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Abstract

The local and overall responses of nonlinear composites are classically investigated by the Finite Ele-
ment Method. We propose an alternate method based on Fourier series which avoids meshing and which
makes direct use of microstructure images. It is based on the exact expression of the Green function of
a linear elastic and homogeneous comparison material. First the case of elastic nonhomogeneous con-
stituents is considered and an iterative procedure is proposed to solve the Lippman-Schwinger equation
which naturally arises in the problem. Then, the method is extended to nonlinear constituents by a step-
by-step integration in time. The accuracy of the method is assessed by varying the spatial resolution of the
microstructures. The flexibility of the method allows it to serve for a large variety of microstructures.

1 Introduction

This study is devoted to a numerical method introduced by Moulinec and Suquet [1], [2] to determine the
local and overall responses of nonlinear composites. Numerous studies dealt with nonlinear cell calculations
by the Finite Element Method (FEM) (see for example Adams and Donner [3], Christman et al [4],
Tvergaard [5], Michel and Suquet [6]). Most of them are limited to “simple” microstructures, one or
two inclusions embedded in a volume of matrix. The need to incorporate more detailed information on the
microstructure is clearly recognized. Recently, several studies have considered “complex” microstructures
involving a significant number of inclusions with irregular shape. Brockenborough et al [7], Böhm et al [8],
Nakamura and Suresh [9], Dietrich et al [10], Becker and Richmond [11] are some of the contributions to
this recently developed subject. All were based on the FEM. The difficulties due to meshing and to the large
number of degrees of freedom required by the analysis limit the complexity of the microstructures which can
be investigated by this method.

A typical example of a complex microstructure which is difficult to mesh and therefore to handle by means
of the FEM is shown in Figure 10 taken from the work of Bornert [12]. The digital image of this Iron/Silver
blend was obtained by Scanning Electron Microscopy (SEM). The initial idea of the method proposed in
[1] was to make direct use of these digital images of the real microstructure in the numerical simulation. A
similar idea can be found in Garboczi and Day [13] who used a spring network technique.

The proposed method avoids the difficulty due to meshing. It makes use of Fast Fourier Transforms (FFT)
to solve the unit cell problem 1, even when the constituents have a nonlinear behavior. FFT algorithms
require data sampled in a grid of regular spacing, allowing the direct use of digital images of the microstruc-
ture. The second difficulty (size of the problem) is partially overcome by an iterative method not requiring
the formation of a stiffness matrix.

The interest in numerical simulations of the nonlinear response of composites has recently been strength-
ened by the development of theoretical methods which analytically predict the nonlinear overall behavior of
composites ( Willis [15], Ponte Castañeda [16], Suquet [17]). Part of the present study provides precise
numerical results for uniaxial loadings which could serve as guidelines for theoretical predictions.

The body of the method and the resulting algorithms are presented in section 2. In section 3, the accuracy of
the method and several numerical points are discussed (choice of the reference medium, spatial resolution ....).
In section 4 the method is applied to determine the local and overall responses of composites with ”random”
microstructures. In all the cases considered in this study the models have been limited to two dimensional

1During the revision of this paper, the attention of the authors was called on a similar work by Müller [14] concerning phase
transformation.
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approximations. The first reason for this approximation is the limitation on current computational capability.
The second reason is that many microstructural observations are two dimensional.

2 The numerical method

2.1 Cell problem and boundary conditions

The overall behavior of a composite is governed by the individual behavior of its constituents and by its mi-
crostructure. Its effective response to a prescribed path of macroscopic strains or stresses may be determined
numerically via the resolution of the so-called ”local problem” on a representative volume element (r.v.e.) V .
In this study, the ”representative” information on the microstructure is provided by an image (micrograph)
of the microstructure with arbitrary complexity. The image contains N pixels, and independent mechanical
properties are assigned individually to each pixel. Most applications involve only a limited number of phases,
although in principle each pixel could be considered as an individual constituent.

The local problem consists of equilibrium equations, constitutive equations, and boundary and interface
conditions. All different phases are assumed to be perfectly bonded (displacements and tractions are contin-
uous across interfaces). Displacements and tractions along the boundary of the r.v.e. are left undetermined
and the local problem is ill-posed. We choose to close the problem with periodic boundary conditions which
can be expressed as follows. The local strain field ε(u(x)) is split into its average E and a fluctuation term
ε(u∗(x)):

ε(u(x)) = ε(u∗(x)) + E or equivalently u(x) = u∗(x) + E.x.

By assuming periodic boundary conditions it is assumed that the fluctuating term u∗ is periodic (notation:
u∗ #), and that the traction σ.n is anti-periodic in order to meet the equilibrium equations on the boundary
between two neighboring cells (notation: σ.n − #). This local problem could be solved by means of the
FEM ( Suquet [18], Guedes and Kikuchi [19]). We propose an alternate method of resolution.

2.2 An auxiliary problem

First we consider the preliminary problem of a homogeneous linear elastic body with stiffness c0 subjected
to a polarization field τ (x).

σ(x) = c0 : ε(u∗(x)) + τ (x) ∀x ∈ V

div σ(x) = 0 ∀x ∈ V, u∗ #, σ.n −#

 (1)

The solution of (1) can be expressed in real and Fourier spaces, respectively, by means of the periodic Green
operator Γ0 associated with c0:

ε(u∗(x)) = −Γ0 ∗ τ (x) ∀x ∈ V, (2)

or
ε̂(ξ) = −Γ̂0(ξ) : τ̂ (ξ) ∀ξ 6= 0, ε̂(0) = 0 (3)

The operator Γ0 is explicitly known in Fourier space (see appendix A). When the reference material is
isotropic (with Lamé coefficients λ0 et µ0) it takes the form :

Γ̂0
ijkh(ξ) =

1

4µ0|ξ|2
(δkiξhξj + δhiξkξj + δkjξhξi + δhjξkξi)−

λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξh
|ξ|4

. (4)

2.3 The periodic Lippman-Schwinger equation

The auxiliary problem can be used to solve the problem of an inhomogeneous elastic composite material
with stiffness c(x) at point x under prescribed strain E :

σ(x) = c(x) :
(
ε(u∗(x)) + E

)
∀x ∈ V

divσ(x) = 0 ∀x ∈ V, u∗ #, σ.n −#

 (5)

For simplicity E is assumed to be prescribed, although other average conditions could be considered as
well (see appendix B for prescribed stresses). A homogeneous reference material with elastic stiffness c0 is
introduced and a polarization tensor τ (x), which is unknown a priori, is defined as :

τ (x) = δc(x) : ε(u(x)), δc(x) = c(x)− c0. (6)

Thus, the problem reduces to the periodic Lippmann-Schwinger equation ( Kröner [20]), which reads, in real
space and Fourier space respectively:



ε(u(x)) = −Γ0(x) ∗ τ (x) + E,

ε̂(ξ) = −Γ̂0(ξ) : τ̂ (ξ) ∀ξ 6= 0, ε̂(0) = E

 (7)

where τ is given by (6). The Lippman-Schwinger equation is an integral equation for ε(u∗).

2.4 The algorithm

2.4.1 Continuous algorithm

The principle of the algorithm is to use alternately (6) and (7), in real space and Fourier space, respectively,
in an iterative scheme, to solve (5):

Initialization : ε0(x) = E, ∀ x ∈ V,
σ0(x) = c(x) : ε0(x), ∀ x ∈ V,

Iterate i + 1 : εi and σi being known
a) τ i(x) = σi(x)− c0 : εi(x),
b) τ̂ i = F(τ i),
c) Convergence test,

d) ε̂i+1(ξ) = −Γ̂0(ξ) : τ̂ i(ξ) ∀ξ 6= 0 and ε̂i+1(0) = E,
e) εi+1 = F−1(ε̂i),
f) σi+1(x) = c(x) : εi+1(x).



