G. Alsmeyer, Convergence rates in the law of large numbers for martingales, Stochastic Process, Appl, vol.36, issue.2, pp.181-194, 1990.

B. Bahr and C. Esseen, Inequalities for the $r$th Absolute Moment of a Sum of Random Variables, $1 \leqq r \leqq 2$, The Annals of Mathematical Statistics, vol.36, issue.1, pp.299-303, 1965.
DOI : 10.1214/aoms/1177700291

Y. Benoist and J. Quint, Random walks on reductive groups manuscript

Y. Benoist and J. Quint, Central limit theorem for linear groups, accepted for publication in Ann

I. Berkes, W. Liu, and W. B. Wu, Koml??s???Major???Tusn??dy approximation under dependence, The Annals of Probability, vol.42, issue.2, pp.794-817, 2014.
DOI : 10.1214/13-AOP850

P. Bougerol and J. Lacroix, Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, 1985.

C. Cuny, A compact LIL for martingales in $2$-smooth Banach spaces with applications, Bernoulli, vol.21, issue.1, pp.374-400, 2015.
DOI : 10.3150/13-BEJ571

C. Cuny, Limit theorems under the Maxwell-Woodroofe condition in Banach spaces

C. Cuny and F. Merlevède, Strong Invariance Principles with Rate for ???Reverse??? Martingale Differences and Applications, Journal of Theoretical Probability, vol.110, issue.2, pp.137-183, 2015.
DOI : 10.1007/s10959-013-0506-z

URL : https://hal.archives-ouvertes.fr/hal-00745647

J. Dedecker, P. Doukhan, and F. Merlevède, Rates of convergence in the strong invariance principle under projective criteria, Electronic Journal of Probability, vol.17, issue.0, p.31, 2012.
DOI : 10.1214/EJP.v17-1849

URL : https://hal.archives-ouvertes.fr/hal-00686034

J. Dedecker, F. Merlevède, and E. Rio, Rates of convergence for minimal distances in the central limit theorem under projective criteria, Electron, J. Probab, vol.14, issue.35, pp.978-1011, 2009.

J. Dedecker and E. Rio, On the functional central limit theorem for stationary processes, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.36, issue.1, pp.1-34, 2000.
DOI : 10.1016/S0246-0203(00)00111-4

H. Furstenberg and H. Kesten, Products of Random Matrices, The Annals of Mathematical Statistics, vol.31, issue.2, pp.457-469, 1960.
DOI : 10.1214/aoms/1177705909

Y. Guivarc-'h and A. Raugi, Fronti??re de furstenberg, propri??t??s de contraction et th??or??mes de convergence, Zeitschrift f??r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.15, issue.2, pp.187-242, 1985.
DOI : 10.1007/BF02450281

C. C. Heyde, On the central limit theorem and iterated logarithm law for stationary processes, Bulletin of the Australian Mathematical Society, vol.10, issue.01, pp.1-8, 1975.
DOI : 10.1214/aop/1176996714

S. Hao and Q. Liu, Convergence rates in the law of large numbers for arrays of martingale differences, Journal of Mathematical Analysis and Applications, vol.417, issue.2, pp.733-773, 2014.
DOI : 10.1016/j.jmaa.2014.03.049

URL : https://hal.archives-ouvertes.fr/hal-01095079

C. Jan, Vitesse de convergence dans le TCL pour des processus associésassociésà des systèmes dynamiques ou des produits de matrices aléatoires, Thèse de l'université de Rennes, pp.1-10073, 2001.

C. Jan, Vitesse de convergence dans le TCL pour des cha????nes de Markov et certains processus associ??s ?? des syst??mes dynamiques, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.331, issue.5, pp.395-398, 2000.
DOI : 10.1016/S0764-4442(00)01615-3

J. Komlós, P. Major, and G. Tusnády, An approximation of partial sums of independent RV'-s, and the sample DF. I, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.43, issue.1-2, pp.111-131, 1975.
DOI : 10.1007/BF00533093

E. and L. Page, Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups, Lecture Notes in Math, vol.928, p.258303, 1981.

M. Maxwell and M. Woodroofe, Central limit theorems for additive functionals of Markov chains, Ann. Probab, vol.28, issue.2, pp.713-724, 2000.

F. Merlevède and M. Peligrad, Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples, The Annals of Probability, vol.41, issue.2, pp.914-960, 2013.
DOI : 10.1214/11-AOP694

M. Peligrad and S. Utev, A new maximal inequality and invariance principle for stationary sequences, The Annals of Probability, vol.33, issue.2, pp.798-815, 2005.
DOI : 10.1214/009117904000001035

M. Peligrad, S. Utev, and W. B. Wu, A maximal Lp-inequality for stationary sequences and its applications, Proc. Amer, pp.541-550, 2007.

E. Rio, Moment Inequalities for Sums of Dependent Random Variables under Projective Conditions, Journal of Theoretical Probability, vol.5, issue.3, pp.146-163, 2009.
DOI : 10.1007/s10959-008-0155-9

URL : https://hal.archives-ouvertes.fr/hal-00679859

Q. M. Shao, Almost sure invariance principles for mixing sequences of random variables. Stochastic Process, Appl, vol.48, pp.319-334, 1993.

W. B. Wu and Z. Zhao, Moderate deviations for stationary processes, Statist. Sinica, vol.18, issue.2, pp.769-782, 2008.

M. Laboratoire and . Centrale-supelec, Grande Voie des Vignes, 92295 Chatenay-Malabry cedex, France. E-mail address: christophe.cuny@centralesupelec.fr Laboratoire MAP5 (UMR 8145), p.45

C. Lycée and . Fauriel, Avenue de la libération, 42000 Saint-Etienne, France E-mail address: christophe