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UNIQUENESS OF SOLUTIONS TO SCHRODINGER EQUATIONS
ON H-TYPE GROUPS

SALEM BEN SAID, SUNDARAM THANGAVELU, AND VENKU NAIDU DOGGA

AsstrAcT. This paper deals with the Schrodinger equaitio(z, t; s)--Zu(z, t; s) = 0, where
£ is the sub-Laplacian on the Heisenberg group. Assume tleainthial dataf satisfies
[f(z,1)] < gu(z 1), whereqs is the heat kernel associated 6. If in addition |u(z, t; s)| <
gs(z 1), for somesy € R\ {0}, then we prove thati(z,t;s) = O for all s € R whenever
af < sg This result holds true in the more general contextiefiype groups. We also prove
an analogous result for the Grushin operatoR8M .

1. INTRODUCTION

Consider the solution(x, t) of the Schrodinger equation
10sU(X, ) = Au(x, s),  u(x,0) = f(X)

onR". In [2] Chanillo has shown that if the initial conditioh has certain Gaussian decay
then the solutioru(x, s) at a later time cannot have an arbitrary Gaussian decays i$hi
reminiscent of Hardy's theorem which states that a functioand its Euclidean Fourier
transformf cannot have arbitrary Gaussian decay. To be more precibe, definition of the
Fourier transform is taken as

(@) = (20" f (9edx

then the conditions
F( < e, () < e

can be satisfied for a nontrividl only if 8 < 1/4. This can be viewed as an uncertainty
principle for the Fourier transform. The notati®ns Y is (and will be) used to indicate that
X < CY with a positive constar® independent of significant quantities.

Since the solution of the aforementioned Schrodinger tiguaan be expressed in terms
of the Fourier transform of, by a straightforward application of Hardy’s theorem Chianil
obtained the following uniqueness theorem for solutionthefSchrodinger equation.

Theorem 1.1. (cf. [2]) Let UX, s) be the solution of the equation
I0sU(X, s) = Au(x, s),  U(x,0) = f(x)

where f is assumed to satisfy the estimé(@)| < e**, x € R", for some positive constant
a. If at a later time s= s, the solution satisfies the estimatéx, s)| < e x e R", then
f = Owheneveng < <.

1991Mathematics Subject Classificatio22E30, 43B30, 43A80.
Key words and phrases. -bype groups, sub-Laplacian, Schrodinger equation, Heatel, spherical
harmonics.
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Hardy’s theorem as stated above goes back to the work of Har@i933 and later sim-
ilar results for the Fourier transforms on other Lie groupsehbeen established, seel[15].
However, until the work of Chanillo, Hardy’s theorem was swiered only in the context of
heat equation and his work triggered a lot of attention orSiti@odinger equation. Chanillo
himself treated the Schrodinger equation on complex Loeigs where the initial condition
was assumed to be-biinvariant. However, if we use Radon transform the probtsan be
reduced to the Euclidean case and his result holds withqutestriction either on the group
or on the initial condition. Recently, somewhat more precissults of this kind have been
proved by Pasquale and Sundaril[11] in the context of symoiaces.

Similar uniqueness results for other Schrodinger evohsgtiand for the Korteweg-de Vries
equation have received a good deal of attention in recemsy(sae for instancé [4] 5| 8,110,
14,/18]). These authors have developed powerful PDE teabksitp deal with uniqueness
results. Completing a full circle, in a recent work Cowlirtgaé [3] have used a uniqueness
theorem for the Schrodinger equation to give a ‘real vaeigiboof’ of Hardy’s theorem. See
also the worksl[6, |7] where the authors deal with equatiorite mon-constant lower order
terms angbr nonlinear equations.

In this paper we are interested in proving an analogue of Bbartheorem forH-type
groups. LetG be such a group and denote K¢ the sub-Laplacian os. We consider the
following initial value problem for the Schrodinger equoat associated to” :

idsu(g, ) — Zu(g,s) =0, geG, seR,
u(g, 0) = f(9)

wheref is assumed to be ib?(G). Our goal is to find sflicient conditions on the behavior
of the solutionu at two different timess = 0 ands = s, which guarantee that = O is the
unique solution to the above initial value problem.