(8)

F and F−1 denote the Fourier transform and the inverse Fourier transform. This algorithm can be further
simplified by noting that

Γ0 ∗ (c0 : ε) = ε.

The modified algorithm reads :

Initialization : ε0(x) = E, ∀ x ∈ V,
σ0(x) = c(x) : ε0(x), ∀ x ∈ V,

Iterate i + 1 : εi and σi being known
a) σ̂i = F(σi),
b) Convergence test,

c) ε̂i+1(ξ) = ε̂i(ξ)− Γ̂0(ξ) : σ̂i(ξ) ∀ξ 6= 0 and ε̂i+1(0) = E,
d) εi+1 = F−1(ε̂i+1)
e) σi+1(x) = c(x) : εi+1(x), ∀ x ∈ V,


(9)

Convergence is reached when σi+1 is in equilibrium. The error serving to check convergence is :

ei =

(
< ||div(σi)||2 >

)1/2
|| < σi > ||

=

(
< ||ξ.σ̂i(ξ)||2 >

)1/2
||σ̂i(0)||

.

The iterative procedure is stopped when the error e is smaller than a prescribed value (typically 10−4 in our
calculations).

2.4.2 Discrete algorithm

The unit cell is discretized into a regular grid consisting of N1 × N2 pixels (two-dimensional problem),
or N1 × N2 × N3 ”voxels” (tri-dimensional problem). The data and the unknowns used in the numerical
calculations are images sampled on this grid (N1 × N2 or N1 × N2 × N3 arrays). In two dimensions, the
coordinates of the pixel labeled by i1, i2 are

xd(i1, i2) =

(
(i1 − 1) · T1

N1
, (i2 − 1) · T2

N2

)
, i1 = 1, ...N1, i2 = 1, ...N2,

where Tj is the period of the unit cell in jth direction (j = 1, 2). This discretization is classical in image
processing. Images of microstructures, obtained for instance by S.E.M. (scanning electron microscopy), can
therefore be directly used in calculations without any operation by the user (meshing or interpolation).
This discretization is also appropriate for using Fast Fourier Transforms (FFT) packages, which contribute
significantly to the performances of the method. The continuous algorithm (9) has been implemented in the



following discrete form :

Initialization : ε0(xd) = E, ∀ xd ∈ V,
σ0(xd) = c(xd) : ε0(xd), ∀ xd ∈ V,

Iterate i + 1 : εi and σi known at every xd
a) σ̂i = FFT (σi),
b) Convergence test,

c) ε̂i+1(ξd) = ε̂i(ξd)− Γ̂0(ξd) : σ̂i(ξd) ∀ξd 6= 0 , ε̂i+1(0) = E,
d) εi+1 = FFT −1(ε̂i)
e) σi+1(xd) = c(xd) : εi+1(xd), ∀ xd ∈ V


(10)

where xd denote the coordinates of pixels in real space, and ξd denote the N1×N2 corresponding frequencies
in Fourier space. To be more specific, the discrete frequencies are (in dimension 2) when Nj is even :

ξj = (−Nj
2

+ 1)
1

Tj
, (−Nj

2
+ 2)

1

Tj
, ..., − 1

Tj
, 0,

1

Tj
, ..., (

Nj
2
− 1)

1

Tj
,
Nj
2

1

Tj
,

and when Nj is odd :

ξj = −Nj − 1

2

1

Tj
, ..., − 1

Tj
, 0,

1

Tj
, ...,

Nj − 1

2

1

Tj
.

The discrete error serving to check convergence is :

ei =

(
1

N

∑
d

||ξd · σ̂i(ξd)||2
)1/2

||σ̂i(0)||

(where N = N1 ×N2 is the total number of pixels).
When the spatial resolution is low and when the number Nj of discretization point is even, a special

attention must be paid to the highest frequency 2 ξj = ±
(
Nj

2

)
1
Tj

, j = 1 or 2. In most FFT packages,

the Fourier expansion at these frequencies consists of either cos(ξjxj) or exp(−iξjxj), instead of the correct
expression consisting of the two terms exp(−iξjxj) and exp(iξjxj). Therefore, even when the stress σ is
correctly approached by its Fourier expansion in step a) of the algorithm (10), the result of step d) may not

approach accurately the Fourier expansion of the strain ε at these particular frequencies. This is because Γ̂0

is neither even nor odd with respect to each individual component ξj . Oscillations were observed when (4)
was used with relatively small values of Nj (lower than 128). This problem was fixed by using a different

expression of Γ̂0 in algorithm (10) at these frequencies

Γ̂0 =
(
c0
)−1

.

In other terms, the stress σ is forced to 0 by the algorithm at these frequencies when convergence is reached.

2.5 Nonlinear Behavior.

The algorithm can be extended to the case in which the individual constituents obey a nonlinear law, written
either in terms of stresses and strains (nonlinear elasticity at infinitesimal strain) or in incremental form
relating strain-rates and stress-rates (flow theory). The nonlinearity requires an appropriate modification
of step e) in algorithm (10). In the present study, special attention will be paid to phases exhibiting an
incremental elastic-plastic behavior at small strains governed by a J2-flow theory with isotropic hardening
(although more general constitutive laws can be considered) :

σ̇ = c : (ε̇− ε̇p), ε̇p = ṗ
3

2

s

σeq
, σeq − σ0(p) ≤ 0, ṗ ≥ 0. (11)

εp denotes the plastic strain, s denotes the stress deviator and p denotes the hardening parameter, which
coincides with the cumulated plastic strain

ṗ(t) =

(
2

3
ε̇pij(t)ε̇

p
ij(t)

)
, p(t) =

∫ t

0

ṗ(s) ds σeq =

(
3

2
sijsij

) 1
2

.

2An error had crept into the expression of the highest frequency in the original paper published in Comput Methods Appl
Mech Eng. The authors thank Anthony Rollett for pointing it out. HM 11/12/2020



The integration in time of the constitutive law (11) is achieved by means of an implicit scheme which is
classical in the analysis of elastic-plastic structures by the FEM method. The time interval (or, alternatively,
the loading path) is discretized into subintervals [tn, tn+1]. The field equations are solved for (εn,σn, pn),
which denote strain, stress and hardening parameter at time tn. Assuming that these fields are known at
step n (time tn), the principal unknown at step n+1 is εn+1. The incremental equations (11) are discretized
by an implicit scheme. The unknown εn+1 is a compatible strain field such that the associated stress field (by
the constitutive law) is in equilibrium. The resulting system of equations to be solved for εn+1 is nonlinear.
The algorithm for the determination of εn+1 reads (for simplicity the lowerscript (n + 1) is omitted below;
superscripts i and i+1 refer to the iterative loop within the step) :

Initialization : ε0(xd) given by (13),
Compute σ0 and p0 from (ε0,σn, εn, pn),

Iterate i + 1 : εi and σi are known
a) σ̂i = FFT (σi),
b) Convergence test,

c) ε̂i+1(ξd) = ε̂i(ξd)− Γ̂0(ξd) : σ̂i(ξd) ∀ξd 6= 0, ε̂i+1(0) = En+1,
d) εi+1 = FFT −1(ε̂i+1)
e) Compute σi+1 and pi+1 from (εi+1,σn, εn, pn)


(12)

More specifically

a) The initial strain ε0 at time tn+1 is extrapolated (linearly) from εn and εn−1 at the two previous time
steps tn and tn−1 :

ε0(xd) = εn(xd) +
tn+1 − tn
tn − tn−1

(εn(xd)− εn−1(xd)), ∀ xd ∈ V. (13)

This choice significantly improves the convergence of the iterative process within the time step.

b) σi and pi are computed from (εi,σn, εn, pn) (step e) in algorithm (12)) by a radial return method (see
appendix C).

