intensity at the forest stand level in four management units
with a total forest area of approximately 28,800 ha.
•Results Timber stock volume, stand age, elevation, previous
disturbances, wind gust speed and frozen state of soil contrib-
uted in explaining probability of wind damage. While the
model of disturbance probability correctly classified 90 % of
all cases in the data set (specificity 95%, sensitivity 26%), the
model for damage intensity explained only low percentages of
the variation in the observed damage data (full model R2=
0.38, fixed effects-only model R2=0.09; cross-validation in
the four forest management units yielded similar R2 values).

• Conclusion The developed models indicated that decreas-
ing the proportion of Norway spruce (Picea abies [L.] Karst),
limiting stand age and reducing the timber stock in course of
tending treatments in stands exposed to wind disturbance can
mitigate the risk and the expected damage intensity. High gust
speeds and salvage cuts after earlier damage increase the
probability of further wind disturbance events.

Keywords Storm . Disturbance .Windthrow . Forest
management . Stand scale . Risk

1 Introduction

In Europe, during the period between 1950 and 2000, an
average of 18.7 mill.m3 of timber were damaged by wind
annually (Schelhaas et al. 2003). This makes storms leading to
uprooting and stem breakage of trees the most detrimental
natural threat to European forests (i.e. approximately 66 % of
total damage from storms, fire, bark beetles and snow). In
Austria, post-windthrow salvage logging fluctuated between
approximately 1 and 10 mill.m3 of timber per year in the
period 1990–2012, which corresponds to shares of 4 to
50 % of the annual cut (Prem and Beer 2012; Anonymous
2013). Peak years of windthrow salvage due to large-scale
stand-replacing events mainly during the winter season were
1990 (7 mill.m3), 2007 (9 mill.m3) and 2008 (10 mill.m3).
Beside these severe storm events, a high proportion of the
timber salvage was due to small-scale or low intensity distur-
bance events. However, these less intense disturbance damage
events accumulate to substantial losses in timber value and
cause additional costs for harvesting and further follow-up
costs regarding planting, tending and other silvicultural mea-
sures. Also, after large-scale stand-replacing events, manage-
ment plans become obsolete and need to be updated. Beside
the adverse economic consequences in timber production,
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windthrow can negatively affect other forest ecosystem ser-
vices like protection against rockfall and avalanches (Brang
et al. 2006), drinking water preservation (Weis et al. 2006) or
in situ carbon sequestration (Thürig et al. 2005).

The wind disturbance regime is driven by the interplay of
forest characteristics and weather (Dale et al. 2000). Species
composition, stand height, stand edges, canopy roughness and
tree attributes such as crown length and slenderness correlate
with wind damage (e.g. Valinger and Fridman 1999; Mitchell
et al. 2001; Olofsson and Blennow 2005; Sellier and Fourcaud
2009). Beyond a wind speed of 45 m/s, stand-replacing dam-
age is almost certain, regardless of stand condition (Gardiner
et al. 2010). With decreasing wind speed, the effects of tree
and stand characteristics on damage intensity become more
apparent (Xi and Peet 2011).

It is expected that frequency of storm events in Central
Europe may increase in a warmer climate (Lindner and
Rummukainen 2013); however, uncertainty is high (Stocker
et al. 2013), and storm tracks may shift northwards resulting in
new areas exposed to wind damage. An intensifying wind
disturbance regime may exert a positive feedback on bark
beetle disturbances through the provision of abundant breed-
ing habitat (e.g. Marini et al. 2013). Additionally, a warmer
climate may benefit bark beetles, which may then complete
two or even three life cycles per year (Jönsson and Bärring
2011). Other disturbance agents like snow breakage and reg-
ular harvests can also modify the structure of forest stands and
increase their susceptibility to wind disturbance. Because of
the magnitude of potential forest loss and economic relevance,
interest has been growing to identify stand and site attributes
which explain the variation in damage and to develop quan-
titative models to assess the vulnerability of forests to wind
damage as a prerequisite for targeted risk management. The
literature of storm damage in Central European forests is
extensive, and many studies scrutinized various driving fac-
tors of large-scale storm damage (e.g. Dobbertin 2002; Schütz
et al. 2006; Schindler et al. 2009; Schmidt et al. 2010).
However, intermediate and small-scale endemic wind distur-
bances are less widely researched, although their cumulative
effect can be significant on forest ecosystem services (e.g.
Nagel and Diaci 2006; Klopcic et al. 2009).