We write the elements &b asg = (v,t) wheret comes from the center &. We denote
by hy(v, t) the heat kernel associated to the sub-Laplacian. We prove:

Theorem 1.2.Let v, t; ) be the solution of the Schrodinger equation oy ®, with initial
data f. Assume thatf(v,t)| < h,(v,t) for somea > 0. Further, suppose that there exists
S € R\ {0} such thafu(v, t; so)| < h(v, t) for somes > 0. If aB < <3, then v, t; s) = O for

all (v,t) € G and for all se R.

Our approach uses Hardy’s theorem for the Hankel transfdrtairmed in[[17], which says
that a function and its Hankel transform both cannot havirarlg Gaussian decay at infinity
unless, of course, the function is identically zero. It ienesting to note that we do not need
to use Hardy’s theorem for the Heisenberg group proved ih [15

The (2h+ 1)-dimensional Heisenberg group, denotediyis the most well known exam-
ple of aH-type group. In Section 3 we prove the above theorenHfoiOnce the theorem is
proved forH" it is not difficult to extend the proof for ali-type groups. This class of groups
was introduced in [9] and the list ¢i-type groups includes the Heisenberg groups and their
analogues built up with quaternions or octonions in placeashplex numbers, as well as
many other groups.

We also prove an analogue of the above theorem for the Gropeirator? = —A — X262
onR™1. The behavior of this operator is very similar to that of sudplacian as can be easily
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seen by comparing the explicit expression for the lattehwie above when is even. The
spectral decomposition @¥ is explicitly known and we also have a good knowledge of the
associated heat kernel. Le(x,y,t — t’) stand for the heat kernel so that

(1), ) = f Yt - D) U)dydt, (ot eR™. se R
Rn+l

solves the heat equation associated to the Grushin opefafollowing is the analogue of
Theorem 1.2 for the Grushin operator.

Theorem 1.3. Let u(x,t), s) be the solution of the Schrodinger equation associatedhéo t
Grushin operator with initial condition & L?(R™?). Suppose that

1T (X t)] S Ka(X, 0, 1) (1.1)
lu((x, 1), so)I < ks(x, 0, t) (1.2)

for somew, 8 > 0 and for a fixed g€ R*. Then ((x, 1), s) = 0onR™* x R wheneverg < <.

We indicate a proof of this theorem in Section 5. As we memtbabove, the proof of
the main theorem for the Heisenberg group uses an analodd@dy’s theorem for Hankel
transforms. An important role is played by Hecke-Bochngretyormula for the special
Hermite projections in reducing the problem to the Euclidsatup. The proof can also be
carried out for Grushin operators, which are very similathi® sub-Laplacians, thanks to an
analogue of Hecke-Bochner formula for Hermite projectiperators. In the last section we
briefly indicate how other versions of our main result cantowed for the Heisenberg group.

2. BackGrounD

The (2n + 1)-dimensional Heisenberg group, denoteddlyis C" x R equipped with the
group law
(z,t)(W,s) = (z+wW,t+ s+ %Im(z - W)).

Under this multiplicatiorH" becomes a nilpotent unimodular Lie group, the Haar measure
being the Lebesgue measutzlt on C" x R. The corresponding Lie algebra is generated by
the vector fields

= =Vi j=12...
] (9XJ + 2yj at’ J 9 & s n’
o 1 0 .
Yji=— - =X|=, =1,2,...,n,
ey T2V ] "
andT := —. The sub-Laplacian

can be written as 1
& = —Agan — Z|Z|28t2 + No,,
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where

This second order ffierential operator? is hypoelliptic, self-adjoint and nonnegative. It
generates a semigroup with kerrig(z, t), called the heat kernel. In particulags(z,t) is
nonnegative and has the property

Qos(zt) = r 2 gy(rizr ),  rz0.

Moreover,
n
e—%ﬁ(coths&)|z|2

it _ -n
fRé Gs(z. Ot = (4r) (sinh/ls)
(see[15]). Henceforth, fof € L1(H") anda € R, we will write

f4(2) = fe”tf(z, t)dt.
R
We now collect some properties of the heat keqét, t).
Fact 2.1. The heat kernel satisfies the semigroup property gs(z, t) =0,.4(z. t).
The following is a slight modification of [15, Propositior822].