3 Convergence and accuracy of the method

3.1 Reference medium

The rate of convergence of the algorithm depends drastically on the Lamé coefficients λ0 and µ0 of the
reference material. After several tests, the best rate of convergence was observed with

λ0 = 1
2

(
inf

x ∈ V
λ(x) + sup

x ∈ V
λ(x)

)

µ0 = 1
2

(
inf

x ∈ V
µ(x) + sup

x ∈ V
µ(x)

)
 (14)

The number of iterations at convergence is significantly influenced by several other parameters. First,
as shown in Figure 1, it increases with the contrast between the phases (typically the ratio between the
elastic moduli of the phases). When the contrast is infinite (rigid inclusions or voids in an elastic matrix),
the algorithm no longer converges. Second, the number of iterations at convergence also depends on the
complexity of the solution itself. In the example of an elastic ideally plastic matrix reinforced by stiff
inclusions, the computing time increases with the tortuosity of the bands where the strain tends to localize
(see below).

3.2 Implementation of the method on a vector or a parallel computer

The constitutive law acts locally in real space (i.e. applies separately to each individual point x). Similarly,
Green’s function Γ0 acts locally in Fourier space, (i.e. applies separately to each individual frequency
ξ). From a computational standpoint, the corresponding steps (c and e in the algorithms (10) or (12) )
are performed by independent loops on each individual pixel in real or Fourier space. These steps can
consequently be vectorized or parallelized. In addition, optimized FFT packages are available on most vector
or parallel computers. The whole algorithm can therefore be efficiently implemented on these machines.

It follows from the same argument that the time spent in the steps corresponding to the constitutive law
and to the Lippman Schwinger equation varies linearly with the number N of pixels. The CPU time for a



FFT varies as N · log2N . The time required by the other steps of the algorithm are comparable to the time
required by the FFTs. The CPU time t for one iteration can be estimated by

k1 ×N ≤ t ≤ k2 × N log2N,

where k1 and k2 are expected to be independent of the size N of the problem. The dependence of the CPU
time on the size of the problem is shown in Figure 2. The square unit cell shown in Figure 5 is subjected
to uniaxial transverse tension at 00. The volume fraction of fibers is 47.5%. Both the fibers and the matrix
are assumed to be elastic with elastic constants given by (17) and (18). The dependence of the CPU time
on the size of the problem is approximately linear.

Optimizing the memory occupancy. The Fourier transform of a real valued function has the symmetry
property

f̂(−ξ) = f̂(ξ).

Since all quantities under consideration in our computation are real, this symmetry property allows us to
restrict our attention to positive frequencies (the values of the fields for negative frequencies being immedi-
ately deduced). The size of the arrays can therefore be divided by 2, provided the FFT package allows for
the storage of real numbers as complex numbers with the same memory occupancy.

Performances. Most computations were run on a Cray YMP with peak performance of 333 MFlops. The
performance observed with our algorithm was ' 210 MFlops on the elastic-plastic problem described in
section 4 with unit cells discretized into 1024× 1024 pixels. The typical CPU time on one processor of this
computer is less than 30 seconds for an elastic problem (with a spatial resolution of 1024 × 1024 pixels,
the ratio between the Young moduli being approximately 6). When the matrix is elastic plastic, the typical
CPU time for a run as described in section 4 is 4000 seconds.

3.3 Comparison with analytical solutions

To assess the accuracy and the stability of the method we examined two cases for which analytical solutions
are available.

Laminates. The first example concerns layered materials. As is well-known, the strain field is then uniform
within each individual layer and takes different values from one layer to another. The example shown
in Figure 3 corresponds to a two-phase material, both phases having equal volume fraction. The layers
are parallel to the plane (x2, x3). The constitutive materials of the layers were linear elastic with elastic
characteristic given by (17) and (18). The applied loading was pure shear parallel to the layers

Σ12 arbitrary, Σ11 = Σ22 = Σ33 = Σ13 = Σ23 = 0.

The image was discretized into 32 × 32 pixels (good results were obtained with an even cruder resolution).
The computed local strain field ε12 is plotted in Figure 3 and shows no oscillation. In addition the numerical
solution coincides with the exact solution.

Circular fiber at dilute concentration. The second example concerns the elastic strain field generated
by stiff circular fibers placed at the nodes of a square lattice in a more compliant matrix. The exact solution
to this problem (with periodic boundary conditions) is not known in closed form (to the authors’ knowledge).
However when the volume fraction of fibers is small this solution can be accurately approximated by the
solution of a simpler problem, where a circular fiber (with radius a) is surrounded by a circular shell of
matrix (with radius b) and subject to the boundary condition

u(x) = E.x when r = b,

where the overall strain E is the same as in the original periodic problem. When the imposed loading is an
in-plane shear E12 6= 0, other Eij = 0, the displacement field has the form

ur(r, θ) =
(
Ar3 +Br + C

r + D
r3

)
sin(2θ),

uθ(r, θ) =
(

2λ+ 3µ
λ

Ar3 +Br +
µ

λ+ 2µ
C
r −

D
r3

)
cos(2θ),


where r and θ are the polar coordinates in the plane. A, B, C, D, take different values in the matrix and in
the fiber. They solve a system of linear equations expressing the boundary condition at r = b, the absence
of singularity at r = 0, the continuity of tractions and displacements at r = a.



According to Saint Venant’s principle, the local strain fields in the two problems coincide far from the
boundary of the cell. Therefore at low volume fraction of fibers (a2/b2 � 1), the solutions of the two
problems are expected to coincide except in the vicinity of the boundary of the cell. The example presented
in Figure 4 corresponds to a/b = 1/16. The spatial discretization used in the numerical calculation was
1024× 1024. The component ε12 of the strain field in a square window of width c = 4a is shown in Figure
4 (note that the unit cell itself with width 2b is much larger than the window shown). There is almost no
difference between the analytical and the numerical solutions shown in (a) and (b) respectively. A more
explicit comparison is made in Figure 4 (c) which shows an horizontal cut through the field ε12 at x2 = 0.
Except from little undulations inside the inclusion, there is no significant oscillations at the fiber boundary
where the field ε12 is discontinuous. In addition the accuracy of the numerical solution is observed to increase
with the spatial resolution. The discrepancy between the numerical and the analytical solutions depends
on the spatial resolution and should not be attributed to a Gibbs phenomenon, i.e. to an oscillation of
the Fourier series of a function in the vicinity of a discontinuity point. This oscillation is attached to the
summation of the Fourier series which is not what the discrete inverse Fourier transform performs.

Discrete Fourier transform. The discrete Fourier transform, when applied to an image discretized into
N1 ×N2 pixels, is the exact Fourier transform of the image when two requirements are met : ( Brault and
White [22])

C1 the image is periodic with the same period (T1, T2) as the unit cell,

C2 the image cut-off frequency f c ( i.e. the frequency above which the Fourier transform of the image
vanishes identically) is less than half of the sampling frequency (Shannon’s theorem):

f cj <
1

2

Nj
Tj

j = 1, 2

The periodic boundary conditions which have been assumed from the true beginning of this study ensure
that condition (C1) is met. However, condition (C2) is not met in general. In particular a discontinuous
field has no cut-off frequency and there is no discretization able to capture this discontinuity. It is however
expected that the solution of the discrete problem approaches the solution of the continuous problem when
the image sampling (number of pixels) increases. A high resolution will therefore be required for problems
in which high strain or stress gradients are likely to occur.

