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Abstract. In this paper we study the existence of W 1,1
0 (Ω) dis-

tributional solutions of Dirichlet problems whose simplest example
is {

−div
(
|∇u|p−2∇u

)
= f(x), in Ω;

u = 0, on ∂Ω.

1. Introduction

Let Ω be a bounded open set in IRN , N ≥ 2. The simplest example
of nonlinear (and variational) boundary value problem is the Dirichlet
problem for the p–Laplace operator

(1.1)

{
−div

(
|∇u|p−2∇u

)
= f(x), in Ω;

u = 0, on ∂Ω;

where

(1.2) 1 < p < N,

so that the growth of the differential operator is p − 1. The classical
theory of nonlinear elliptic equations states that W 1,p

0 (Ω) is the natu-
ral functional spaces framework to find weak solutions of (1.1), if the
function f belongs to the dual space of W 1,p

0 (Ω) (see [13], [17], [25]).
This approach fails if p = 1 or if we consider the problem of non-

parametric minimal surfaces (where f(x) = 0, but the boundary datum
is not zero, see [23]) because of the lack of compactness of bounded
sequences (non-reflexivity of W 1,1

0 (Ω)), so that it is only possible to
find solutions in the “larger” space BV (Ω). We recall that, thanks to
a purely geometric argument ([12], [22]) or a duality argument ([29]),
existence of “generalized” solutions was obtained. More recently, for
this kind of problems, some existence results in W 1,1(Ω) have been
proved in [2].

On the other hand, if p > 1, for the model problem (1.1), the exis-
tence of W 1,p

0 (Ω) solutions also fails if the right hand side is a function
f ∈ Lm(Ω) (m ≥ 1) which does not belong to the dual space ofW 1,p

0 (Ω):
it is possible to find distributional solutions in function spaces “larger”
than W 1,p

0 (Ω), but contained in W 1,1
0 (Ω) (see [7], [8]). In this paper
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we will prove, for general boundary value problems of the type (1.1)
and for some values of p and m, the existence of solutions belonging
to W 1,1

0 (Ω) and not belonging to W 1,q
0 (Ω), 1 < q < p: see also Remark

2.5.
To be more precise, in this paper, we study some existence results of

W 1,1
0 (Ω) distributional solutions (not so usual in elliptic problems) for

nonlinear elliptic boundary value problems of the type

(1.3)

{
A(u) = f(x), in Ω;
u = 0, on ∂Ω;

where

(1.4) f ∈ Lm(Ω), m ≥ 1,

and A is the operator, acting on W 1,p
0 (Ω), defined by

(1.5) A(v) = −div (a(x, v,∇v)) .

We assume the standard hypotheses on a : Ω × IR × IRN → IRN ,
that is, a is a Carathéodory function such that the following holds for
almost every x ∈ Ω, for every s ∈ IR, for every ξ 6= η ∈ IRN :

(1.6)


a(x, s, ξ)ξ ≥ α |ξ|p ,
|a(x, s, ξ)| ≤ β|ξ|p−1 ,

[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0 ,

where α, β are positive constants.
Thus A is a pseudomonotone and coercive differential operator and

it is surjective (see [25], [13], [17]). The simplest example is given by
the differential operator A(v) = −div(|∇v|p−2∇v), appearing in (1.1).

The existence of W 1,1
0 (Ω) solutions, instead of W 1,p

0 (Ω) or W 1,q
0 (Ω)

(with 1 < q < p) solutions of the boundary value problem (1.3) is a
consequence of the poor summability of the right hand side, even if the
“growth” of the operator A is not zero, but p− 1 > 0.

Existence of solutions for problem (1.3) with nonregular right hand
side has been obtained by G. Stampacchia in [28] (if A is a linear elliptic
operator), by H. Brezis and W. Strauss in [16] and [15] (for semilinear
problems; see also [20]) and in [7], [8], [10], [1], for general nonlinear
problems; in particular, we recall the following results contained in [7],
[8].

Theorem 1.1. Let m = 1 and

(1.7) 2− 1

N
< p < N.

Then there exists a distributional solution u ∈ W 1,q
0 (Ω), q < N(p−1)

N−1
, of

(1.3); that is∫
Ω

a(x, u,∇u)∇v =

∫
Ω

f v, ∀v ∈ W 1,∞
0 (Ω) .
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Observe that N(p−1)
N−1

> 1 if and only if p > 2− 1
N

.

