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Abstract 

In order to simplify bone mineralization measurements, a system using radiographic films has 

been updated with a digital detector. The objective of this paper was to validate this new device. 

Technologies and physical phenomena involved in both systems (radiographic films and digital 

detector) are different. The methodology used to compare the two systems was based on image 

quality and assessed on two main parameters: contrast to noise ratio and spatial resolution. 

Results showed that the contrast to noise ratio was similar between the two systems, provided 

that acquisition parameters were optimized. With regard to spatial resolution, a magnification 

factor of at least 4 was required to achieve the same resolution than films or even more. A final 

validation was also shown on a real image of a bone sample. The results showed that both 

systems have similar image quality performances, and the system using digital detector has 

several advantages (easier to use than films, no consumables and faster acquisition time). 

 

Keywords: mineralization of bone, quantitative microradiography, digital detector, spatial 

resolution, contrast to noise ratio 

 

1 Introduction 

 

Bone is a living and composite material. Its intrinsic changes affect its ability to resist fracture. 

Bone is composed of organic matrix (~30%, mainly type I collagen), mineral (~60%) and water 

(~10%) [1]. The inorganic composition of bone (“bone mineral”) is a poorly crystallized apatite 

which slightly differs from stoichiometric hydroxyapatite (HA) Ca10(PO4)6(OH)2 [2]. The 

density of the mineral part of bone is an important determinant of bone strength [3, 4]. Bone 

mineral quality can be measured at the organ (i.e., bone and surrounding tissues) or tissue levels 
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(i.e., mineral part of bone only) with different methods. At the organ level, the current and 

clinical reference method for measuring the amount of mineral in bone is by dual energy X-ray 

absorptiometry (DXA) which gives the so-called bone mineral density area (aBMD) [5, 6]. The 

term “area” comes from the fact that DXA is a two-dimensional method and thus only gives 

the bone mineral density per unit area (g.cm-2). A three-dimensional measurement of the 

mineral density can be obtained by peripheral quantitative computed tomography (pQCT) [7, 

8]. As a volumetric method, this measurement is called vBMD (for "bone mineral density 

volume") and is given in g.cm-3. This measurement concerns only the zones of radius and tibia.  

At the tissue level, the main issue is to avoid any geometrical effect. Measuring only the mineral 

part is defined by the tissue mineral density parameter (TMD in g.cm-3), which avoids the 

porosity, the vascular and canalicular network. TMD is obtained by high resolution pQCT and 

microcomputed tomography (µCT) but considers only the bone mineral part. In addition to 

other methods for measuring the mineral part of bone [9], quantitative microradiography allows 

to obtain the so-called degree of mineralization of bone (DMB in g.cm-3), defined as the density 

of HA [10]. This well known and referenced technique is based on the radiographic acquisition 

of an embedded bone section of known thickness [11]. Since the method uses high resolution 

radiographic films, the spatial resolution is very high and the DMB obtained is very accurate. 

However, due to the disappearance of manufactured radiographic films, this technique needs to 

be updated using digital sensors. 

The purpose of this study was to setup the upgrade of microradiography from high resolution 

radiographic films to a digital detector, and to quantify the image quality (in terms of contrast, 

noise and spatial resolution). After presenting the principle of DMB measurement, the 

specifications of the two systems are shown, as well as the corresponding calibration curves. 

Then the image quality obtained with the two systems was investigated to validate the 

replacement of the film by a digital detector. 

 

2 Theoretical background for DMB measurement 

 

When a monochromatic X-ray beam of N0 photons of energy E irradiates a sample, the number 

of transmitted photons N(E) follows the Beer-Lambert law (Eq. (1)).  

 

   
dρ

ρ

ZEµ

eENEN




),,(

0



    (1) 

 

where µ/ρ is the mass attenuation coefficient of the sample (cm2.g-1), Z its atomic number, ρ its 

density (g.cm-3), and d its thickness (cm). 

The Beer-Lambert law indicates that the global attenuation of an X-ray beam depends on its 

energy and material-dependent parameters, among which some are independent of energy 

(thickness and density), and one is energy dependent (µ/ρ). 

The mass attenuation coefficient µ/ρ is introduced in the equation instead of the linear 

attenuation coefficient µ because it is independent from the density of the sample and, thus, on 

its physical state. µ/ρ values are well known for all simple chemical elements and can be 

computed for any compound, provided that its chemical composition is known.  

 

The degree of mineralization of bone (DMB) is defined by the density of HA ρHA [12] and 

computed from the number of photons transmitted by a bone sample. With the incident flux 

being unknown, the measurement is based on a comparison with a reference object. Aluminum 
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(Al) was chosen as a reference because it is easy to use and perfectly known (thickness and 

density) [13]. 