3.4 Influence of spatial resolution

As already stated the influence of the spatial resolution depends on the stress and strain gradients within
the phases and therefore on the strength of the phases nonlinearities. The following examples illustrate these
general considerations. The method has been applied to simulate the local and overall response of composites
reinforced by unidirectional long fibers aligned along the e3 direction. The geometry of these composites is
described by a two-dimensional image of their cross section. Generalized plane strains were assumed :

u1(x) = u1(x1, x2), u2(x) = u2(x1, x2), u3(x) = E33x3. (15)

The overall strain E has four independent components E11, E22, E12, E33 (the other two are equal to 0).
The overall stress Σ also has four independent components. It is possible to prescribe either a path in
the space of strains, or a path in the space of stresses, or alternatively some components of the strain and
the other components of the stress. Classical plane strains are a particular case of the more general setting
considered in (15). It corresponds to a path in the space of strains along which E33 is identically 0. The need
to introduce generalized plane strain is illustrated by uniaxial tension in the 00 direction, which corresponds
to a path in the space of stresses along which

Σ11 arbitrary, Σ22 = Σ12 = Σ33 = 0. (16)

The axial component E33 of the strain is unknown and determined a posteriori by the condition Σ33 = 0.
The assumption of generalized plane strains reduces (5) to a two-dimensional problem for the two unknowns
(u∗1, u

∗
2).

Two classical configurations were investigated in which the fibers were placed at the nodes of a square or
hexagonal lattice. The fibers were assumed to be elastic, isotropic, and characterized by a Young modulus
and a Poisson ratio :

Ef = 400 GPa, νf = 0.23. (17)

The fiber volume fraction was 47.5 % (for comparison, we chose the same volume fraction as in [8]). The
behavior of the matrix was varied from linear elasticity to elasto-plasticity with hardening so as to study the



effect of the nonlinearity on the accuracy of the method. All the constitutive laws of the matrix which were
considered can be put in the incremental form (11). Its isotropic elastic properties were characterized by a
Young’s modulus and Poisson coefficient

Em = 68.9 GPa, νm = 0.35. (18)

The plastic properties of the matrix were governed by the Von Mises criterion

σeq ≤ σ0 +Hp. (19)

The initial yield stress σ0 was either infinite (pure linear elasticity) or given by σ0 = 68.9 MPa. The
hardening modulusH was either 0 (perfectly plastic behavior) orH = 1 171 MPa (isotropic linear hardening).

The influence of spatial resolution on the accuracy of the results was studied. The spatial resolution of the
image is determined here through the square root of the total number of pixels contained in the image divided
by the number of fibers in the image. For the square array, with N1×N1 pixels and a single fiber in the unit
cell, the spatial resolution is exactly N1. The hexagonal array can be viewed as a rectangular array, thus
allowing the use of the Fourier technique in orthogonal coordinates, instead of the natural nonorthogonal
coordinates defined by the two unit vectors of the hexagonal lattice (see Figure 5). The rectangular unit cell
contains 1 + 4× 1

4 = 2 fibers. The number of pixels along the first direction x1 is 2 times larger than the

number of pixels in the second direction x2. The spatial step in x2 is 2
√

3/3 times larger than the step in x1.
Therefore in the hexagonal array, the spatial definition as defined above is again N1 for an image containing
2N1 ×N1 pixels.

Both unit cells were submitted to uniaxial tension at 00 and 450 in the sense of (16). The results of
the overall response of the composite are shown in Tables 1 to 6. The initial response of the composite is
linear and its slope defines the overall Young’s modulus of the composite. When the matrix is elastic ideally
plastic the overall stress applied to the composite in the direction of tension reaches (asymptotically) a limit
which defines the overall flow stress of the composite. When the matrix is governed by a linear hardening,
the stress-strain curve of the composite exhibits a nonlinear transition to an asymptotically linear (affine)
response. The slope of this limit response is the overall hardening modulus of the composite.

Each table gives an overall material constant as a function of the spatial resolution of the image. The
”error” was estimated as the relative difference between the result at a given resolution and the result at the
finest resolution.

These results suggest the following remarks.

1. When both constituents are linearly elastic, the overall stiffness is not very sensitive to spatial reso-
lution. Even at the lowest resolution (32 × 32 pixels/fiber), the estimated error was under 1% in all
cases.

2. When the matrix is elastic plastic, the local and overall responses are sensitive to spatial resolution.
The strain fields exhibit a strong tendency to concentrate in thin bands. The higher the nonlinearity,
the thinner the bands. These stiff gradients in strain require high spatial resolution to be correctly
captured.

3. The solutions may even be discontinuous when the matrix is elastic-perfectly plastic. This explains the
relatively high errors at low resolution: about 15% for the square array of fibers in an elastic-perfectly
plastic matrix under tension at 0◦, with a resolution of 32× 32 pixels/fiber. Shear bands can form in
the matrix under tension at 45◦. These shear bands correspond to a mode of deformation of the r.v.e.
in plane strains. Therefore, for this particular loading, the effective behavior of the composite depends
only on the behavior of the matrix. The overall flow stress of the composite coincides with the flow
stress of the matrix under plane strain conditions, i.e. 2σ0√

3
. The formation of a slip plane through the

matrix is well captured by the numerical method and explains the precision of the numerical result for
this particular loading.

4. When the matrix has linear hardening, the strain fields are more regular than in the perfectly plastic
case. The local and overall responses of the composite are less sensitive to spatial resolution. The error
on the hardening modulus is about 7.5% with a resolution of 32× 32 pixels/fiber.

This study of the influence of spatial resolution led us to use a resolution of 128× 128 pixels/fiber in most
of the examples presented in the next section.



4 Fiber arrangement

In this section we investigate the influence of the geometrical arrangement of the fibers on the local and
overall responses of nonlinear composites. Attention is again restricted to two-dimensional problems, i.e. to
composites reinforced by aligned fibers. The fiber arrangement is determined by a two-dimensional image of
the composite cross section.

4.1 Configurations

Two classes of fiber arrangement, regular and random, were considered. The fibers were identical circular
disks and they were not allowed to overlap (impenetrability condition) except in section 4.3. In most
simulations the fiber volume fraction was prescribed to 47.5%, except in section 4.3.

Standard fiber distribution. The “standard” configurations consist of a single fiber placed at the nodes
of a square or an hexagonal lattice (see preceeding section). Most F.E.M. cell calculations reported in the
literature are based on these standard configurations with the exceptions of Brockenborough et al (1991) and
Böhm et al (1993) who investigated the effect of disorder in the fiber arrangement on the overall transverse
properties of composites.

Random fiber distribution In the ”random” configurations, the centers of the fibers were placed at
random in the unit cell, subject only to the constraints of impenetrability and periodicity. The latter
constraint implies that, when a fiber overlaps the boundary of the unit cell, it is split into two parts I and
II (see Figure 6 ) to fit in the unit cell. The size of the images was the largest one allowed by the memory
on our computer and compatible with a resolution of 128 × 128 pixels per fiber. These two constraints led
to unit cells discretized into 1024× 1024 pixels and containing up to 64 fibers.

4.2 Impenetrable fibers

Twenty three different configurations of 64 impenetrable fibers were generated randomly in the unit cell.
The fibers were assumed to be elastic with material properties given by (17). The matrix was an elastic
plastic material governed by a J2 flow theory (11) with material properties given by (18) (19). The local
and global responses of each configuration to a transverse uniaxial tension in the 00 direction (according to
(16)) were computed with the above described method. The square array and hexagonal array were also
subjected to transverse tension in the 00 and 450 directions.

4.2.1 Local and overall responses

The stress-strain curves predicted by the simulation are shown in Figure 7. The solid line corresponds to
the mean response (average of the stress-strain curves over the 23 configurations).

These results call for the following comments :

1. The fibers were stiff and perfectly bonded to the matrix. Therefore, although the strain E33 in the
axial direction was not imposed a priori (Σ33 was prescribed to 0), it was relatively small along the
whole loading path. The strain state was consequently close to the plane strain state, explaining the
strain concentrations observed in the perfectly plastic matrices. As is well known, plane strain is more
favorable to these strain concentrations than is pure uniaxial tension.