Theorem 1.2. Let 2− 1
N
< p < N . If

(1.8)

∫
Ω

|f | log(1 + |f |) <∞,

then there exists a distributional solution u ∈ W 1,
N(p−1)
N−1

0 (Ω) of (1.3).

Theorem 1.3 (Calderon-Zygmund theory for infinite energy solutions).
If f ∈ Lm(Ω), N

N(p−1)+1
< m < Np

pN+p−N = (p?)′, p > 1 + 1
m
− 1

N
,

then there exists a distributional solution u ∈ W
1,(p−1)m?

0 (Ω) of (1.3).

Moreover, if f belongs to L1(Ω) (see also [10], where the datum is
sum of an element in W−1,p′(Ω) and of a function in L1(Ω)), we recall
that in [1] have been introduced notions of gradient and of solution
for (1.3), with the purpose of proving its uniqueness (if the function
a(x, s, ξ) does not depend on s) and of proving its existence if p does
not satisfy (1.7).

In this paper we study the existence of W 1,1
0 (Ω) distributional solu-

tions (without the functional framework of [1]) as a consequence of the
fact that we improve the existence results of Theorems 1.2 and 1.3 in
some borderline cases. Another elliptic problem with W 1,1

0 (Ω) solutions
is studied in [5].

2. Existence

We recall the definition of Tk(s), for s and k in IR, with k ≥ 0:
Tk(s) = max(−k,min(k, s)) and that, in the existence proof, we started
in [7], [8], [10], [1] with the Dirichlet problems

(2.1) un ∈ W 1,p
0 (Ω) : A(un) = fn,

with fn = Tn(f). Thus every un is a bounded function (see [28]).
Moreover in [1] it is proved that the use of Tk(un) as test function
yields (see also [9], [4])

(2.2) α

∫
Ω

|∇Tk(un)|p ≤ k

∫
Ω

|f | .

Furthermore we have the following estimate.

Lemma 2.1. Let f ∈ L1(Ω), p > 1. The sequence {log(1+|un|)sign(un)}
is bounded in W 1,p

0 (Ω).

Proof. The use of [1− (1 + |un|)1−p]sign(un) as test function yields

(2.3)
α

∫
Ω

|∇ log(1 + |un|)|p ≤ α

∫
Ω

|∇un|p

(1 + |un|)p

≤
∫

Ω

|fn|[1− (1 + |un|)1−p] ≤
∫

Ω

|f |,



4 L. BOCCARDO - T. GALLOUET

which implies the result.

As a consequence of the previous lemma, there exists a subsequence
(not relabelled) such that

(2.4) log(1 + |un|)sign(un) converges weakly in W 1,p
0 (Ω) and a.e.

Then un(x) converges a.e. to a measurable function u(x) such that
log(1 + |u|)sign(u) ∈ W 1,p

0 (Ω).

Theorem 2.2. Let f ∈ Lm(Ω), m = N
N(p−1)+1

, 1 < p < 2 − 1
N

. Then

there exists a distributional solution u ∈ W 1,1
0 (Ω) of (1.3).

Proof. Step 1 - Note that m = N
N(p−1)+1

implies m < N
p

. The first

part of the proof follows the approach of [8]. Let θ = (p−1)m′

pm′−p? . Note that

pm′ − p? > 0, since m < N
p

, and that θ < 1, since m < pN
pN+p−N . Let ε

be a strictly positive real number. The function vε = [(ε+|un|)1−p(1−θ)−
ε1−p(1−θ)]sign(un) is bounded since 1−p(1−θ) > 0 (which is equivalent
to p > 1). Thus we can use vε as a test function in (2.1) and we have

(2.5)

∣∣∣∣∣∣∣∣∣
C2,p

[ ∫
Ω

{
(ε+ |un|)θ − εθ

}p?] p
p?

≤ C1,p

∫
Ω

|∇un|p

(ε+ |un|)p(1−θ)

≤
[ ∫

Ω

|f |m
] 1
m
[ ∫

Ω

{
(ε+ |un|)1−p(1−θ) − ε1−p(1−θ)

}m′] 1
m′

,

where Ci,p denotes a strictly positive constant. The limit as ε tends to
zero yields, thanks to the Fatou lemma,

C2,p

[ ∫
Ω

|un|θ p
?

] p
p?

≤ α

∫
Ω

|∇un|p

|un|p(1−θ)
≤
[ ∫

Ω

|f |m
] 1
m
[ ∫

Ω

|un|[1−p(1−θ)]m
′
] 1
m′

.

Note that p
p?