Major data sources for such studies include salvage records
kept by forest enterprises (e.g. Hanewinkel et al. 2008;
Klopcic et al. 2009), regional to national scale damage statis-
tics either based on large-scale forest inventories (e.g.
Jalkanen and Mattila 2000) or semi-quantitative salvage
reporting schemes on the administrative district or province
level (e.g. Thom et al. 2013). Recently, the use of damage
estimates derived from remote sensing information (e.g. aerial
photographs and satellite images) has attracted much attention
(e.g. Lanquaye-Opoku and Mitchell 2005; Usbeck et al.
2012). However, each of these approaches has some limita-
tions. Standard management records provide local operational

context and report damage also of a few cubic metres of
timber only; however, detailed information on stand and site
variables is generally missing, and as a consequence, variables
that can explain the damage are scarce. Spatial coverage is
usually limited, as book-keeping rules vary greatly among
forest enterprises. On the other hand, a great advantage of
large-scale forest inventories is large spatial coverage. Opera-
tional context of individual inventory plots is missing, how-
ever, similarly to regional damage monitoring systems. These
rely on some kind of qualitative damage assessment in a
highly aggregated form. Considering remote sensing, it has
been used mainly to assess damage extent after large-scale
events so far (e.g. Schindler et al. 2012). Beside these obser-
vational approaches, there has been experimental work on tree
pulling (e.g. Nicoll et al. 2006) and mechanistic modelling to
determine critical wind speed for either uprooting or stem
breakage and then calculating the probability of the occur-
rence of such wind speed by assessment of the local wind
climate attributes (e.g. Peltola et al. 1999; Gardiner et al.
2000). While the latter approaches provide a clearly defined
link to weather phenomena and are thus potentially applicable
for climate change impact assessments, most empirical studies
contain only local relationships without general transferability
to other regions or conditions.

In this study, our objective was to develop quantitative
statistical models to estimate (1) the probability of wind
damage events and (2) the intensity of the damage in Eastern
Alpine mountain forests. We employed a large empirical
database considering forest and site characteristics, weather
data, forest management and other disturbance agents. The
focus was at the stand scale due to its importance for opera-
tional forest management.

In particular we hypothesized that

(a) by utilizing data with huge spatial coverage, established
empirical relationships are robust over a wide range of
conditions;

(b) the use of weather-related predictor variables improves
model performance and reliability.

2 Material and methods

2.1 Study area

Data from four management units (FMU) of the Austrian
Federal Forests (AFF) were available for the current analysis.
AFF is responsible for the management of 588,000 ha of
forest in Austria (i.e. 15 % of total forest area of the country).
The four FMUs were Traun-Innviertel, Steyrtal, Waldviertel-
Voralpen and Steiermark (Fig. 1); for the current study,
28,870 ha of forest were considered.
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Elevation ranges from submontane (400–800 m a.s.l.) to
high montane (approximately 1,600 m a.s.l.) vegetation belts
(Table 1) in all the FMUs except in Traun-Innviertel, which is
exclusively located at elevations below 700m. Norway spruce
(Picea abies [L.] Karst) is the most abundant tree species in
these AFF management units, a tree species which is consid-
ered to be one of the most vulnerable to wind damage in the
region (Hanewinkel et al. 2013). Other conifers are present in
the area, but with a much smaller percentage (Abies albaMill.,
Larix decidua Mill., Pinus sylvestris [L.]). The main
broadleaved species is Fagus sylvatica [L.]; other broadleaves
have just minor proportions of up to 4% of basal area. All four
FMUs have a uniform age class distribution up until the usual
rotation length of the main species (100–140 years). Age

classes above that show a strongly decreasing trend, with the
oldest stands being approximately 220 years old.

Forest area within the FMUs is structured into several
administrative levels. Districts usually have an area of a few
thousand hectares. A district contains several dozen compart-
ments, an administrational unit that—in a mountainous envi-
ronment—confines an area with similar site properties within
major topographic borders (27.1 ha on average in the study
area). The smallest operational unit is the sub-compartment
(i.e. the forest stand), which usually has an area of several
hectares (6.6 ha on average in the study area). Sub-
compartments have quite homogeneous site and stand condi-
tions and are the basic silvicultural planning and treatment
unit. In Austria, 10-year management plans include

Fig. 1 Location of the four forest
management units under study in
Austria

Table 1 Characteristics of four Austrian Federal Forests management units which provided data for the analysis

Forest management unit Traun-Innviertel Steyrtal Waldviertel-Voralpen Steiermark

Elevation range [m a.s.l.] 500–700 400–1,600 500–1,600 600–1,600

Bedrock Acidic Calcareous and flysch Calcareous Acidic and calcareous

MAT 7.6–10.9 1.1–10.4 0.8–10.2 1.9–10.1

Precip 845–1,742 890–2,274 934–2,434 740–1,834

Number of districts 2 6 2 5

Number of compartments 126 408 145 385

Number of sub-compartments 929 1,920 943 2,223

Picea abies [%] 73 62 67 80

Fagus sylvatica [%] 16 26 17 7

Other conifers [%] 7 9 13 12

Other broadleaves [%] 4 3 3 1

Species proportions are based on volume.MAT and Precip values are from the period 1999–2008 and are at compartment level (they are related to the
elevation range)

MAT mean annual temperature [°C], Precip annual precipitation [mm]
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operational silvicultural prescriptions at stand level and yield
regulation at the district level (i.e. determination of allowable
annual cut).

All four FMUs suffered great losses of timber due to storms
in 2007 and 2008, with proportion of stands being damaged as
high as 28 % (FMU Traun-Innviertel in 2008). FMU Steyrtal
also experiences substantial storm damage in 2003. See Fig. 2
for a detailed comparison of wind salvage and total timber
removals in the FMUs in the period 2003–2008.