2. The square lattice has a marked transverse anisotropy which is strengthened by the nonlinear behavior,
which gives raise to different responses when the direction of tension makes an angle of 00 or 450 with
one of the axes of the square lattice. The low value of the flow stress in the diagonal direction (450) is
due to a shear plane passing through the matrix. Indeed, when a plane of shear can be passed through
the weakest phase of a composite, the shear strength of the composite is exactly the strength of the
weakest phase ( Drucker (1959)). In tension (under plane strains) in a direction inclined at 450 on this
plane, the transverse flow stress of the composite is 2σm0 /

√
3. This is the flow stress observed in Figure

7 and Table 4 (2σm0 /
√

3 ' 79.56 MPa). In conclusion, except at low volume fractions, the square
array should not be used to investigate the transverse properties of transversely isotropic nonlinear
composites.

3. The hexagonal lattice approaches transverse isotropy. When the matrix is a hardening material, the
predictions obtained with the hexagonal lattice underestimate the stiffness of the composite, or at
least are located below the average of the predictions for the random configurations in the range of
overall deformations considered. Another computation, not reported here, was performed up to 30%
of transverse strain, with no modification in the conclusions. A similar observation was made by
Brockenborough et al (1991) for another system. When the matrix is ideally plastic, the low value of



the flow stress in the diagonal direction (450) is again due to a shear plane passing through the matrix.
In conclusion, the hexagonal lattice should be used with care to predict the transverse properties of
nonlinear composite systems, even for hardening matrices.

4. The deviation from the average of the transverse Young’s moduli computed on the different configu-
rations is small. By contrast, the deviations in the other properties (flow stress, hardening modulus)
are higher and may be attributed to the combined effects of nonlinearity and incompressibility.

5. The local plastic strains showed significant differences between the ideally plastic case and the hardening
case. For the former, the strain concentrates in thin bands in the matrix. In most configurations, only
a small percentage of the matrix contributes to the plastic dissipation. The overall flow stress of
the composite is observed to be directly related to the ”tortuosity” of these bands. Two different
configurations with the corresponding zones of strain concentration are shown in Figure 8. In the
first configuration slip bands inclined at approximately 450 on the direction of traction can be passed
through the matrix, resulting in a low flow stress. Conversely, the fiber arrangement in the second
direction inhibits long-range slip bands and causes these bands to deviate or the plastic deformation
to spread into wider zones. The plastic dissipation and the flow stress are higher in the second
configuration than in the first one. Adding more fibers in the undeformed zones would not change the
plastic dissipation, or in other terms, would not affect the flow stress of the composite. These results
lead us to think that, when the matrix is perfectly plastic, the geometrical parameter which governs
(at first order) the flow stress of the composite is not the volume fraction of the fibers but, instead, the
length of the shortest path passing through the matrix at an angle of approximately 450 in tension, or
00 in shear.

6. When the matrix is a hardening material, the plastic strain spreads all over the matrix (see Figure
8). The whole matrix contributes (although non homogeneously) to the plastic dissipation and, con-
sequently, to the overall strengthening of the composite. In this case, the volume fraction of the fibers
seems to be the relevant geometrical information (at least to first order) to predict the overall hardening
of the composite.

7. In spite of the differences in the maps of plastic strains in the ideally plastic material and in the
hardening matrix, the ”stiffest” (respectively the ”weakest”) configurations in the ideally plastic case
remain the stiffest (respectively the weakest) configurations in the hardening case.

4.2.2 Model size

The present section deals with the ”representativity” of a unit cell in two aspects. First, does the unit cell
contain enough heterogeneities so that the computed effective properties no longer depend on the cell size?
Second, how much do different unit cells randomly generated with the same volume fraction and number of
heterogeneties differ from each other?

Several series of microstructures containing 4, 9, 16, 36, 64 or 256 impenetrable fibers randomly placed
in the unit cell were generated. The volume fraction of fibers was identical in all simulations (47.5%) and
the spatial resolution was also fixed (128 × 128 pixels/fiber). The total number of pixels in each image
was therefore the number of fibers multiplied by ×128 × 128. The fibers and the matrix were respectively
assumed to be elastic and elastic-perfectly plastic with materials properties given by (17) and (18) (19). The
loading was uniaxial transverse tension at 00 (see (16)). Statistical data on the computed Young’s moduli
as a function of the number of fibers in the unit cell are reported in Table 7. The mean Young’s modulus
and its standard deviation are defined as

Ē =
1

Ns

∑
i=1,Ns

Ei, σ(E) =

√
1

Ns − 1

∑
i=1,Ns

(Ei − Ē)2

where Ei is the Young’s modulus of the ith microstructure and Ns is the number of different microstructures.
The error on the mean is classically estimated by the ratio

σ(E)

Ē
√
Ns

Similar data on the overall flow stress of the composite are given in Table 8. The number of fibers in the
unit cell does not significantly influence the mean overall properties, provided a lower number of fibers is
compensated by a higher number of configurations. The mean Young’s modulus and the mean flow stress
of configurations with four fibers differ from those of configurations with 256 fibers by 0.56% and 0.74%
respectively. These differences are comparable to the error on the mean itself (0.13% and 0.23% for the
Young’s modulus and the flow stress for configurations with 256 fibers). This is an illustration of the ergodic



property : spatial averaging on one large sample is equivalent to ensemble averaging on many small samples.
A related observation is that the standard deviations of the overall properties decrease as the number of
fibers increases.

4.2.3 Spacing between fibers.

In the above analyses, the fibers were placed randomly in the unit cell with impenetrability as the only
restriction. The effects of imposing a minimal space between fibers are of interest for at least two reasons.
First, when the minimal spacing between the centers of the fibers increases, the ordering of the microstructure

increases. As a limit case, when this minimal spacing reaches
√

2√
3
. SN (S is the surface of the unit cell,

N is the number of fibers), the microstructure is completely determined and coincides with the centered
hexagonal arrangement. Second, numerical difficulties could be expected when two neighboring fibers are
nearly touching. Indeed, when the spatial resolution is not fine enough, the method cannot capture the high
strain gradients in the necks between the two fibers.

Ten configurations with 64 fibers were generated, and a minimal space of 4 pixels between two neighboring
fibers was imposed. This distance seemed sufficient to correctly describe strain concentration. The results
of this study suggest the following comments :

1. When the matrix is elastic ideally plastic, the mean overall flow stress is Σ0 = 86.9 MPa (with an
estimation error of 0.44 MPa). This value is 2.0% smaller than the value obtained with no restriction
on the space between fibers. It lies slightly below the flow stress of the hexagonal array subjected to
tension at 00 (Σ0 = 87.9 MPa). However it lies above the flow stress of the square array under tension
at 00 or 450 (Σ0 = 79.6 MPa) and of the hexagonal array under tension at 450.

2. When the matrix is elastic-plastic with linear hardening, the effective hardening modulus drops signif-
icantly : H = 9382 MPa (estimation error = 123.8 MPa), instead of 10002 MPa. But it is still much
higher than the hardening modulus predicted with the hexagonal array case (H = 7100 MPa at 00,
H = 7420 MPa at 450).

In conclusion, it seems that the “safety coating” around the fibers leads to a decrease in the overall mechanical
properties of the composite, at least at the volume fraction which has been investigated.

4.2.4 Influence of the shape of the fibers

The above analyses show that the overall flow stress of the composite and, to a lesser extent, its overall
hardening depend primarily on the tortuosity of shear bands passing through the matrix. Obviously, the
volume fraction of the reinforcing phase plays a role in the possibility that such bands are formed, but for
a fixed volume fraction, significant differences arise from the differences in the patterning of bands. These
shear bands are locked or deviated by the fibers. The overall flow stress of the composite can (empirically) be
related to the length of the shortest path passing through the matrix and making an angle of approximately
450 with the tensile direction. It can be expected that the shape of the fibers, which act as ”shear bands
barriers”, is important in their capacity to inhibit shear bands. The shape of fibers is important at two levels.
First it affects the arrangement of fibers in the unit cell. For instance, it can be favorable to clustering of
particles, leaving large areas of inclusions-free matrix where plastic strain is likely to localize. At a smaller
scale an elongated particle perpendicular to a shear band will form an effective barrier.