> 1
m′

since m < N
p

. Moreover the choice of θ implies

θ p? = [1− p(1− θ)]m′ = (mp)?

p′
= N

N−1
. Thus we proved that

(2.6) C2,p

[ ∫
Ω

|un|
N
N−1

] 1
m
− p
N

≤
[ ∫

Ω

|f |m
] 1
m

.

This estimate also implies (see the previous inequality) the bounded-
ness, with respect to n, of ∫

Ω

|∇un|p

|un|p(1−θ)
.

and the following estimate

(2.7) meas{k ≤ |un|} ≤
C3,p

k
N
N−1

,

so that, if we fix ε > 0, there exists kε such that, for k ≥ kε, we have

(2.8) meas{k ≤ |un|} ≤ ε, uniformly with respect to n.
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Now we can estimate
∫

Ω
|∇un|. Indeed we have∫

Ω

|∇un| =
∫

Ω

|∇un|
|un|(1−θ)

|un|(1−θ) ≤
[ ∫

Ω

|∇un|p

|un|p(1−θ)

] 1
p
[ ∫

Ω

|un|p
′(1−θ)

] 1
p′

.

Note that p′(1−θ) = N
N−1

, so the right hand side is bounded; then the

sequence {un} is bounded in W 1,1
0 (Ω), subsequently there exists R > 0

such that

(2.9) ‖un‖W 1,1
0 (Ω)

≤ R.

Thus there exists a subsequence (not relabelled) {un} converging to u
in Lr(Ω), 1 ≤ r < N

N−1
, and almost everywhere. Moreover (2.2) implies

that ∇Tk(un) converges weakly to ∇Tk(u) in W 1,p
0 (Ω).

Step 2 - Now we need an estimate not only of
∫

Ω
|∇un|, but

also of
∫

{k≤|un|}
|∇un|. We adapt the method of Step 1. Thus we use

[|un|1−p(1−θ) − k1−p(1−θ)]+sign(un) as a test function in (2.1), with θ as
before, and we have, thanks to (2.6),
(2.10)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C4,p

∫
{k≤|un|}

|∇un|p

|un|p(1−θ)

≤
[ ∫
{k≤|un|}

|f |m
] 1
m
[ ∫
{k≤|un|}

{
|un|1−p(1−θ) − k1−p(1−θ)}m′] 1

m′

≤
[ ∫
{k≤|un|}

|f |m
] 1
m
[ ∫
{k≤|un|}

|un|[1−p(1−θ)]m
′
] 1
m′

≤ C5,p

[ ∫
{k≤|un|}

|f |m
] 1
m

.

By Hölder’s inequality we have (using again that p′(1− θ) = N
N−1

)
(2.11)∣∣∣∣∣∣∣∣∣∣∣

∫
{k≤|un|}

|∇un| =
∫

{k≤|un|}

|∇un|
|un|(1−θ)

|un|(1−θ)

≤
[ ∫
{k≤|un|}

|∇un|p

|un|p(1−θ)

] 1
p
[ ∫

Ω

|un|p
′(1−θ)

] 1
p′

≤ C6,p

[ ∫
{k≤|un|}

|f |m
] 1
m

.

Thus, for every measurable subset E, thanks to (2.2) and (2.11), we
have

(2.12)

∣∣∣∣∣∣∣∣∣∣∣

∫
E

∣∣∣∣∂un∂xi

∣∣∣∣ ≤ ∫
E

|∇un| ≤
∫
E

|∇Tk(un)|+
∫

{k≤|un|}

|∇un|

≤ meas(E)
1
p′

[
k

α
‖f‖

L1(Ω)

] 1
p

+ C6,p

[ ∫
{k≤|un|}

|f |m
] 1
m
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Now we want to prove that

(2.13) un weakly converges to u in W 1,1
0 (Ω)

and we follow [5]. The estimate (2.12) implies that the sequence {∂un
∂xi
}

is equiintegrable, thanks to (2.8) and the absolute continuity of the
integral. Thus, by Dunford-Pettis theorem, and up to subsequences,
there exists Yi in L1(Ω) such that ∂un

∂xi
weakly converges to Yi in L1(Ω).

Since ∂un
∂xi

is the distributional partial derivative of un, we have, for
every n in IN , ∫

Ω

∂un
∂xi

ϕ = −
∫

Ω

un
∂ϕ

∂xi
, ∀ϕ ∈ C∞0 (Ω) .