Fact 2.2. The heat kernel gz, t) satisfies the following estimate

x 122

(zt) s s™lediei, s> 0. (2.1)
q

Indeed, fors = 1 by [15, (2.8.9-2.8.10)], we have

(z t) < e 2lle s,
Now Fact 2.2 follows from the fact thag(z, t) = s 'g.(s %z, s7*t) for all s> 0.
Let f andg be two functions ofil". The convolution off with g is defined by

(1+9@0 = [ (@ 0w 9)aw. 9dnds
HI’]
An easy calculation shows that

(f+g)'@ = | f4(z-w)g'(w)d2™@ gw,
CI"I
The right hand side is called thetwisted convolution off* with g*, and will be denoted by
f/l *) g/l.

Let & be the set of all polynomials of the forf(z) = 3, j5<m a,52°7. For each pair
of nonnegative integersp(q), we define#,, to be the subspace o¥ consisting of all
polynomials of the fornP(2) = ¥,-p X gi=q 2pZ’Z.

Let 74 = {P € &pq | AP = 0}, whereA denotes the Laplacian df'. The elements of
Jpq are called bigraded solid harmonics of degrpgyf. We will denote by.#, 4 the space
of all restrictions of bigraded solid harmonics of degrpeqj to the spher&?*1. By [15],
the spacé.?(S*"1) is the orthogonal direct sum of the spac€s,, with p,q > 0. We choose
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an orthonormal basi{g(g,q | 1< j <d(p,g)} for 7,4 Then by standard arguments it follows
that every continuous functiohon C" can be expanded as

d(p.9)
flw)= > > foqiO)¥hew), >0 wes™,
p.ox0 j=1
where
foqi(r) i= fS _ Hro)Vew)do(w). (2.2)

Fork € N, we writeL]* for the Laguerre polynomial defined by

N (-1)T(n+ K
Lo = Z( IGED

For € R, define the Laguerre functiong’; 1 by

ol(2) = LE‘1(| W, I) EL (2.3)

for z € C". Suppose thaf if a radial function inL*(H"). Then f(r) is in L}(R*, r>-dr),
wheref(r) stands forf (w) with |w| = r. For the following Hecke-Bochner formula we refer
to [15, Theorem 2.6.1].

Theorem 2.3. Let f(2) = P(2)g(|z|), where Pe J#,4 and g € LY(R*,r?1dr). Then for
A € R*, we have

f 21 0 H(2) = () "APHIP(2)g 1 g P (),
where the convolution on the right hand side is takerC81?*9 treating the radial functions

g andgoﬂfg;q‘l as functions ort™P+4. More explicitly we have
n+p+q l
n+p+g-1 (27T)n+p+q|/1| 2" (nepray+ Iﬂ(k p+ 1) 2
A4
(f AP 1(|;| e 3 g0rpra-1gg) i 1(|2||Z| )e—%m{

To end this section, let us recall Hardy’s uncertainty gplecfor the Hankel transform.
Forv > —% andF € S(R*), the Hankel transform of orderis defined by

#F©= [ FOTE @5)
0 (rs)”
whereJ,(w) is the Bessel function of orderdefined by
o (-1 (%)

(W) = Z KT +k+ 1)
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Theorem 2.4. (Hardy’s theorem[17]) Let F be a measurable function &t such that
F(r) = 0(€™"), JF(s) = Oe™)

" 1
for some positiver and 3. Then F = 0 wheneverag > 2 and Fr) = Ce™” whenever
1
Q’B = Z-

3. SCHRODINGER EQUATION ON H" X R
Let us consider the Schrodinger equatioriiinx R
10su(z,t; 8) = Zu(z,t; 9),

with the initial conditionu(z, t; 0) = f(z,t). As the closure ofZ on CZ°(H") is a self-adjoint
operator—i.Z generates a unitary semi-groep®* on L2(H"), and the solution of the above
Schrodinger equation is given by

u(z t; s) = €57 f(z,1).

Theorem 3.1.Let Uz, t; s) be the solution to the Schrodinger equation for the sublkh@pn
% with initial condition f. Suppose that

1T(z, 1) < Qu(z.1), (3.1 a)
U(z. t; o)l < (2, 1), (3.1b)
for somew, 8 > 0 and for a fixed g€ R*. Then Yz t; s) = 0 onH" x R whenevenp < 3.