2.2 Database

To build the database for the analysis, stand and site data of
management plans of 15 districts within the four FMUs were
combined with related harvest records and a gridded weather
data set covering the FMUs under study (Table 1).

2.2.1 Forest management plans

The management plans covered the decade from 1999 to
2008. For all stands, the plans described attributes including
yield class of the most abundant tree species in a stand,
volume and age by species and provide a qualitative descrip-
tion of the mixture type. However, the plans did not include

details on compositional and structural features. Since man-
agement plans describe the initial state of stands at the begin-
ning of the respective 10-year planning period only, the annual
development of stand attributes (in our case timber stock
volume at tree species level) over time was projected by
means of yield tables (Marschall 1975) and removals reported
in the harvest records. Stands younger than 20 years of age
were not included in the analysis database, as such young
stands were not considered to be vulnerable to wind damage.

2.2.2 Harvest records

Harvest records contained all timber removals specifying the
year of harvest (without exact date), total extracted volume
and the reason for the removals distinguishing regular harvests
and salvage due to various damaging agents. However, no
indication of the spatial distribution of the fellings inside the
sub-compartments was included in these records. Regular
harvests and salvage due to wind (no differentiation between
uprooting and stem breakage in the records), snow and bark
beetles were each cumulated for periods of up to 4 years prior
to any year in the 10-year planning period to account for
damage history in the stands. This reduced the length of the
10-year time series of damage data to 6 years. The reported

Fig. 2 Average harvested timber volumes over all stands in the four forest management units of the study area (black column, total timber removals
including salvage; striped column, wind salvage)
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harvested volume was multiplied by 1.2 when related to
standing stock to account for standard practices with regard
to treatment of harvest residues (Pretzsch 2010).

2.2.3 Weather data and related information

The assessment of the relationship between damage and
weather data including storms necessitates local time series
of weather variables at the level of the investigated forest
stands at a temporal resolution that allows the identification
of the driving weather stimuli. For the current analysis, air
temperature and wind speed data were provided for all four
FMUs. Daily time series of air temperature (minimum, mean,
maximum), on a mesh with a width of 100 m over the FMUs,
were generated. The data were interpolated from the network
of weather stations of the Austrian weather service (ZAMG;
ht tp : / /www.zamg.ac .a t /cms/de /k l ima/messne tze /
wetterstationen). The entire network consists of more than 200
automated stations located throughout Austria. A second-
order polynomial fit based on the four seasons that tracks
vertical temperature gradients was applied to capture the
behaviour of the air temperature field within the complex
Alpine topography. The interpolation routine distinguished
between three regions covering the study FMUs and
depended on longitude, latitude and elevation. As no gap
filling was applied to the observations, the interpolation
relied on the original measurements. The number of weather
stations used varied between 15 and 20 depending on year and
FMU. Based on Paul et al. (2004), daily air temperature was
used to calculate whether the soil was frozen any day of the
year. If the uppermost 10-cm layer of the soil was calculated to
be frozen, then it was assumed to have a stabilizing effect on
the trees against windthrow. Calculating the soil temperature
was based on mean annual and summer air temperature and
the minimum and maximum air temperature of the current
day. Leaf area index, understory vegetation and litter mass of
the soil were also taken into account, for which average values
of the study area were used defined by expert knowledge. For
more details on the soil temperature model, see Paul et al.
(2004).

Wind is perhaps the most difficult weather parameter to be
generated on a grid, especially in a complex orography as the
European Alps. One obvious reason is that wind measure-
ments are representative for only a very small area within
which the measurements are taken. The highly discontinuous
propagation of the wind field in space makes it almost impos-
sible to homogenize observed time series data by comparing
them to other series, farther away. Another inherent problem is
that wind measurements carried out at one station are nonho-
mogeneous in time, as any change in the roughness length of
the surrounding topography which may be caused by a grow-
ing tree has a differing impact on the measurements. So, wind

observations are fraught with problems, and hence, it is diffi-
cult to interpolate measurements in space and time.

In the current study, we used integrated nowcasting
through comprehensive analysis (INCA) to provide wind data
for the study FMUs (Haiden et al. 2011). INCA uses digital
elevation data of 1×1 km grid size. In the case of wind, the
nowcast starts with a three-dimensional analysis based on a
first guess obtained from a numerical weather prediction
(NWP) model output that is enhanced by the consideration
of further observations at weather stations. The wind fields are
calculated by transforming 10-m wind observations to the
NWP model-level wind using an elevation-dependent factor
and by applying an inverse distance squared interpolation
routine on the observed corrections. Additionally, an iterative
relaxation algorithm is enforced to warrant mass-consistent
fields. Wind vectors at grid points near to stations are kept at
the observed values during the relaxation procedure. Thus, the
INCA data set has been designed to match the observed
values. In this study, maximum daily wind speeds were com-
puted from 24-hourly wind speeds (10-min wind speeds at full
hours) covering the period 2003–2008. Ten-min wind speeds
were transformed to 2-s gust speeds (VMAX) using multipli-
cation by a gust factor of 1.65 (Cvitan 2003). Such short-term
gusts are commonly considered as major determinant of wind
damage in forests (Mayer 1987). To visualize the spatial
heterogeneity of the wind speed data, the number of days with
a 2-s gust speed above 30 m s−1 is shown for the study FMUs
in Fig. 3.