We now pass to the limit in the above identities, using that ∂iun weakly
converges to Yi in L1(Ω), and that un strongly converges to u in L1(Ω):
we obtain ∫

Ω

Yi ϕ = −
∫

Ω

u
∂ϕ

∂xi
, ∀ϕ ∈ C∞0 (Ω) .

This implies that Yi = ∂u
∂xi

, and this result is true for every i. Since Yi

belongs to L1(Ω) for every i, u belongs to W 1,1
0 (Ω), as desired.

The almost everywhere convergence of ∇un to ∇u, proved in Lemma
5.1 in Appendix A, and (2.13) allow us to use the Vitali theorem. Thus

(2.14) ∇un → ∇u in (L1(Ω))N .

Step 3 - The inequality

|a(x, un,∇un)| ≤ β |∇un|p−1

and (again) the Vitali theorem imply that a(x, un,∇un) converges to

a(x, u,∇u) in (L
1
p−1 (Ω))N . Note that 1

p−1
> 1. Then it is possible

to pass to the limit in (2.1). Thus we proved that u ∈ W 1,1
0 (Ω) is a

distributional solution of (1.3).

Theorem 2.3. Assume (1.8) and p = 2 − 1
N

. Then there exists a

distributional solution u ∈ W 1,1
0 (Ω) of (1.3).

Proof. Step 1 - Let 1 < λ < p. Taking [1− (1 + |un|)1−λ]sign(un)
as a test function in the weak formulation of (1.3), we obtain

α

∫
Ω

|∇un|p

(1 + |un|)λ
≤ 1

λ− 1
‖f‖L1(Ω).

Then, using the Sobolev embedding theorem we have

(2.15)

[ ∫
Ω

{(1 + |un|)1−λ
p − 1}p?

] p
p?

≤ Cp,λ ‖f‖L1(Ω).

Noting that λ > 1 implies (1− λ
p
)p? < N

N−1
, we prove that the sequence

{un} is bounded in Lr(Ω), 1 ≤ r < N
N−1

: ‖un‖Lr(Ω)
≤ Cr.
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Step 2 - We will use the inequality{
there exists ar > 0, only depending on r, such that

t log(1 + s) ≤ t log(1 + t) + sr + ar for all s, t ∈ IR+.

Taking [log(1+|un|)]sign(un) as a test function in the weak formulation
of (1.3), we obtain

(2.16)

∣∣∣∣∣∣∣∣
α

∫
Ω

|∇un|p

1 + |un|
≤
∫

Ω

|f | log(1 + |un|)

≤ ‖f log(1 + |f |)‖L1(Ω) +

∫
Ω

|un|r + armeas(Ω).

Then the use of Hölder and Sobolev inequalities yields, since p′

p
= N

N−1

and 1− 1
p

= N−1
2N−1

,

(2.17)∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S1α
1
p

[ ∫
Ω

|un|
N
N−1

]N−1
N

≤ α
1
p

∫
Ω

|∇un| ≤
[
α

∫
Ω

|∇un|p

1 + |un|

] 1
p
[ ∫

Ω

(1 + |un|)
p′
p

] 1
p′

≤
[
‖f log(1 + |f |)‖L1(Ω) + Cr

r + armeas(Ω)

] 1
p
[ ∫

Ω

(1 + |un|)
N
N−1

] N−1
2N−1

.

Since N−1
2N−1

< N−1
N

, we proved that the sequence {un} is bounded in

W 1,1
0 (Ω) and so it is compact in Lr(Ω), 1 ≤ r < N

N−1
.

Thus there exist Lr(Ω), 1 ≤ r < N
N−1

and a subsequence (not rela-
belled) {un} such that un converges to u in Lr(Ω) and almost every-
where.

Step 3 - Taking [log(1+ |un|)− log(1+k)]sign(un) as a test function
in the weak formulation of (1.3), we obtain∣∣∣∣∣∣∣∣∣∣

α

∫
{k≤|un|}

|∇un|p

1 + |un|
≤

∫
{k≤|un|}

|f | log(1 + |un|)

≤
∫

{k≤|un|}

|f | log(1 + |f |) +

∫
{k≤|un|}

|un|r + armeas{k ≤ |un|},

which implies (following (2.17))
(2.18)∣∣∣∣∣∣∣∣∣∣∣

∫
{k≤|un|}

|∇un| ≤

≤ C1

[ ∫
{k≤|un|}

|f | log(1 + |f |) +

∫
{k≤|un|}

|un|r + armeas{k ≤ |un|}
] 1
p

.
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Thus, for every measurable subset E, thanks to (2.2), we can follow
(2.12) and we obtain
(2.19)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
E