The remaining part of this section is devoted to the proohefdabove statement.

The heat kernefjs(z,t) has an analytic continuation mas long as real part &f is pos-
itive. However, due to the zeros of the sine function, then&kgs(z,t) does not exist as
can be seen from the formula fqt(z). Hence the solution(z, t; s) does not have an integral
representation. We will therefore consider the followiagularized problem oH" x R :

10sU(z,1; ) = Zu(zt;9), € >0,
Uz t; 0) = f(z, 1),

wheref.(z,1) := e f(z t). The solutionu. on H" x R is given by
U(z,t;9) = €71 (z,1) = T+ q(z 1),

wherel = € + isand

1 . A\ . 2
t) = —iAt : — 3 A(cothZ)|z| )
%(2.1) (872)" fRe (smh/lg) € da

Observe that the kerng}(z, t) is well defined.
Lemma 3.2. Under the assumption(8.1 a)and (3.1 b) we have

|f€(Z, t)l < qa+s(Z, t), (32 a)
U(Z,1; So)l S Oge(2Z,1). (3.2 b)
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Proof. For the first estimate, we have
fz ) = e’ f(z ) =|f «q(z 1)l
< Qere(Z,1).

Above we have used the fact th@atis nonnegative and Fact 2.1. Similarly we have

U(Z,1; So)l = |U(:, - ; So) * Qe(Z, 1))
< Osre(Z, 1).

O

Recall that ford € R, the notationf+(z) stands for the inverse Fourier transformfgg, t)
in the t-variable. In view of the hypothesis (3.1 a) drand the estimate (2.1) on the heat
kernel, one can see that the functibr> f+(z) extends to a holomorphic function afon the
strip|Im(2)| < 2. Thus the following statement is true.

Lemma 3.3. Under the hypothesi@.1 a)on f, the inverse Fourier transform'{z) of f(z,1t)
in the t-variable extends to a holomorphic functionioh a tubular neighborhood i€ of
the real line.

We point out that the above lemma also holds for the functien f.

Strategy. To prove Theorem 3.1, our strategy is to show that @ on H" wheneverp < 2.
However, by the above lemma, showing thatf0 onC" for 0 < A < 6, for somes > 0, will
force ' = 0onC" for all 1 € R and hence f= 0 onH". Furthermore, since f= ' x, g,
then proving that f = 0onC" for 0 < A < ¢ is equivalent to show the same statement for
f4. On the other hand, in order to prove that(f) = 0 for 0 < A < ¢, for somes > 0, it is
enough to prove that the spherical harmonic goents

(f9pqi(r) = fs _ fAro)Ygw)do(w)

vanishfor0 < A < ¢, forall p,q > 0andl1 < j < d(p, g). In conclusion, the proof of Theorem
3.1 reduces to prove thatdé < 3, then(f2)pq; = 0OonR* for0 < A < 6, forall p,q > 0
and1l < j <d(p,q).

The following theorem will be of crucial importance to us.

Theorem 3.4. Let us fix g,o = 0and1l < jo < d(po, o). For all r > 0, there exists a
constant ¢ which depends only ahsuch that

f ui(row; So)Yg)g,qo(w)dO'(w) — ,rPo+dogr?cotgliso)
S2n-1

2 _ Ar
%erwqo_l (é 20) COthISO)(fE/I)po,qo,jo) ( ) s

2 sin(1sy)
where U(z; ) denotes the inverse Fourier transform Qfat; o) in the t-variable, 7, de-
notes the Hankel transform of ordei(see(2.5)), and(f/); ., (1) = t=(Pordo) (£ 4) ) o (D).
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Proof. In what followsc, will stand for constants depending only @nvhich will vary from
one line to another. Using Fact 2.2 we can rewjtg; s,) as

ul(z; so0) = 2+ o, (2),
where

A " i A(cot 2
7) = ez g1%0)lZ|
Gisp(2) = (47) (lsm/lso)

which exits for all but a countably many valuesbfThus

fzn ul(rw; S())Yp0 go(w)do(w)

f | | 20w - wak, (w)e2™dw]YE o (w)do(w)
S2n-1 cn

f | f fAwW)gk, (rw - wye™ 2™ Pdw Y o (w)do(w).
S2n-1 cn

We now expand? in terms of bigraded spherical harmonics as
d(p.9) _
A=, > ((pai®)Yim),
p,g=0 j=1
where (), is as in(2.2). Further, by [15, (2.8.7)] we have
A _ -nyyn N —1(2k+n)||so, -1
Oy (rw — tn) = 20) A" )" e ei(rw —tr),

k=0

wheregpy, L is given by (2.3). Now the Hecke-Bochner formula for thewisted convolution
(see Theorern 2.3) gives us

fo fSZH_l(fsA)p,q,j(t) q(ﬂ)‘ﬁkal(fw ty)e 2tM@Dt2-1gtdor (1)

