B. , F. Guillin, A. And-villani, and C. , Quantitative concentration inequalities for empirical measures on non-compact spaces, Prob. Theory and Related Fields, vol.137, pp.541-593, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00453883

C. , E. A. Gabetta, E. And-toscani, and G. , Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas, Comm. Math. Phys, vol.199, pp.3-521, 1999.

F. , B. And-m-´-eléardel´eléard, and S. , Wasserstein distances do typically yield N ?1/2 fluctuations, but that case is physically trivial when you study Boltzmann gases. For the critical dimension d = 2 (for which the phenomena of discretization and fluctuations have the same order of magnitude N ?1/2 ), it turns out that the typical rate of convergence of empirical measures is N ?1/2 ln N , so there is in fact no central limit theorem either, A Hilbertian approach for fluctuations on the McKean-Vlasov model. Stochastic Process, pp.1-33, 1997.

N. Fournier and S. And-m-´-eléardel´eléard, Monte-Carlo approximations and fluctuations for 2D Boltzmann equations without cutoff. Markov Process Inhomogeneous random systems, pp.159-191, 2000.

G. , C. And-m-´-eléardel´eléard, and S. , Stochastic particle approximations for generalized Boltzmann models and convergence estimates, Ann. Probab, vol.25, issue.1, pp.115-132, 1997.

P. , M. Wagner, W. And-zavelani-rossi, and M. B. , Convergence of particle schemes for the Boltzmann equation, European J. Mech. B Fluids, vol.13, issue.3, pp.339-351, 1994.

R. , D. And-yor, and M. , Continuous martingales and Brownian motion . No. 293 in Grundlehren der mathematischen Wissenschaften, 1999.

H. Spohn, Large scale dynamics of interacting particles. Texts and monographs in physics, 1991.

A. ´. Sznitman, ???quations de type de Boltzmann, spatialement homog???nes, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.47, issue.47, pp.559-592, 1984.
DOI : 10.1007/BF00531891