∣∣∣∣∂un∂xi

∣∣∣∣ ≤ ∫
E

|∇un| ≤
∫
E

|∇Tk(un)|+
∫

{k≤|un|}

|∇un|

≤ meas(E)
1
p′

[
k

α
‖f‖

L1(Ω)

] 1
p

+C1

[ ∫
{k≤|un|}

|f | log(1 + |f |) +

∫
{k≤|un|}

|un|r + armeas{k ≤ |un|}
] 1
p

Thus we proved again the convergence (2.13) and we can repeat the
last part of the proof of the previous theorem (mainly the convergence
(2.14)) and then we can prove that u ∈ W 1,1

0 (Ω) is a distributional
solution of (1.3).

Remark 2.4. Note that

lim
p→1

N

N(p− 1) + 1
= N, lim

p→2− 1
N

N

N(p− 1) + 1
= 1

Remark 2.5. Let 1 < p ≤ 2 − 1
N

and Ω = B(0, 1
2
). Consider the

boundary value problem

(2.20)

 −∆p(u) = f(x) =
1

|x|α(− log |x|)β
, in Ω;

u = 0, on ∂Ω;

with α, β > 0. We look for radial solutions u(x) = u(r), r = |x|, so
that we have

− 1

rN−1

(
rN−1|u′|p−2u′

)′
=

1

rα(− log r)β

and

(2.21) |u′(s)| = p−1

√
1

sN−1

∫ s

0

tN−1−α

(− log t)β
dt .

Let now α = N
m

and β > N(p−1)+1
N

; thus α < N if m > 1. Then it
results
(2.22)∫
B(0, 1

2
)

|∇u| =
∫ 1

2

0

|u′(s)|sN−1ds =

∫ 1
2

0

s
(N−1)(p−2)

p−1

(∫ s

0

tN−1−α

(− log t)β
dt
) 1
p−1
ds.
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Now note that (using the de l’Hôpital rule)

lim
t→0

s∫
0

tN−1−α

(− log t)β
dt

tN−α

(− log t)β

=
1

N − α
.

Thus, in (2.22), ∇u belongs to (L1(B(0, 1
2
)))N if

β

p− 1
> 1, that is β > p− 1,

(N − 1)(p− 2) +N − α
p− 1

= −1, that is α = N(p− 1) + 1.

Note that f ∈ Lm(Ω), if α = N
m

and β > 1
m

, which means now m =
N

N(p−1)+1
and β > N(p−1)+1

N
(which is greater than p− 1). Thus the

example shows that the statement of Theorem 2.2 is optimal in the
sense that u belongs to W 1,1

0 (Ω) and u does not belong to W 1,q
0 (Ω),

q > 1.
Let now α = N , β > 2. Then (2.21) is

|u′(s)| = p−1

√
1

sN−1

∫ s

0

(− log t)−β

t
dt = p−1

√
1

(β − 1)sN−1(− log s)β−1

β−1
p−1

> 1 Then ∇u belongs to (L1(B(0, 1
2
)))N if∫

B(0, 1
2

)

|∇u| =
∫ 1

2

0

|u′(s)|sN−1ds = Cβ

∫ 1
2

0

1

s(− log s)
β−1
p−1

ds

is finite; that is if β−1
p−1

> 1. If p = 2− 1
N

, the last inequality is β > 2− 1
N

and note that N + 1 > 2− 1
N

. Moreover
∫

Ω
|f | log(1 + |f |) <∞ means

that ∫
B(0, 1

2
)

1

|x|N(− log |x|)β
log(1 +

1

|x|N(− log |x|)β
) <∞,

which is true as a consequence of
∫
B(0, 1

2
)

1
|x|N (− log |x|)β−1 < ∞ (since

β > 2). Thus the example shows that the statement of Theorem 2.3 is
optimal in the sense that u belongs to W 1,1

0 (Ω) and u does not belong
to W 1,q

0 (Ω), q > 1.
However, we recall that, as a consequence of the convergence (2.14)

and of a Theorem by De La Vallée Poussin, we can state that there
exists a positive, continuous, even and convex real function, with the
property

lim
t→∞

Q(t)

t
=∞,

such that

sup
n

∫
Ω

Q(|∇un|) <∞.
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Then the Fatou lemma implies that Q(|∇u|) ∈ L1(Ω).

3. Uniqueness

The uniqueness of infinite energy distributional solutions, in general,
is not true: see [27].