Random microstructures were generated with three shapes of fibers : circular, elliptical (aspect ratio=
3.333), equilateral triangles. The volume fraction was 47.5%. The unit cells contained 64 fibers and were
discretized into 1024 × 1024 pixels. The center of the fibers and their orientation were chosen randomly,
subject to the contraints of periodicity, impenetrability and given volume fraction. A minimal space of four
pixels between two fibers was imposed to correctly capture the high strain gradients in the matrix between
two neighboring reinforcements. For each fiber shape, 10 different configurations were tested. The results of
the numerical simulations are given in Table 9.

The Young’s modulus is not significantly affected by the shape of the inclusions, at least for this partic-
ular volume fraction and for the contrast of elastic properties which was investigated (investigation of the
percolation threshold for highly contrasted phases would probably lead to different conclusions). The mean
flow stress of the composite with elliptical inclusions is close to that of the composite with circular inclusions
(0.9% higher). However the flow stress is significantly higher for the composite with triangular inclusions
(5.2% higher). This ”hardening” effect can be attributed to the fact that at a given volume fraction trian-
gles form more efficient barriers to shear band formation. This efficiency can be related to the length of the
projection of the fiber orthogonally to the shear bands. The minimal length, the maximal length, and the
average length over all possible orientations are reported in Table 10 for each shape of fibers at a given area
s. For circular fibers these three quantities are equal to the radius of the fiber (2

√
s/π).



4.3 Penetrable fibers

When the matrix is elastic ideally plastic, the overall response of the composite is strongly influenced by
the existence of continuous paths in the matrix, connected from one cell to the other. The contiguity of the
matrix obviously plays a crucial role in the formation of these paths, which are ruled out when the matrix
is not contiguous.

In order to study this effect, different configurations at different volume fractions were generated with
penetrable fibers. The centers of the fibers were first chosen at random. Then the volume fraction of the
reinforcing phase was controlled by increasing the radius of the fibers (all fibers at a given volume fraction
had identical radius). The matrix was assumed to be elastic perfectly plastic. The results of the simulations
can be analyzed as follows :

1. When the fiber volume fraction is small, shear bands can be passed through the matrix. According
to Drucker’s remark, the resulting overall flow stress of the composite coincides with the flow stress
of the matrix under plane strains, 2σ0/

√
3. However, when the fiber volume fraction is very small, a

nearly homogeneous deformation of the matrix is more favorable (less energy is dissipated in the plastic
deformation) and no strain concentration is observed. Then the overall flow stress of the composite
stands between the flow stress of the matrix σ0 and the flow stress of the matrix under plane strains
(2σ0/

√
3).

2. Over a certain radius, straight shear bands cannot be passed through the matrix. For a given geo-
metrical distribution of fibers, this radius is half of the maximal distance between adjacent parallel
lines passing through the centers of the fibers and inclined at ±45o on the tensile direction. Periodic
continuous paths can again be passed through the matrix but they are tortuous. The bands where
the plastic strain concentrates have a nonvanishing width. The stress-strain response of the composite
again reaches a limit value, one higher than the flow stress of the matrix under plane strains. The
overall flow stress increases with the volume fraction of fibers, and the increase is closely related to the
tortuosity of the ”shear” bands.

3. When the fibers percolate and form a contiguous phase, the matrix loses contiguity. No periodic
continuous path can be passed through the matrix. This leads to a drastic modification of the stress-
strain curve of the composite, which is no longer limited. The composite behaves asymptotically as an
elastic plastic material with linear hardening .

4.4 Complex microstructures

To illustrate the capability of the method to deal with complex microstructures, we have considered a real
microstructure taken from the work of Bornert [12] (see also [21]). The materials studied in [21] were two-
phase iron/silver blends, manufactured with powder metallurgy techniques. The digital image was obtained
by Scanning Electron Microscopy. The microstructure is shown in Figure 10 (a). Clearly meshing this
microstructure for application of the FEM would be a considerable task. The present numerical method can
handle such a microstructure as easily as the simpler ones shown in previous examples. In the numerical
simulation each phase is considered elastic-plastic following a J2-flow theory with isotropic hardening of the
Von-Mises type. The stress/strain curves for each constituent under uniaxial tension are shown in Figure 10
(c). The applied loading is uniaxial tension in the horizontal direction. The map of equivalent strain is shown
in Figure 10 (b) at an overall strain E11 = 3.3%. In the soft phase (silver in white) the strain is organized in
bands which cannot develop over long distances due to the presence of the hard phase (iron in black). A full
comparison between simulated and experimental strain maps is difficult to perform essentially because the
numerical calculations are two-dimensional whereas the real material is three-dimensional in nature. Only
the surface of the specimen is observed and it is in a state of plane stress, whereas the calculations are
performed assuming a state of generalized plane strains. In addition the material below the surface plays
a significant role on the deformation of the surface itself. The variations between the arrangement of the
phases at the surface and below the surface is not taken into account by the numerical model.

5 Concluding remarks

A new numerical technique has been developed to investigate the local and overall response of nonlinear
composites. The advantages of the method are the following :

1. Images of microstructures can be directly used in the analysis, which avoids meshing the microstructure.
Complex microstructures can be investigated. Part of the efficiency of the method is due to the use of
FFT packages.



2. The iterative procedure does not require the formation or inversion of a stiffness matrix.

3. Convergence is fast.

However the method has some limitations.

1. Convergence is not ensured for materials containing voids or rigid inclusions.

2. The number of degrees of freedom is high by comparison with the FEM (typically an image with
1024 × 1024 pixels is required to deal with 64 fibers). The method can be implemented only on
computers with high memory capabilities.

Acknowledgements. Most computations were carried out at the Institut Méditerranéen de Technologie in
Marseille; the funds being provided by the PACA region. The other computations were carried out at the
Institut du Développement et des Ressources en Informatique Scientifique funded by CNRS. The authors
are indebted to Michel Bornert for fruitful discussions and for providing the image of the microstructure
shown in 10 (a).



A Green’s operator of a linear elastic material

The auxiliary problem of a homogeneous material with stiffness c0 subject to a periodic polarization field τ
plays an important role in the method which has been proposed. Its solution, which can be found in several
textbooks (e.g. Mura [23]), can be expressed in terms of the Fourier transform of the polarization field by
means of the Fourier transform of the Green’s operator of the following systems of equations

σ(x) = c0 : ε(u∗(x)) + τ (x) ∀x ∈ V

divσ(x) = 0 ∀x ∈ V, σ.n −#, u∗#

 (20)

In Fourier space, these equations take the form

σ̂ij(ξ) = i c0ijkh ξh û
∗
k(ξ) + τ̂ij(ξ), i σ̂ij(ξ) ξj = 0. (21)

(It is hoped that the index i will not be confused with the complex number i =
√
−1). Eliminating σ̂ij

between the two equations in (21) yields

K0
ik(ξ).u∗k = τ̂ij(ξ) ξj ,

where K0(ξ) denotes the acoustic tensor of the homogeneous material, K0
ik(ξ) = c0ijkh ξh ξj . Then

û∗k(ξ) = i N0
ki(ξ) τ̂ij(ξ) ξj =

i

2
(N0

ki(ξ) ξj +N0
kj(ξ) ξi) τ̂ij(ξ),

where the symmetry of τ has been used and where N0(ξ) denotes the inverse of K0(ξ). Therefore

ε̂kh(u∗) =
i

2
(ξh û

∗
k(ξ) + ξk û

∗
h(ξ)) = Γ̂0

khij(ξ) τ̂ij(ξ), (22)

with

Γ̂0
khij =

1

4

(
N0
hi(ξ) ξj ξk +N0

ki(ξ) ξj ξh +N0
hj(ξ) ξi ξk +N0

kj(ξ) ξi ξh
)
, (23)

and
τ̂ij(ξ) =< τij(x)e−iξ.x > . (24)

The strain field induced at each point x of the unit cell V by an initial stress τ can be determined from (22),
(23) and (24). These formulas give the explicit form of the operator Γ0 and of the operation ∗ considered in
section 2:

ε(u∗) = −Γ0 ∗ τ .