Weather-related data were linked to forest compartment
centroids using GIS software (ESRI 2012). All stands within
a forest compartment were assumed to have the same weather
attributes. All stand-level attributes available for the analysis
are shown in Table 2.

2.3 General modelling approach

The modelling process was structured in two main steps. First,
modelling the probability of a wind damage event, then as the
second step, the damage intensity given that a damage event
had occurred in the stand. A mixed model framework was
used because of the hierarchical structure of the data set.
Spatial units (sub-compartments) were nested within bigger
units (compartments, districts, FMUs) and carried a 10-year
time series data set; hence, spatial and temporal autocorrela-
tion ofmodel residuals had the potential to cause bias inmodel
estimates (Pinheiro and Bates 2000). With the use of a mixed
model framework, random effects were added to the model
equations in the model fitting process. These random effects
induced a simple correlation structure for observations in the
same data cluster (in our case sub-compartment, compartment
and district), and therefore, the effects of confounding vari-
ables related to these clusters could be estimated (i.e. the
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random effects) and separated from the actually studied pre-
dictor variables (i.e. the fixed effects) during the analysis.

As an exploratory step to attain insight on the interrelation-
ships of variables in the data set, Pearson correlation coeffi-
cients among the continuous stand-level variables were cal-
culated. Candidate predictor variables were used in an auto-
mated procedure with all possible combinations to fit model
equations to the data set for both the probability and the
intensity models. Afterwards, Akaike information criterion
(AIC) values (Akaike 1973) of the resulting models were
compared. This is a method that rewards the goodness-of-fit
of a model and penalizes for the increasing number of
predictors at the same time. The penalty for the inclusion of

one additional parameter was 2 AIC units following Arnold
(2010). If further posterior analysis (see below) did not reveal
inadequacies, the model with the lowest AIC value was cho-
sen (Burnham and Anderson 2002). Partial effect plots (also
called marginal effects or least square means) were used to
assess the effect of the predictor variables in the models.
Partial effects measure the change in the expected value of
the response variable as a result of a change in a certain
predictor variable while keeping all the other covariates fixed
at the median values of the respective variables in the database
(see Table 2).

The robustness of the models was tested by 10-fold cross-
validation, in which the data set was randomly broken into ten

Fig. 3 Number of days with daily
maximum 2-s gust speed [m s−1]
exceeding 30 m s−1 during the
period 2003–2008 for the four
forest management units

Table 2 Available stand-level attributes for modelling wind damage in the study area

Variable Unit Median Description

ELEV m 900 Elevation

SL ° 25 Slope steepness

ASP Nominal – Aspect [N, NE, E, SE, S, SW, W, NW]

SITE Nominal – 21 site types from the site classification system of the Austrian Federal Forests; used in
different groupings according to bedrock (calcareous, acidic, flysch), water and nutrient status

YC m3 ha−1 year−1 8 Yield class of the main species of the stand; mean volume production per ha and year
over a period of 100 years

PA % 80 Proportion of Norway spruce (Picea abies [L.] Karst.)

AGE years 90 Mean stand age

VOL m3 ha−1 290.51 Timber stock volume before removals of actual year

Wt m3 ha−1 (t) years−1 – Wind damage in previous (t) years, t=[1–4]

Bt m3 ha−1 (t) years−1 – Bark beetle damage in previous (t) years, t=[1–4]

St m3 ha−1 (t) years−1 – Snow damage in previous (t) years, t=[1–4]

Rt m3 ha−1 (t) years−1 – Regular harvests in previous (t) years, t=[1–4]

VMAX m s−1 14.44 Highest daily 2-s gust speed per year

SF [0,1] – Soil state on the day with the highest 2-s gust speed (1, frozen; 0, not frozen)
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partitions, and models were fitted to data consisting of all but
one partition that served as the test group. This procedure was
repeated ten times with a different test group each time; then,
goodness-of-fit was evaluated (Mosteller and Tukey 1968).
Cross-validation tests were also implemented with the four
FMUs being used as partitions.

Versions of the models that included fixed effects only
were also used for posterior tests. We did this by multiplying
the design matrices of the models by the fixed effects calcu-
lated in the model fitting process. This served as an assess-
ment of howwell the fixed effect variables could explain wind
damage in a general context without using local implicit
information related to the four FMUs.