However, in [19] it is observed that, if p > 2 − 1
N

, it is possible
to select a solution: the only solution which is found by means of
approximations. The author calls it the solution obtained as limit of
approximations (SOLA). Here we follow this approach. A different
point of view can be found in [1], [26].

In this section the differential operator does not depend on v, that
is A(v) = −div(a(x,∇v)), and we study the uniqueness of the solution
found by of approximation.

To be more precise, we assume (1.6) and the standard assumption

(3.1) 1 < p < 2, [a(x, ξ)− a(x, η)][ξ − η] ≥ α
|ξ − η|2

(1 + |ξ|+ |η|)2−p .

Lemma 3.1. Let f ∈ Lm(Ω), m = N
N(p−1)+1

, 1 < p < 2− 1
N

. Consider

the sequences {un} and {fn} of Theorem 2.2, a sequence {gn} conver-
ging to f in Lm(Ω) and the solutions wn of the Dirichlet problems

(3.2) wn ∈ W 1,p
0 (Ω) : A(wn) = gn.

Then there exists a positive constant Q = Q(α, p,N,m) such that

(3.3)

∣∣∣∣∣∣∣∣∣
S1

[ ∫
Ω

| log(1 + |un − wn|)|
N
N−1

]N−1
N

≤
∫

Ω

|∇(un − wn)|
1 + |un − wn|

≤

Q

[ ∫
Ω

|fn − gn|
] 1

2

,

where S1 is the Sobolev constant.

Proof. Define

g(t) =
t

1 + |t|
and use g(un−wn) as a test function in (2.1) and (3.2). Then we have∫

Ω

[a(x,∇un)−a(x,∇wn)]∇(un−wn) g′(un−wn) ≤
∫

Ω

(fn−gn)g(un−wn).

The assumption (3.1) gets∫
Ω

|∇(un − wn)|2

(1 + |∇un|+ |∇wn|)2−p g
′(un − wn) ≤ 1

α

∫
Ω

(fn − gn)g(un − wn).

Then ∫
Ω

|∇(un − wn)|
1 + |un − wn|

=
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=

∫
Ω

|∇(un − wn)|
√
g′(un − wn)

(1 + |∇un|+ |∇wn|)1− p
2

(1 + |∇un|+ |∇wn|)1− p
2

(1 + |un − wn|)
√
g′(un − wn)

=

≤
[ ∫

Ω

|∇(un − wn)|2g′(un − wn)

(1 + |∇un|+ |∇wn|)2−p

] 1
2
[ ∫

Ω

(1 + |∇un|+ |∇wn|)2−p

(1 + |un − wn|)2g′(un − wn)

] 1
2

which implies that∫
Ω

|∇(un − wn)|
1 + |un − wn|

≤
[

1

α

∫
Ω

|fn − gn|
] 1

2
[ ∫

Ω

(1 + |∇un|+ |∇wn|)2−p
] 1

2

From the assumption m = N
N(p−1)+1

and the a priori estimates (2.9) of

Theorem 2.2 it follows that the last term is bounded, since 2− p ≤ 1.

Theorem 3.2. The solution u obtained in Theorem 2.2 is unique.

Proof. Consider the sequences {un} and {fn} of Theorem 2.2, a
sequence {gn} converging to f in Lm(Ω) and the solutions wn of the
Dirichlet problems 3.2. In the proof of Theorem 2.2 is proved that (up
to a subsequence) un converges to u in W 1,1

0 (Ω). The same proof says
that (up to a subsequence) wn converges in W 1,1

0 (Ω) to a function w,
distributional solution of (1.3). Now we pass to the limit in (3.3) and
we obtain

S1

[ ∫
Ω

| log(1 + |u− w|)|
N
N−1

]N−1
N

≤ 0,

that is u = w.

With the same proof it is possible to prove the following theorem.

Theorem 3.3. The solution u obtained in Theorem 2.3 is unique.

4. Regularizing effect of a lower order term

Here we study the existence of W 1,1
0 (Ω) solutions of the following

“semilinear” problem

(4.1)

{
A(u) + g(u) = f(x), in Ω;

u = 0, on ∂Ω;

where g(t) is a Lipschitz continuous, increasing real function such that

(4.2) tg(t) ≥ 0.

We assume that, for some T ∗ ≥ 0,

(4.3) b(t) =


0, t ∈ [0, T ∗];∫ t

T ∗

ds

g(s)m(p−1)
, t > T ∗;

−b(−t), t < 0;

is a bounded function: |b(t)| ≤ B.
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We refer to [14], [21], [11], [24] and [18] for the existence of infinite
energy distributional solutions of the “semilinear” problems like (4.1),
if the right hand side belongs to Lm(Ω) (with m ≥ 1), p > 2− 1

N
, g(t)

has a polynomial growth of order strictly greater than p− 1.