Deatailed expressions of Γ0 can be found in Mura [23] for different types of anisotropy for the reference
medium. Its expression is particularly simple when the material is isotropic with Lamé coefficients λ0 and
µ0; the above expression becomes :

c0ijkh = λ0δijδkh + µ0 (δikδjh + δihδjk) .

K0
ij(ξ) =

(
λ0 + µ0

)
ξiξj + µ0|ξ|2δij

N0
ij(ξ) =

1

µ0|ξ|2

(
δij −

ξi ξj
|ξ|2

λ0 + µ0

λ0 + 2µ0

)
.

Therefore:

Γ̂khij(ξ) =
1

4µ0|ξ|2
(δkiξhξj + δhiξkξj + δkjξhξi + δhjξkξi)−

λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξh
|ξ|4



B Imposing a macroscopic stress direction.

In the above described algorithm the overall strain is prescribed by assessing the value of the Fourier trans-
form of the strain field at the zero frequency :

ε̂(0) = E.

It is often convenient (or necessary) to impose the overall stress Σ, rather than the overall strain E. A
typical example is provided by uniaxial tension in the transverse direction as described by (16). In strongly
nonlinear problems it is even necessary to impose only the direction of the overall stress and to drive the
loading by means of an auxiliary parameter (arc length method). The algorithm can be modified to account
for loadings in the form

Σ = k S0 and E : S0 = t, (25)

where S0 is the prescribed direction of overall stress (by direction of stress we refer to a direction in the
6-dimensional space of stresses), k is the unknown level of overall stress and t, which serves as a loading
parameter, is the component of the overall strain in this direction. Then, the overall strain and stress Ei et
Σi have to be determined by means of (25). For this purpose, at iterate i, σi−1 and εi−1 being known, the
loading level ti being known but ki being unknown, Ei and Σi are subject to :

Σi − c0 : Ei =< σi−1 > −c0 :< εi−1 >

Σi = kiS0, Ei : S0 = ti

 (26)

Elimination of Σi yields

Ei = kic0
−1

: S0 − c0
−1

:< σi−1 > + < εi−1 > (27)

and

ki =
ti + (c0

−1
:< σi−1 > − < εi−1 >) : S0

c0−1 : S0 : S0

Therefore the modification brought into the algorithm (12) is an additional step to determine Ei according
to (27), which is then prescribed as the overall strain through :

ε̂i(0) = Ei.

It is worth noting that the condition < εi >= Ei is met at each step of the iterative procedure, whereas
the equality < σi >= Σi is met only at convergence. The difference arises from the fact that σi is deduced
from the constitutive law, whereas Σi is deduced from (26). Indeed, once convergence is reached, one has

Ei = Ei−1 =< εi−1 >,

and, according to (26), Σi =< σi−1 >=< σi > .



C Radial return algorithm

The equations governing a plastic material obeying a J2 flow theory with isotropic hardening read :

σ̇ = c : (ε̇− ε̇p), ε̇p =
3

2
ṗ

s

σeq
, (28)

ṗ = 0 when σeq − σ0(p) < 0,

ṗ > 0 when σeq − σ0(p) = 0.
[B

 (29)

εp is the plastic strain, p is the equivalent plastic strain ṗ =
(
2
3 ε̇

p : ε̇p
)1/2

. c is the stiffness tensor, assumed
to be isotropic and characterized by a bulk modulus k and a shear modulus µ.

Time is discretized into intervals [tn, tn+1]. Fn denotes the value of a function F at time tn. εn, σn and pn

denote the strain, stress and equivalent plastic strain at time tn. Given the mechanical fields at step n, and
given the strain field εn+1 at step n + 1, the constitutive law amounts to finding the stress field σn+1 and
the equivalent plastic strain field pn+1. Replacing time differentiation by a finite difference in (28) provides

σn+1 − σn = c :
(
εn+1 − εn − ε̇pn+1 × (tn+1 − tn)

)
.

The elastic prediction is
σn+1
T = σn + c :

(
εn+1 − εn

)
. (30)

After due account of plastic incompressibility, (30) gives

σn+1 = σn+1
T − 2(tn+1 − tn) µ ε̇pn+1.

Alternatively, making use of the flow rule (28) and of the decomposition of σn+1 into a spherical stress and
deviator stress

tr(σn+1) = tr(σn+1
T ) = tr(σn) + 3k tr(εn+1 − εn) (31)

sn+1 = sn+1
T − 3(tn+1 − tn) µ ṗn+1

σn+1
eq

sn+1 (32)

(31) can be re-written, assuming that there are no initial stresses or strains at time t0,

tr(σn+1) = 3k tr(εn+1)

The radial return method is based on the observation that, according to (32), the deviators sn+1 and sn+1
T

are proportional. The Von Mises stresses associated with σn+1 and σn+1
T are therefore related through :

σn+1
eq = (σn+1

T )eq − 3µ (pn+1 − pn) (33)

- If (σn+1
T )eq < σ0(pn), the step is purely elastic,

σn+1 = σn+1
T , pn+1 = pn.

- If (σn+1
T )eq ≥ σ0(pn), the material plastifies at step n+ 1, σn+1

eq = σ0(pn+1) and (33) reduces to :

σ0(pn+1) + 3µ pn+1 = (σn+1
T )eq + 3µ pn

Assuming that hardening is positive (no softening), the function h(p) = σ0(p) + 3µp can be inverted
to give

pn+1 = h−1
(
(σn+1
T )eq + 3µpn

)
(34)

The case of linear hardening leads to simple inversion. Indeed, in this case, σ0(p) = σ0 +Hp and (34)
reduces to

pn+1 =
3µ

H + 3µ
pn +

(σn+1
T )eq − σ0
H + 3µ

.

The case of a perfectly plastic material, corresponding to H = 0, is covered by the above relation.
When h−1 is not available in a closed form, it can be approximated by linear interpolation. When

k ∈ [h(pl), h(pl+1)], p = h−1(k) is approximated by pl + (k − h(pl))
pl+1 − pl

h(pl+1)− h(pl)
.



Finally, the algorithm used in our computations reads :

εn, σn, pn, εn+1 being known,

Compute sn+1
T = sn + 2µ(εn+1 − εn),

(σn+1
T )eq =

(
3
2sn+1
T : sn+1

T

)1/2
Test If (σn+1

T )eq < σ0(pn)
pn+1 = pn

sn+1 = sn+1
T

Else
pn+1 = h−1

(
(σn+1

T )eq + 3µpn
)

sn+1 =
σ0(pn+1)
(σn+1
T )eq

sn+1
T

End of test

Update tr(σn+1) = tr(σn) + 3k tr(εn+1 − εn)
σn+1 = 1

3 tr(σn+1) IId + sn+1



(35)
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Figure 1: Transverse Young’s modulus of the composite. Dependence of the number of iterations at conver-
gence on the contrast of the elastic moduli of phases (e ≤ 10−4). Square array as shown in Figure 5. Spatial
resolution 128 × 128 pixels. Fiber volume fraction 47.5 %. Poisson coefficients νf = νm = 0.35. The stiff
phase is the fiber.
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Figure 2: CPU time on one processor of a CRAY YMP as a function of the size N of the problem. The solid
line is obtained by linear regression on all points and passes through the origin.
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Figure 3: Two-phase laminate. (E1 = 68.9 GPa, ν1 = 0.35, E2 = 400 GPa, ν2 = 0.23 ). Volume
fraction of both phases 50%. Spatial resolution 32 × 32 pixels. Applied loading: pure shear in the plane
(x1, x2). (a): map of the local strain field ε12. (b) : cut through ε12 along an arbitrary horizontal line.