In the model fitting process, predictor variables describing
accumulated salvage and regular harvests in the previous
4 years (Wt, Bt, St and Rt) were all natural log transformed.
Considering these variables, we manually fitted the models
with different time periods (t=1–4 years). Extending the num-
ber of the preceding years improved the fit of the models. The
4-year period proved to be the best compromise between
increasing model fit and decreasing the number of years
available for model development at the same time. In addition,
when using 4 years to accumulate the disturbance his-
tory of each stand, 6 years remained for model fitting,
which met the requirement regarding the minimum level
of a random effect, in our case years within the random
effect “sub-compartment”. The variance of a random
effect cannot be estimated correctly in case of fewer
than six levels (Crawley 2002).

In the analysis, different groupings of site type (SITE) were
also tested. This aimed at combining sites with similar soil
moisture and nutrient supply (as defined in the site
classification system of the AFF; Weinfurter 2004). However,
none of these groupings improved model fit.

The software package R was used for the statistical model-
ling (R Core Team 2013). The automated fitting of models for
model selection was done with the dredge function from the R
package MuMIn (Barton 2013). The plotLMER.fnc function
of the R package languageR was used for the partial effect
plots (Baayen 2011).

2.4 Modelling the probability of disturbance events

Wind damage probabilities were modelled by logistic regres-
sion. This was done in a framework of a generalized linear
mixed model (GLMM). Salvage values below 1% of standing
stock were considered registration errors and the respective
data record as a nonevent (see Klopcic et al. 2009; Overbeck
and Schmidt 2012). To translate the linear predictor of the
model to probabilities, Eq. (1) was used

πi ¼ expαþβ�X iþγi
� �.

1þ expαþβ�X iþγi
� � ð1Þ

where πi is the expected annual probability of the occurrence
of a damage event in the ith row of the design matrix of the
model, α is the intercept, β is the vector of fixed effect
parameters, Xi is a row from the design matrix of the model
and γi is the sum of random intercepts that account for the
spatial and temporal cluster effects in the observed damage
related to forest stand, compartment and district level.
GLMMs were fitted with the lmer function of the package
lme4 (Bates et al. 2012).

Linearity of the relationship between damage events and
the explanatory variables was assessed by plotting the partial
residuals of the model (see Zuur et al. 2008) and fitting
smoothed curves using the loess function of the basic R
package. Data transformation was used to account for even-
tual nonlinearities in the data. Classification table (i.e. confu-
sion matrix) and derived parameters such as sensitivity, spec-
ificity and the area under receiver operator characteristic curve
(AUC) were used for assessing goodness-of-fit of the models.
Sensitivity is the ratio of the true positive and the sum of true
positive and false negative predictions. Specificity is the ratio
of the true negative and the sum of true negative and false
positive predictions. Sensitivity and specificity values were
plotted against a range of cut-off points which serve as means
to differentiate between events and nonevents.

The AUC shows the probability that a randomly selected
observed positive event has a higher predicted probability
value than a randomly selected observed negative event
(Fawcett 2006). It can range from 0.5 (no predictive ability)
to 1 (perfect discrimination) and is independent from cut-off
values. The somers2 function of the R package Hmisc was
used for the calculation of AUC values (Harrell 2012).

2.5 Modelling the intensity of damage events

For modelling damage intensities [m3 ha−1 year−1] by linear
regression, data records classified as “damage” (threshold of
1 % salvage rate; see previous section) were used as input in a
linear mixed model (LMM) framework. The response variable
was natural log transformed to improve normality and
homogeneity.

The general equation of the model was

πi ¼ αþ β � X i þ γi ð2Þ

where πi is the expected annual intensity [m
3 ha−1 year−1] of a

damage event in the ith row of the design matrix of the model,
α is the intercept, β is the vector of fixed effect parameters, Xi
is a row from the design matrix of the model and γi is the sum
of random intercepts that account for the spatial and temporal
cluster effects in the observed damage related to forest stand,
compartment and district. LMMs were fitted with the lmer
function of the package lme4 (Bates et al. 2012).
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Goodness-of-fit was evaluated by the coefficient of deter-
mination (R2). It indicates how much variation in the data is
explained by the fitted model. We calculated root mean
squared error (RMSE) to see how close predictions were to
observed values. Normality and homogeneity were tested by
plotting residuals against predicted values. Histograms were
used to assess normality of residuals. Residuals plotted against
explanatory variables were inspected for linear relationships.
Test indices were also calculated for models with fixed effects
only.

3 Results

3.1 The disturbance regime

For the 6,015 stands that were available for the analysis during
the 6-year period, the ratio of events to nonevents (i.e. years
with a wind damage versus years without a damage) was
approximately 1:16. With regard to the wind damage intensi-
ties, 43 % of the disturbance events caused damage smaller
than 10 m3 ha−1, 46 % between 10 and 50 m3 ha−1 and 11 %
more than 50 m3 ha-1. The mean intensity of the wind damage
events was 25.9 m3 ha−1. Table 3 shows the proportion of
wind disturbance events which were preceded by other dis-
turbance or regular harvest in the previous 4 years in the same
stand.