Theorem 4.1. Let f ∈ Lm(Ω), 1 ≤ m < N
N(p−1)+1

, 1 < p < 2 − 1
N

.

Assume (4.2) and (4.3). Then there exists a distributional solution u
belonging to W 1,1

0 (Ω) of the boundary value problem (4.1).

Proof. Consider now

(4.4) un ∈ W 1,p
0 (Ω) : A(un) + g(un) = fn,

with fn = Tn(f). Recall that, for every n ∈ IN , un is a bounded
function and that (see [7])

(4.5)

∫
{k≤|un|}

|g(un)|m ≤
∫

{k≤|un|}

|fn|m ≤
∫

{k≤|un|}

|f |m.

Moreover the use of b(un) as test function in (4.4) yields, dropping a
positive term,

α

∫
Ω

|∇un|p

|g(un)|m(p−1)
≤ B ‖f‖

L1(Ω)
.

Thus we have∣∣∣∣∣∣∣∣∣
α

∫
Ω

|∇un| = α

∫
Ω

|∇un|
|g(un)|m(1− 1

p
)
|g(un)|m(1− 1

p
)

≤ B
1
p‖f‖

1
p

L1(Ω)

[ ∫
Ω

|g(un)|m
] 1
p′

≤ B
1
p‖f‖

1
p

L1(Ω)
‖f‖

1
p′

Lm(Ω)
,

which implies that the sequence {un} is bounded in W 1,1
0 (Ω) and it is

compact in Lr(Ω), 1 ≤ r < N
N−1

. Thus there exist Lr(Ω), 1 ≤ r < N
N−1

and a subsequence (not relabelled) {un} such that un converges to u
in Lr(Ω) and almost everywhere. Moreover the inequality (4.5) yields,
for every measurable subset E,∫

E

|g(un)|m ≤ [sup
|t|≤k
|g(t)|m]meas(E) +

∫
{k≤|un|}

|f |m,

so that the Vitali theorem implies

(4.6) the convergence in Lm(Ω) of g(un) to g(u).

Moreover, thanks again to (4.5),∣∣∣∣∣∣∣∣∣∣∣
α

∫
{k≤|un|}

|∇un| ≤
(
B ‖f‖

L1(Ω)

) 1
p

[ ∫
{k≤|un|}

|g(un)m|
] 1
p′

≤
(
B ‖f‖

L1(Ω)

) 1
p

[ ∫
{k≤|un|}

|f |m
] 1
p′

,
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so that, for every measurable subset E, we have, thanks to (2.2),∣∣∣∣∣∣∣∣∣∣∣∣

α

∫
E

|∇un| ≤ α

∫
{k≤|un|}

|∇un|+ α

∫
E

|∇Tk(un)|

≤
(
B ‖f‖

L1(Ω)

) 1
p

[ ∫
{k≤|un|}

|f |m
] 1
p′

+ α

[
k
‖f‖

L1(Ω)

α

] 1
p

meas(E)
1
p′

which implies (2.13).
The almost everywhere convergence of ∇un to ∇u, proved in Lemma

5.1, and (2.13) allow us to use the Vitali theorem. Thus we proved again
the convergence (2.14).

The third step is equal to the third step of Theorem 2.2. Thus we
proved that u ∈ W 1,1

0 (Ω) is a distributional solution of (4.1).

5. Appendix A

In order to have a self-contained paper, we prove here the following
lemma, which is almost the same as the main lemma of [3] and [6].

Lemma 5.1. Let {un} be the sequence defined in (2.1). Assume (1.2),
(1.4), (1.6) and that

(5.1)


‖un‖W 1,1

0 (Ω)
≤M,

un converges to u almost everywhere,

∇Tk(un) converges weakly to ∇Tk(u) in W 1,p
0 (Ω).

Then ∇un converges (up to a subsequence) a.e. to ∇u.