(a) (b)

0.4 0.45 0.5 0.55 0.6

x1

0.0

0.002

0.004

0.006

0.008

1
2

(c)

Figure 4: Circular fiber in a matrix with elastic mismatch between the phases (Em = 68.9 GPa, νm = 0.35
and Ef = 400 GPa, νf = 0.23 ). Shear loading: E12 = 0.5%, Eij = 0 ∀ (i, j) 6= (1, 2). Maps of the local
strain field ε12. (a): analytical solution, (b): numerical simulation. Spatial resolution 1024 × 1024 pixels.
(c): cut through ε12 at x2 = 0. Dotted line: analytical solution, solid line: numerical simulation.



(a) (b)

Figure 5: Standard fiber distributions. (a) : square lattice, the unit cell contains one fiber. (b): hexagonal
lattice, the unit cell contains 1 + 4× 1

4 = 2 fibers.

Figure 6: Periodic unit cell containing 16 circular fibers randomly placed.
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Figure 7: Overall stress-strain response computed with the present method. Volume fraction of fibers:
47.5%. (a) Matrix with linear hardening. (b) Ideally plastic matrix Dotted lines: 23 configurations of 64
identical circular fibers placed randomly in the r.v.e. Thick solid line: average of the responses of the random
configurations. Square 00 (resp: Square 450): fibers placed at the nodes of a square lattice, tension at 00

(resp. 450). Hexag. 00 (resp: Hexag. 450): fibers placed at the nodes of a hexagonal lattice, tension at 00

(resp. 450).
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Figure 8: Two different microstructures ( (a) and (d) ) and the corresponding plastic strain maps. The
matrix is elastic - ideally plastic in (b) and (f). The matrix is elastic plastic with linear hardening in (c)
and (f). Transverse uniaxial tension. Overall strain E11 = 1%. 0% strains are displayed in black, 10%
strains (and more) are displayed in white. Straight slip bands can form easily in configuration (a). The slip
bands are more tortuous in configuration (d). When the matrix is ideally plastic the overall flow stress of
configuration (d) is 6.4% higher than the flow stress in configuration (a).
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Figure 9: Overall stress-strain response of fiber reinforced materials at different fiber volume fraction
f . 100 penetrable circular fibers with increasing radius in an elastic ideally plastic matrix. (Em =
68.9 GPa, νm = 0.35 σ0 = 68.9 MPa and Ef = 400 GPa, νf = 0.23 ). Tension at 00.
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Figure 10: (a): Microstructure of a silver/iron blend material observed by Scanning Electron Microscopy.
(b): response of the individual constituents under uniaxial tension. (c): numerical simulation. Uniaxial
tension in the horizontal direction. Overall strain E11 = 3.3%. Maps of equivalent plastic strain.



Square arrangement Hexagonal arrangement
Resolution Young’s modulus Error (%) Young’s modulus Error (%)

32 153 965. 0.385 140 040. 0.28
64 153 055. -0.209 140 130. 0.34
128 153 385. 0.007 139 535. -0.08
256 153 150. -0.147 139 580. -0.05
512 153 145. -0.150 139 655. 0.00
1024 153 190. -0.121 * *
2048 153 375. 0.000 * *

Table 1: Square and hexagonal array. Transverse tension at 00. Influence of spatial resolution on the overall
Young’s modulus.

Square arrangement Hexagonal arrangement
Resolution Young’s modulus Error (%) Young’s modulus Error (%)

32 129 670. 0.83 140 810. 0.88
64 128 400. -0.16 140 200. 0.44
128 128 750. 0.12 139 680. 0.07
256 128 660. 0.05 139 520. -0.04
512 128 600. 0.00 139 580. 0.00

Table 2: Square and hexagonal array. Transverse tension at 45◦. Influence of spatial resolution on the overall
Young’s modulus.

Square arrangement Hexagonal arrangement
Resolution Flow stress Error (%) Flow stress Error (%)

32 112.39 15.04 88.48 0.60
64 107.46 9.99 88.32 0.42
128 102.29 4.70 88.10 0.18
256 99.65 2.00 88.01 0.07
512 98.61 0.93 87.95 0.00
1024 98.01 0.32 * *
2048 97.70 0.00 * *

Table 3: Square and hexagonal array. Transverse tension at 0◦. Influence of spatial resolution on the overall
flow stress.



Square arrangement Hexagonal arrangement
Resolution Flow stress Error (%) Flow stress Error (%)

32 79.558 0.00 79.554 0.00
64 79.558 0.00 79.554 0.00
128 79.558 0.00 79.554 0.00
256 79.558 0.00 79.554 0.00

Table 4: Square and hexagonal array. Transverse tension at 45◦. Influence of spatial resolution on the overall
flow stress.

Square arrangement Hexagonal arrangement
Resolution Hardening modulus Error (%) Hardening modulus Error (%)

32 14.4 103 7.46 7.50 103 5.63
64 13.8 103 2.99 7.30 103 2.82
128 13.6 103 1.49 7.10 103 0.00
256 13.4 103 0.00 7.10 103 0.00
512 13.4 103 0.00 7.10 103 0.00

Table 5: Square and hexagonal array. Transverse tension at 0◦. Influence of spatial resolution on the overall
hardening modulus.

Square arrangement Hexagonal arrangement
Resolution Hardening modulus Error (%) Hardening modulus Error (%)

32 4.94 103 3.72 7.94 103 7.01
64 4.78 103 0.42 7.62 103 2.70
128 4.78 103 0.42 7.50 103 1.08
256 4.78 103 0.42 7.44 103 0.27
512 4.76 103 0.00 7.42 103 0.00

Table 6: Square and hexagonal array. Transverse tension at 45◦. Influence of spatial resolution on the overall
hardening modulus.



Number of Number of Young’s modulus standard error on
fibers tests mean (GPa) deviation (GPa) mean (%)

4 100 143.7 3.9 0.27
9 50 143.4 3.1 0.30
16 40 143.0 2.6 0.29
36 25 143.1 1.51 0.21
64 27 143.2 1.33 0.19
256 10 142.9 0.57 0.13

Table 7: Random configurations. Transverse uniaxial tension in the horizontal direction. Influence of the
size of the unit cell on the overall Young’s modulus.

Number of Number of Flow stress standard Error
fibers tests mean (MPa) deviation (MPa) on mean (%)

4 100 89.54 6.07 0.68
9 50 88.01 5.04 0.81
16 40 87.94 4.99 0.90
36 25 88.15 2.17 0.49
64 27 88.70 2.07 0.51
256 10 88.88 0.64 0.23

Table 8: Random configurations. Transverse uniaxial tension in the horizontal direction. Influence of the
size of the unit cell on the overall flow stress.

Fiber shape Young’s Modulus Flow stress Hardening modulus
mean (MPa) mean (MPa) mean (Mpa)

circle 142 260 86.9 9 382
triangle 142 250 91.4 10 448
ellipse 142 330 88.7 9 180

Table 9: Random configurations. Transverse uniaxial tension in the horizontal direction. Effect of the shape
of fibers on the effective properties of the composite.



Fiber shape Maximal length Minimal length Average length

circle 1 1 1
triangle 1.35 1.17 1.29
ellipse 1.72 0.52 0.97

Table 10: Projections along different angles of fibers with the same surface s = 1.
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