3.2 Probability of disturbance events

The final model included predictor variables ELEV
(elevation), AGE (mean stand age), VOL (timber stock vol-
ume before harvests of actual year), W4, B4, S4, VMAX and
SF (soil state on the day with the highest 2-s gust speed; 1,
frozen; 0, not frozen). All other variables were found uninfor-
mative. YC (yield class of the main species of the stand) was
excluded from the analysis to avoid multicollinearity (see
Zuur et al. 2008), as it strongly correlated with several other
explanatory variables (e.g. Pearson correlation was 0.70 with
VOL, −0.56 with ELEV). Adding interaction terms to the
models did not improve the goodness-of-fit.

The signs of parameter estimates of the predictor variables
were all positive, except for SF (Table 4). Figure 4 presents the
effects of individual predictors on the estimated probability of

a wind damage event. The AUC value of the model was 0.84.
When used with the fixed effects only, the AUC was 0.71,
which is considered “acceptable” in statistics literature
(Hosmer et al. 2013). Partial residual plots showed that the
assumption of linearity was valid for all the candidate predic-
tor variables (not shown here). In the 10-fold cross-validation
of the selected model, AUC values varied between 0.68 and
0.76, thus indicating good stability. When the four FMUs
were used separately as test data, AUC values were 0.75,
0.72, 0.70 and 0.80 for Traun-Innviertel, Steyrtal,
Waldviertel-Voralpen and Steiermark, respectively. AUC
values in the current study were in line with other studies of
storm damage in Central Europe in which this index was used
to evaluate the classification into damaged and undamaged
stands (AUC=[0.78–0.79] in Schindler et al. 2009; AUC=
0.76 in Klaus et al. 2011; AUC=[0.73–0.74] in Schindler et al.
2012).

The cut-off point analysis (Fig. 5) for the fixed effects-only
model showed a proportion of 65 % correctly classified cases
for both the disturbance events and nonevents at a cut-off
value of 0.04 (i.e. both sensitivity and specificity had a value
of 0.65 at this cut-off). Nevertheless, it may be more practical
to take a look at these values at a cut-off value, where the
numbers of predicted events and nonevents are closest
to the observed ones (i.e. disturbance frequencies in the
observations and predictions are similar). This cut-off
value was 0.13, and the related sensitivity and specific-
ity were 0.26 and 0.95, respectively (the related share of
overall correct classifications was 90 %). This means that
nonevents were predicted with good reliability, and in case
of damage events, the model identified correctly one fourth of
the observed events.

To assess the importance of weather-related predictor
variables in the models, we also fitted the final model
in a version where these were excluded. When omitting
VMAX and SF from the probability model, AUC values
decreased slightly, to 0.83 in case of fixed and random
effect model and to 0.70 in case of the fixed effect-only
model. Cross-validation indicated only a small decrease
in robustness (not shown here).

3.3 Intensity of disturbance events

When modelling wind disturbance intensity, many of the
predictor variables were found uninformative in the model

Table 3 Proportion of wind dis-
turbance events in the period
2003–2008 with at least one sal-
vage cut (wind, bark beetles or
snow) or regular harvest occur-
ring in the same stand in the four
preceding years

Preceding disturbance Traun-Innviertel Steyrtal Waldviertel-Voralpen Steiermark

Wind 36.4 % 42.0 % 39.7 % 71.4 %

Bark beetles 79.5 % 38.8 % 38.9 % 59.2 %

Snow 2.3 % 1.1 % 3.8 % 4.9 %

Regular harvests 75.0 % 51.6 % 34.9 % 34.5 %

296 F. Pasztor et al.



selection process, except for PA (proportion of Norway
spruce), VOL and W4 (Table 4). VOL showed higher partial
effect than the other predictor variables (Fig. 6). The
linear relationship between the predictor variables and
the response variable was confirmed by the residual
plots. Residuals were normally distributed. Normality
and homogeneity improved substantially by ln-transforming
the response variable. Considering goodness-of-fit, there
was a big difference between R2 values of the full model and
the one refitted with fixed effects only (Table 5) with
R2 values of 0.38 and 0.09, respectively. Related RMSE
values were 38.49 m3 ha−1 year−1 and 43.77 m3 ha−1 year−1,
respectively.

In the 10-fold cross-validation, the fixed effect-only model
had R2 values between 0.02 and 0.20. In case the four FMUs
were used separately as test data, R2 values were 0.08, 0.09,
0.08 and 0.05 for Traun-Innviertel, Steyrtal, Waldviertel-
Voralpen and Steiermark, respectively.

