Deciding game invariance

Eric Duchene 1 Aline Parreau 1, 2 Michel Rigo 2
1 GOAL - Graphes, AlgOrithmes et AppLications
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : Duchêne and Rigo introduced the notion of invariance for take-away games on heaps. Roughly speaking, these are games whose rulesets do not depend on the position. Given a sequence S of positive tuples of integers, the question of whether there exists an invariant game having S as set of P-positions is relevant. In particular, it was recently proved by Larsson et al. that if $S$ is a pair of complementary Beatty sequences, then the answer to this question is always positive. In this paper, we show that for a fairly large set of sequences (expressed by infinite words), the answer to this question is decidable.
Type de document :
Article dans une revue
Information and Computation, Elsevier, 2017, 253 (1), pp.127-142. 〈10.1016/j.ic.2017.01.010〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01283830
Contributeur : Eric Duchene <>
Soumis le : dimanche 6 mars 2016 - 22:15:39
Dernière modification le : vendredi 10 novembre 2017 - 01:19:39

Identifiants

Collections

Citation

Eric Duchene, Aline Parreau, Michel Rigo. Deciding game invariance. Information and Computation, Elsevier, 2017, 253 (1), pp.127-142. 〈10.1016/j.ic.2017.01.010〉. 〈hal-01283830〉

Partager

Métriques

Consultations de la notice

114