:f‘j‘(wmmawcﬂmwfmutmeﬂmwﬂm%mhm>
0 SZn—l
= [(f)pq; Pha] *-1 e (rw)

= (27) "WAPTIPL ()| (F)p g 1 pi | (),

where the convolution on the right hand side is@mP*9. Here Péq(rw) = rp+qu q(w) and
F~(t) = t®*9F(t). Above we have used the fact theft' = ;.. Using the orthogonallty of
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the basis{YF",,q : 1< j<d(p,q)} we obtain:

f | | fAw)ad,(re — w)e 2 Pdw] Yy  (w)do(w)
S2n-1 cn

— C/lrp0+C10 Z e—i(2k+n)|/1|50(f N+ pPo+Co— 1(rw)

A
€ )DO,QO,JO *-2 Pr-po.a

k=po
(o]

_ + —i(2k+n+2po)IASo [ £ A1\~ n+Po+Qo 1

= Cyrir Z e 2 (T po.corio ¥-1 P (rw).
k=0

On the other hand, by (2.4) we have

I'k+1)
I'(K+n+ po+ o)

(f (fﬂ)poqo Jo(t)‘pn+po+qo 1(t)t2(n+po+qo)—1dt) wz;pomo—l(rw).

~ 1
(fs/l)po,qo,Jo *_2 SDE;pm—qo (rw) =C

Hence we obtain

fszn U (rw; So) Y, qo(@)dor(w)

I'k+1)
- Po+do
Caf Z:I“(k+n+ Po + o)

f (f/l)po o (t)¢ﬂ+po+(10 l(t)tZ(n+po+qo)—ldt)

i 1/ W2
e I(2k+n+2po)|/l|SoLE+pO+qO l(|_2|r2)e ar

= C,rPo+® f (£ 5000 DKL, 1 st Pt -1,
0

where

- I'k+1) - 2,42 (14l 1( 11
K r,t; = |(2k+n+2po)|/l|so (r +t )Ln+po+0|o 2 Lﬂ+|Oo+qO —t2 .
Af 4 ) kzzc;l‘(k+n+ Dot o) 2" ) 2

Now we can use the following Hille-Hardy identity (see fostance([15])

rkk+1) 3 —(v+)—ﬁ(x+)~(2(_xy\/\bl/2)
zll‘(k+v+1)|_k(x)l_(y)Wk (L-w e " 1-w J°

whereJ,(w) := (%’)_V J,(w) andJ, is the Bessel function of order Thus we may rewrite the
kernelK; as

A
Ka(r, t; Sp) = @1@-P)(2j sin(1|sy)) (MPordgs(P+f) ol g 1(25|n(/lso))
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Thus we arrive at

f U (rw; So) Y2 ¢ (w)dor(w)
SZn—l

At

Pt [ a2 cotgiiso)  £4y- I z
= C/lr + OL éa, + (fE )po’qo’jo(t)Jn+pO+qo_l(ZSin(/ls))

) t2(n+ po+Qo)—ldt

iA.2 j5()? - /lr
—cr p0+qoe| ar cotg@%)%+po+qo—1 (6' a() COtg(ﬂSO)(fj)po,%,io) (ZST(/ISO)) .