4 Discussion

4.1 Disturbance drivers and model quality

Classification performance tests showed that the wind damage
probability model performed moderately well also in case of a
“fixed effects-only” version. This indicates that the model
could be used for prediction purposes outside of the study
area (see Bolker et al. 2009). Model results clearly indicated a
higher probability of wind disturbance for old, highly stocked
forests at higher elevations in years that were preceded by high
intensity disturbances (see Fig. 4). The inclusion of AGE may
represent the positive effect of increasing tree height on dam-
age probability, as the correlation between AGE and VOLwas
fairly small. ELEV may capture the combined effects of
increasing wind speed with increasing elevation and increased

Table 4 Estimated model coefficients of the generalized linear mixed
model for the probability of occurrence of wind damage and the linear
mixed model for damage intensity [m3 ha−1 year−1]

Explanatory variable Probability model Intensity model

Estimate Std. error Estimate Std. error

(Intercept) −5.2165 0.3597 1.8212 0.1599

ELEV 0.0008 0.0002

PA 0.0025 0.0011

AGE 0.0037 0.0010

VOL 0.0009 0.0003 0.0017 0.0002

W4 0.3429 0.0282 0.0527 0.0195

B4 0.3394 0.0282

S4 0.3390 0.0753

VMAX 0.0166 0.0064

SF −0.7026 0.1759

For a description of variables, see Table 2

Fig. 4 Partial effects in the wind damage probability model. The Y-axis
denotes the annual probability of a wind damage event. The solid lines
represent the partial effects of the predictor variables (X-axis), the starting

and end points denote the minimum and maximum values in the database
used for model development. For a description of variables, see Table 2

Fig. 5 Cut-off values and the related sensitivity, specificity and classifi-
cation rate values for the probability model of wind disturbance events
(predictions made without random effects)
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exposure to winds at higher elevations due to reduced
shielding effects of surrounding topography.

The strong effect of preceding disturbance events may be
due to newly created stand edges and increased canopy rough-
ness (Rochelle et al. 1999; Schütz et al. 2006), which is in line
with findings of other studies (e.g. Klopcic et al. 2009; Thom
et al. 2013). W4, B4 and S4 in our analysis had very similar
effect sizes in the case of the probability model (see Table 4),
which means that changes in stand structure induced by
salvage of wind, bark beetle and snow damage are apparently
similar and that they may be interchangeable (they also have
the same measurement unit) in the model. Therefore, they
could also be used in an aggregated form when estimating
wind damage probability. Intensity of individual salvage cuts
was in most cases below 20 % of standing volume and thus at
levels similar to regular thinnings and regeneration cuts. The
fact that regular harvests (R4) were not found important in
explaining wind damage indicates a certain difference be-
tween the effects of regular harvests and salvage cuts. Wheth-
er this is the result of careful forest management or some other
factor, could not be tested in the current study.

The four FMUs in the current analysis represent a broad
range of sites and stands in Austrian commercial forests.
Salvage practices may vary among regions, which affects
the relationship of stand and site conditions and management
activities on one hand, and damage from wind on the other.
The robustness of the developed models as revealed by the
cross-validation among FMUs indicated a similar manage-
ment strategy in all four units of the AFF under study.

Overall, standard predictors describing forest site yielded
only small effects on damage probability (only ELEV was
found to be informative). This may be explained by a rather

low representativeness of site descriptors for entire stand poly-
gons due to substantial small-scale variation of site and soil
conditions in mountain forests. Moreover, the spatial variability
of site attributes was apparently much larger than that of wind
damage, reducing their explanatory power. In the light of these
arguments, the inclusion of SF (indicating frozen soil) in the
model highlights the importance of the interplay of soil and
weather conditions in determining susceptibility to wind dam-
age. However, SF also highlights the challenge of including
attributes in model development which are subject to substan-
tial uncertainty, regarding both space and time dimensions.
With SF, this is particularly true to the required match of
VMAX and unfrozen soil status. Related uncertainty would
have even increased further in the case of including a stand-
specific soil water balance calculation which requires spatially
accurate estimates of water holding capacity of the soil.

The small effect size of VMAX in the probability model
and its exclusion from the intensity model confirmed the
hypothesis that incorporating wind speed as a driving factor
in our models was a challenge. Analysing whether the rela-
tively coarse spatial resolution of the wind speed data (1×
1 km) or the inherent variability in storm damage events was
the major reason for the weak effect of VMAX in the proba-
bility and intensity models was beyond the scope of the
current study. An alternative to using wind speed data is
describing the local topographic exposure of forest stands to
wind. This method is widely employed in storm damage
research and uses indices like topex, topex-to-distance or other
indices that include information on the aspect and slope of
stands (see e.g. Quine and White 1998).

There are other empirical studies of storm damage that link
wind field characteristics to wind damage (e.g. Schütz et al.

Fig. 6 Partial effects in the wind damage intensity model. The Y-axis
denotes the intensity of a wind damage event. The solid lines show the
partial effects of the predictor variables (X-axis), the starting and end

points denote the minimum andmaximum values in the database used for
model development. For a description of variables, see Table 2

Table 5 Performance statistics of the generalized linear mixed model for the probability of occurrence of wind damage and the linear mixed model for
the damage intensity [m3 ha−1 year−1]

Probability model Intensity model

AUC (fixed and random effects) 0.84 R2 (fixed and random effects) 0.38

AUC (fixed effects only) 0.71 R2 (fixed effects only) 0.09

Sensitivity (fixed effects only; cut-off value=0.15) 0.26 RMSE (fixed and random effects) 38.49 m3 ha−1 year−1

Specificity (fixed effects only; cut-off value=0.15) 0.95 RMSE (fixed effects only) 43.77 m3 ha−1 year−1
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2006; Schindler et al. 2009, 2012). However, they do this for
large-scale singular storm events, where the exact timing of a
storm is known, and linking the gust speed estimate to the
damage event is less problematic. In our case, excluding the
weather-related variables (VMAX and SF) from the probabil-
ity models caused only a small decrease in explanatory power.
Nevertheless, the sign of both VMAX and SF and the effect
size of SF in the probability model clearly indicated concep-
tual consistency and the relevance of including explicit
weather-related attributes in wind disturbance models.