Proof. Let 0 < θ < 1
p

and k > 0. Consider

IΩ,n =

∫
Ω

{[a(x, un,∇un)− a(x, un,∇u)]∇(un − u)}θ

We shall prove that the previous integral converges to zero. Indeed, it
is equal to ∫

Ck

{[a(x, un,∇un)− a(x, un,∇u)]∇(un − u)}θ

+

∫
Ak

{[a(x, un,∇un)− a(x, un,∇u)]∇(un − u)}θ

= ICk,n + IAk,n,

where

Ck = {x ∈ Ω : |u(x)| ≤ k}, Ak = {x ∈ Ω : |u(x)| > k}.
We can write ICk,n as∫

Ck

{[a(x, un,∇un)− a(x, un,∇Tk(u))]∇(un − Tk(u))}θ,
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which is smaller than∫
Ω

{[a(x, un,∇un)− a(x, un,∇Tk(u))]∇(un − Tk(u))}θ = JΩ,n,

since the integrand is positive. Then the use of Hölder inequality (with
exponents 1

pθ
and 1

1−pθ ) and (1.6) in IAk,n imply that

ICk,n+IAk,n ≤ JΩ,n+C1

[∫
Ak

(|∇un|+ |un|+ |∇u|+ |u|)
]pθ

meas(Ak)
1−pθ.

By means of the estimate ‖un‖W 1,1
0 (Ω)

≤M , we get

ICk,n + IAk,n ≤ JΩ,n + C2 meas(Ak)
1−pθ = JΩ,n + ω1(k),

where denote by ωi(k) quantities such that limk→∞ ωi(k) = 0. Now we
study the behaviour of JΩ,n; it can be split as (j ∈ IN)∫
{|un(x)−Tk(u)|≤j}

{[a(x, un,∇un)− a(x, un,∇Tk(u))]∇[un − Tk(u)]}θ

+

∫
{|un(x)−Tk(u)|>j}

{[a(x, un,∇un)− a(x, un,∇Tk(u))]∇[un − Tk(u)]}θ.

The first integral can be written as∫
Ω

{[a(x, un,∇un)− a(x, un,∇Tk(u))]∇Tj[un − Tk(u)]}θ.

Then we use twice the Hölder inequality (with exponents 1
θ

and 1
1−θ

and with exponents 1
pθ

and 1
1−pθ ) and the estimate ‖un‖W 1,1

0 (Ω)
≤ M

yields(∫
Ω

[a(x, un,∇un)− a(x, un,∇Tk(u))]∇Tj[un − Tk(u)]

)θ
(meas Ω)1−θ

+C3 meas{x ∈ Ω : |un(x)− Tk(u(x))| > j}1−pθ.

Thus, the use of Tj[un − Tk(u)] in (2.1) implies that

JΩ,n ≤ C4

(∫
Ω

fn Tj[un − Tk(u)]−
∫

Ω

{a(x, un,∇Tk(u))}∇Tj[un − Tk(u)]

)θ
+ C3 meas{x ∈ Ω : |un(x)− Tk(u(x))| > j}1−pθ.

We remark that

lim
n→∞

∫
Ω

fn Tj[un − Tk(u)] =

∫
Ω

f Tj[u− Tk(u)] = ω2(k);

for n > j + k and for almost every j we have

lim
n→∞

∫
Ω

a(x, un,∇Tk(u))∇Tj[un−Tk(u)] =

∫
Ω

a(x, u,∇Tk(u))∇Tj[u−Tk(u)] = 0;

lim sup
n→∞

meas{|un(x)−Tk(u(x))| > j}1−pθ ≤ meas{|u(x)−Tk(u(x))| ≥ j}1−pθ

= ω3(k).
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Thus
lim
n→∞

JΩ,n ≤ C1ω2(k)θ + C3ω3(k).

Hence we have proved that

lim
n→∞

[ICk,n + IAk,n] ≤ ω1(k) + C1ω2(k)θ + C3ω3(k).

Therefore∫
Ω

{[a(x, un,∇un)− a(x, un,∇u)]∇(un − u)}θ → 0,

that is

‖{[a(x, un,∇un)− a(x, un,∇u)]∇(un − u)}θ‖
L1(Ω)

→ 0,

which implies (for a suitable subsequence, still denoted by un)

{[a(x, un,∇un)−a(x, un,∇u)]∇(un−u)}θ → 0 almost everywhere,

and also (since θ is positive)

{[a(x, un,∇un)− a(x, un,∇u)]∇(un − u)} → 0 almost everywhere.

Then, in [25], it is proved that, under our assumptions on the function
a(x, s, ξ), the previous limit implies that

∇un(x) → ∇u(x) almost everywhere.
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[8] L. Boccardo, T. Gallouët: Nonlinear elliptic equations with right hand side
measures; Comm. Partial Differential Equations, 17 (1992), 641–655.
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