Hence Theorem 3.4 has been proved. |

Now we are ready to complete the proof of Theorem 3.1.
The estimate (3.2 a) ofy(z, t) together with Fact 2!1 lead us to

2
@I s et

Thus, the spherical harmonic dteient (fj);o’qo’jo satisfies

2
I fj)go,qo,jo(t)| < t (Pt o) g i are

Onthe other hand, by means of Theorem 3.4 and the estimate)Bnu.(z, t; s5), we deduce
that

2
< ¢, r (Pt grizie,

i4()2 - Ar
%+W+QO—1 (el 4() COtgaSO)(fz)po,QO,jo) (m)

That is

.4(,)2cotg(/150) N~ —(Po+0) _%(23:’1@%))2%
’%&pﬁﬂo—l (6' Z (f. )po,QOajO) (r)‘ <cr e )

B+e
Givena, B > 0 such thatB < s we can choose > 0 such thatd + €)(8 + €) < s5. We can
also choos@ > 0 small enough in such a way that for<01 < § we have & + €)(8 + €) <
; 2
sg(%jo)) . This inequality can be written as
1 £ (2sin(s)) 1
> —.
dia +€) 4B +¢€) 1S 4
Therefore, by Hardy’s theorem for the Hankel transform (Beeorem 2.4), we deduce that

for 0 < A < 5 we have €/);, 4.j, = 0 for all po, go > 0 and 1< jo < d(po, qo). Thatisf! = 0

onC" for 0 < A < 6, which forcesf! = 0 for all 1 and hence, = 0 onH". Thatisf = 0 on
H". This finishes the proof Theorem 3.1.

4. RRooF oF THEOREM 1.2

Letg be atwo step nilpotent Lie algebra oewith an inner product:, -). The correspond-
ing simply connected Lie group is denoted®yL et 3 be the center of andv the orthogonal
complement of in g. The Lie algebray is called anH-type algebra if for every € v, the
map ag : » — 3 is a surjective isometry when restricted to the orthogonatglement of its
kernel.

For theH-type algebray = v @ 3, let dim() = 2n and dim§) = k. The class of groups of
H-type includes the Heisenberg gradpwhenk = 1. Let 5 be a unit element ipand denote
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its orthogonal complement inby n*. The quotient algebrg/n* is a Lie algebra with Lie
bracket K, Y], = ([X, Y], n).

The quotienty/n* is anH-type algebra with inner produét ), given by((v1, ta), (V2, 12)), =
(V1, Vo) + t1to, wherevy, v € o, ty,t; € R, and(vy, V,) is the inner product irg. Here {,1)
stands for the coset of+ tn in g/n*. Moreover, if we denote b, the simply connected Lie
group with Lie algebra/n*, then by [13], the Lie groufs, is isomorphic to the Heisenberg
groupH" = C" x R. We refer to[[1] for more details on the theoryldftype groups.

We fix an orthonormal basis,, . . ., Xy, for o, and define the sub-Laplacian by

2n
Z=-> X
=1

It is known that? generates a semigroup which is given by convolution withhiat kernel
for G. As in the case of the Heisenberg group, the kernel is exiglicitown and is given by

i 1 o k2 A " L A(coths)|v|
0= _1(At) [ = 4 ’
(V.1) zn(zﬂ)mk/ZL |t||(/2_1Jk/2 1(4] D(smh(s/l)) € da

for (v,t) € G ands > 0. Here J, denotes the Bessel function of orderThis formula has
been proved in[12], where the author also obtains the iatezipression for the analytic
continuationh,, of the heat kerndhs as long as Re{) > 0.

We now consider the solution of the Schrodinger equatio® onR

i10su(v, t; s) = Zu(v,t; ),
u(v,t;0) = f(v,t),

which is given byu(v, t; s) = e f (v, t). When we replace the initial conditiohby e f,
for somee > 0, then the solution is given by

Ue(v,t; 8) = f = hy(v,t), =€e+is.

We claim that the uniqueness Theorem 3.1 for the Schrodemeation orH" x R is true in
the more general setting x R. The rest of this section is devoted to the proof of Theorem
1.2.

For a suitable functiori on G we define its partial Radon transfori, f (v, t) on G, by

Ky f(v,1) = f f(v,tn+v)dv
TIJ_

wheredy is the Lebesgue measure gh. SinceG, can be identified with the Heisenberg
group H", we can think ofZ, f as a function orH". With this identification, it has been
proved in [12] thatZ,hs(v,t) = gs(v.t), for s > 0, whereqgs(v,t) is the heat kernel from
section 2. The latter identity between the heat kernelsshtslte even whers is complex
with Rel(s) > 0.