In case of the intensity model, the big difference of R2

between the full model (fixed and random effects) and the
fixed effects-only model indicated that the variables used in
the study explained only a small proportion of the variance in
wind salvage and that implicit local effects could not be
revealed with the available database. This may be due to
features of the local wind climate or stand conditions which
are not accounted for by the available data. Local adaptation
of trees to higher wind speeds can decrease wind disturbance
susceptibility (Nicoll et al. 2008). With regard to forest
stewardship-related attributes, Thom et al. (2013) found that
attributes such as ownership or road density contributed sig-
nificantly to explaining the variation in damage data at the
level of administrative districts.

4.2 Limitations of database and study design

The current study used data from forest management plans. It
is important to note that originally, the underlying data had not
been compiled for scientific purposes, and therefore, just the
typical standard set of site and stand characteristics was avail-
able for the analysis. Recording errors of timber removals can
lead to inconsistent data sets. For instance, the assignment of
removals to one of several causes is such a crucial issue. The
important advantage of the database is its spatial coverage and
that the same data collection procedures have been used
throughout all the studied FMUs.

Linking a disturbance event to a highly stochastic predictor
such as gust speed may impose several problems. For the
analysis, exact dates of the disturbance events were not avail-
able. In case of windthrows, it is possible that a winter storm
damages trees in November or December, but the event only
gets registered and the timber salvaged during the next year.
This can lead to cases in the model matrix when high gust
speeds (>30 m s−1) are linked to no damage (compare Nilsson
et al. 2007) in the stand, or high amounts of damaged timber to
very low gust speeds (e.g. <5 m s−1).

The topography used by INCA is given on a grid with a
resolution of 1 km. As such, the terrain model may fail to
approximate highly complex structured topography sufficient-
ly well. However, since there is a lack of observational data,
the INCA data set provides the nearest approximation of the
wind conditions in the study regions over a longer period.

Further wind downscaling techniques combined with in situ
measurements could improve the analysis of the actual wind
conditions within the forest areas. Despite these limitations,
we intended to include VMAX in the analysis to test if it
contributes to explaining damage from wind disturbances.
The relevance of developing predictive models sensitive to
changes in wind-related drivers becomes evident when
analysing climate change impacts on forests and related eco-
system services (e.g. Lindner et al. 2010). The effect size of
VMAX in the probability model was relatively small, and it
was not even included in the intensity model. However, with a
higher spatial resolution of accurate wind speeds and an exact
recording of the dates of wind salvage, empirical models for
wind damage prediction using wind speed as a predictor could
very likely be improved significantly.

Another issue related to the INCAwind speed data was the
availability of data from 2003 onward whereas the disturbance
damage datawas available for the period 1999–2008. However,
no straightforward approach was available to fill this gap in the
wind speed data. In addition, 4 years from the 10-year data
record were used to build predictor variables characterizing
harvest and damage history of stands. Nevertheless, these
predictor variables proved to be important in explaining
damage events, similar to the findings of Thom et al. (2013),
who used salvaged damage from the preceding 2 years as
explanatory variable in a recent study of the wind and bark
beetle disturbance regime at landscape scale.

An important aspect of the disturbance regime, the spatial
extent of disturbance events inside a stand, or at higher aggre-
gation level inside a compartment, could not be considered.
Substantial efforts and additional data (mainly deducible from
remote sensing sources) would have been needed to make the
database spatially explicit. In our models, effects of damaged
neighbour stands were not included as fixed effects for similar
reasons. However, the latter practice would also have been
contrary to our aim to explore how well predictions could be
made from stand-level information only.

5 Conclusions

The developed models indicate that decreasing the proportion
of spruce, limiting stand age and reducing timber stock in
course of tending operations in stands vulnerable to wind
disturbance are options to mitigate the risk and the expected
damage intensity. Furthermore, results clearly indicated that
previous disturbances from wind, bark beetles and snow in-
crease the risk of wind damage. This, therefore, underscores
the importance of stand stability and resilience in forest
management.

It was found that standard data from management plans
have the potential to be used to identify stands at high risk of

Developing predictive models of wind damage in Austrian forests 299



wind damage. However, expectations that salvage volumes
due to wind disturbance damage at the stand level can be
accurately projected from standard data appear too optimistic.

The big difference in performance between models with
fixed and random effects and models without random effects
highlighted the importance of unknown attributes that have
yet to be discovered in order to improve wind disturbance
modelling. The limited improvement in model performance
by including wind speed data points was a weakness on one
hand, but indicated that there is potential to further improve
empirical wind disturbance models by improved matching of
damage events to weather data.
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