In view of the assumptions of(v, t) andu(v, t; s) it follows that%, f (v, t) andZ,u(v, t; o)
satisfy

|‘%f7 f (V’ t)| < qa(v’ t)a
|Z,U(V, t; So)| < Qs(V, 1).
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Moreover, using the fact that under the Radon transt@tpthe sub-Laplaciat” onG goes
into the sub-Laplaciat?” on H" (see [13]), it follows thatZ,u solves the Schrodinger equa-
tion onH" x R with initial data.Z, f (v, t). Hence we can appeal to Theorem/3.1 to conclude
thatZ,u(v,t; s) = 0 for all s € R and for allp € 3 whenevei < s5. Now the injectivity of

the Radon transform implies thatdf3 < 5, thenu(v,t; s) = 0 for all (v,t) € G ands € R.
This establishes Theorem 1.2.

5. Tae GRUSHIN OPERATOR

The spectral decomposition of the Grushin operatbe —Agn — [X|20? is given by
ZLE(x1) = (27) 2 f gt (Z(Zk + MIAP() FA(x) [d2
o k=0

wherePy(1) are the spectral projections of the Hermite operatot) = —Agn + A2|x%. The
heat kernel associated 1 is given by

KX, Y. 1) = (2n) f K% y)eda

whereKZ(x, y) is the heat kernel associated to the Hermite operator whichown explicitly
(see[16]):

n
g A
) g 3 (X +Iy?) coth Aseginote

B! _
Ks(xy) = G (sinh 21s
The solution of the heat equation associated‘tds given by

e_&(/ f (X’ t) = kS(X’ Y, t- t,) f (y’ t,)dydf
RN+1
Note that due to the zeros of the sine function appearingare#pression foK:(x, y) the
kernelks(x, y, t) cannot be analytically continued for purely imaginaryues ofs. However,
as in the case of the sub-Laplacian, the kekngl(x, y, t) is well defined for alk > 0 and the
function
UE((X’ t)? S) = k€+iS(X’ y’ t - t,) f (y’ t,)dydl’

RN+1
solves the Schrodinger equatidiu,((x, t), s) = -Zu.((x, t), s) with initial conditionu.((x, t), 0) =
e f(x 1) = f.(x,t). The heat kerndks(x, y, t) satisfies the semigroup property

Ke(X, Z t = t)ks(Z y, t')dzdt = Kyip(X Y, 1).
le
Therefore, wherf andu are as in Theorem 1.3 then we have the estimates

(O] S Kaae (X, 0,1), U((X: 1), S0)I < Kge(X, 0, 1).

Hence we will be working with these functions instead aindu.

Following the same strategy used in the proof of Theorem Belreduce the proof of
Theorem 1.3 to Hardy’s theorem for the Hankel transform. rdeo to do that we need
the Hecke-Bochner formula for the Hermite projection opmaPy(1). For each integep,
we define#, to be the space of all polynomials of the foiy,_, a,x*. Let 7%, = {P €
P, . Ap = 0}, whereA denotes the Laplacian &&'. The elements of7; are called solid
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harmonics of degrep. We will denote by.#, the space of all restrictions of solid harmonics
of degreep, to the spher&™. Then itis well known that the spaté(S™?) is the orthogonal
direct sum of the space%}, with p > 0. We choose an orthonormal bagg|1 < j < d(p)}

for .7,.

Theorem 5.1.Let py > 0and1 < jo < po be fixed integers. Then

f ul(ro, So)Yrj)g(w)do-(w) = C, g3 coth 2lsor?
Sn-1
H0 4 po-1 (e‘i%Coth 2/1(-)2(]:1) _ ()) A
3+Po— € /PosJo sinh 2/180 s

where G is a constant which depends only #and U'(x, o) is the inverse Fourier transform
of u.((x, t), Sp) with respect to t.

In order to prove the above theorem we make use of the Heckbftgo formula for the
Hermite projection operators which is stated below, seg [16

Theorem 5.2. Let f(X) = fo(IX))P(x), where P is a solid harmonic of degree m. Then for
W <1,

Z PO fOWS = 2iG+m-D(1 — w2) Ly G-Dp-G+m-1)
k=0

11+w2 2iw|A
([ 55 28

e 1% P(X).

where r= |x|.

Theorem 5.1 is proved using the above formula as in the cageedub-Laplacian. We
omit the details. Once Theorem 5.1 is proved, the uniquethessem for the Grushin oper-
ator follows immediately from the Hardy’s theorem for Hahtkkansforms.

6. SOME CONCLUDING REMARKS

It would be interesting to see if Theorem 3.1 is sharp. Thowglbelieve it is sharp we
are not able to prove it. The main reason for théclilty lies in the fact that the heat kernel
gs(z, t) on H" does not have Gaussian decay in the central variable. F@athe reason the
equality case of Hardy’s theorem for the group Fourier ti@ms on the Heisenberg group is
still an open problem. However, if we assume conditiond bandu! instead of onf andu
we can prove the following result.

Theorem 6.1.Let Uz t; s) be the solution to the Schrodinger equation for the sublh@pn
< onH" with initial condition f. Fix A # 0 and suppose that

'@ <@, vz %) <92

for somew, 8 > 0 and for a fixed § € R*. Then we have{z) = c,q!(z)e '3/4"ct9d%) when-
evertanhg@A) tanhB) = sirf(1s).
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To prove this theorem, we can proceed as in the proof of The8té&. We end up with the
estimates

(Zsmaso))

'%Hpmqo 1(el4()2cotg(/150)(f (r)‘ <c r_(p0+q0)e 4 coth@p)

Po.do, Jo

and

|(fpo t0.jo) (r)| < ¢, 1 cothear®,
We can now appeal to the equality case of Hardy’s theoremh@oHankel transform (Theo-
rem 2.4) to conclude that

fooco.io(r) = C1(Po, Go, jo)r P+ e 7 coth(a)r? g-igr? cotgiso)

But this is not compatible with the hypothesis bhunlessc,(po, 9o, jo) = 0 for all (po, o) #
(0, 0). Hencef is radial and equals,o(z)e 3% ct94%)_ This proves Theorem 6.1.

The above result can be viewed as a uniqueness theorem @iossl of the Schrodinger
equation associated to the twisted Laplacidndefined by.Z (€' f (2)) = €%, f(2). Indeed,
qi(z) is the heat kernel associated to this operator. We refét3p(R.3.7)] for the explicit
expression ofZ,. We can also consider the result as an analogue of Hardy'sethetor
fractional powers of the symplectic Fourier transform. dotf the unitary operat@"se s
with s = 7 is just the symplectic Fourier transform. Thus the abovert® fors, = 3
follows immediately from Hardy’s theorem for the Fouriearnsform whereas for other values
of s, we require a long-winding proof.

For the sake of completeness we state another result whicheceonsidered as a theorem
for fractional Fourier transform as well as a theorem fousohs of the Schrodinger equation
associated to the Hermite operatbr= —A + [x? onR". This elliptic operator generates the
Hermite semigroup whose kernel is known explicitly. We aeow thates™e 3™ s the
Fourier transform ofR".

Theorem 6.2. Let ux, S) = e's" f(x) be the solution to the Schrodinger equation
idsu(x, s) — Hu(x, s) = 0
with initial condition f. Suppose
01 = O™, Ju(x )l = O(e™™")
for somey, 8 > 0. Then u= 0 onR" x R whenever sirf(2s,) > %1.

The theorem follows from Hardy’s theorem f&f once we realizel as the Fourier trans-
form of a function. But this is easy to check in view of the Matd formula (see [15]) for
the Hermite functions. In view of this formula, the kerneleof" is given by

1 1+r

Ke(xy) = n7"2(1 - rz)_”/ze‘§1_2(|x|2+ly|2)+ xy.

wherer = e2s, Therefore, the solution(x, s) can be written as

1
—gisHf - LI cot(2s) 5 -
u(x,s) = €7 f(x) = cns€ 6\ s
wheregy(x) := e2* <@ f(x). The assumptions ofi andu translate into
105, ()] < €M |gh ()] < @B simes),
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and hence the theorem follows from Hardy’s theorem.

We conclude this paper with one more remark. If we use otheemainty principles such
as Beurling’s theorem or Benedick’s theorem in place of Martheorem we can obtain
different versions of uniqueness theorems for the solutionglofodinger equations. For
example, in[[11] the authors have proved a uniqueness timedoe symmetric spaces) under
a condition of Beurling type ori andu. We restrain from stating such results as the proofs
do not involve any new ideas.
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