The Beer-Lambert law applied respectively to Al and HA gives the following Eqs (2) and (3): 
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Eqs (2) and (3) show that the number of photons transmitted by the Al or bone sample is related 

to thickness and density. In our case, the unknown parameter is bone mineral density (ρHA), 

while all others parameters are known. Thus, if the signals measured on bone and Al are 

identical, which means that NAL=NHA, considering the same incident flux N0, we get Eq. (4): 

 

ALAL

AL

HAHA

HA

d
ZEµ

d
ZEµ



























 ),,(),,(
   (4) 

 

This allows us to link the DMB (ρHA) to the Al thickness dAL (5): 
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To apply Eq. (5), the K factor must be known. The density of Al is perfectly known (2.7 g/cm3), 

as well as the sample thickness dHA (100 µm). The mass attenuation coefficients of Al and HA 

depend on energy, and their values are tabulated [14]. The two curves of mass attenuation 

coefficients of Al and HA versus energy are shown in Fig. 1. For an energy of 8.05 keV, the 

ratio of mass attenuation coefficients is 0.571 and the K factor value is 0.571*2.7/0.01=1.54. 
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 Fig. 1. Mass attenuation coefficients of aluminum (Al) and hydroxyapatite (HA) as a function 

of energy. 

 

3 Specifications of the two systems using radiographic film and digital detector 

 

As explained in the previous section, the DMB measurement depends on the energy. A 

monochromatic beam is preferred in order to compute the K factor (Eq. (5)). In practice, for the 

two systems, an X-ray tube is used with a copper anode (Kα radiation energy is 8.05 keV) and 

a nickel filter, like the very first studies of quantitative microradiography [13, 15]. The K-edge 

absorption of nickel is 8.3 keV, which is just above the Kα characteristic line of copper. Thus, 

the nickel filter is well adapted to attenuate energies just above the copper characteristic line. 

The spectrum obtained after filtration is still polychromatic, but with a strong preponderance of 

the copper characteristic line at 8.05 keV. 

The two microradiographic systems are illustrated in Fig. 2. With the system using radiographic 

films, samples are directly in contact with the film. Thus, no magnification is used and no 

geometric unsharpness occurs. As a consequence, in contact microradiography, the focal spot 

size of the X-ray tube can be large, thus allowing a high radiation intensity.  

On the contrary, with the digital detector, since the detector pixel size is higher than the desired 

spatial resolution, the magnification factor must be increased in order to obtain a smaller pixel 

size at the sample level. However, the geometrical unsharpness increases as well, and the use 

of a microfocus X-ray tube is required. The power is therefore reduced and the radiation 

intensity is low. A compromise needs to be found regarding image quality because a high 

intensity improves the signal to noise ratio (SNR), while increasing spatial resolution requires 

a decrease in intensity. This compromise will be discussed in section 5. The technical 

specifications of the two systems are summarized in Table 1. 
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Fig. 2. Microradiographic systems using (a) films and (b) digital detector. 

 

Table 1. Technical specifications of both systems using radiographic films and a digital 

detector. 
 

Features System using radiographic films Digital detector system 

X-ray tube X ray generator: Philips PW 1830/40 

Diffraction tube: Philips PW 2273/20 

Power maxi: 2.2 kW 

Cu anode, Ni filter 

Beryllium window: 300 µm 

Focal spot size: 4.2 mm2 

Microfocus Hammamatsu X-ray system L9421 

-02 

Power: maxi 8 W 

Cu anode, Ni filter 

Beryllium window: 150 µm 

Focal spot size: 5 µm diameter  

Exposure 

parameters 

High voltage: 25 kV 

Current: 25 mA 

Power: 625 W 

High voltage: 40 kV 

Current: 50 µA 

Power: 2 W 

Source to object 

distance 

About 30 cm Range: 1-25 cm 

Object to detector 

distance 

Contact Range: 1-25 cm 

Detector Kodak radiographic films 

resolution: over 1000 pl/mm 

Revelator: Kodak D19 

Fixator: Ilford Hypam 

Temperature: 20°C 

Photonic science CCD camera FDI VHR 11M 

active area: 36x24 mm (4008 x 2671 pixels) 

scintillator: Gd2O2S:Tb 

filter Al: 12 µm 

Image digitization 

step 

Film digitized using a microscope 

coupled with a digital camera with 8 

bits coding 

 

 

12 bits digital image 

Detector pixel size: 9 µm 

 

Object pixel size depends on magnification 

factor. 
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Image pixel size: 5.6 µm 

 

Object pixel size:<0.83 µm at magnification 

max 10.8 

 

4 Experimental validation using an Al step wedge 

 

An Al step wedge was exposed using both techniques (8 regular steps from 12.5 µm to 100 

µm). Typical grey-level profiles obtained by the two systems are shown in Fig. 3. Both profiles 

were normalized by their maximal value in order to be shown on the same scale. However, it is 

worth noting that the dynamic range of the detector is 4096 (12 bits), while 255 levels are 

available for the film system (8 bits). 

 

For the digital detector system, the grey-level is proportional to the energy deposited in the 

detector, which is related to the energy transmitted by the object, weighted by the detector 

efficiency. Thus, a highest signal is obtained for small thicknesses where many photons are 

transmitted. For the other system (radiographic film coupled to a microscope), the deposited 

energy in the film increases its optical density (film darkening), and the obtained signal 

increases with Al thickness (which means when low energy is transmitted). 

 

 
Fig. 3. Normalized grey levels obtained for an aluminum step wedge with both systems. M8 

represents the thickest step and M1, the thinnest.  

 

From the experimental evolution of the measured signals, we could deduce a logarithmic 

relation between Al thickness and grey levels, as given by Eq. (6): 

 

  bGLadAl  ln     (6) 

 

where a and b are constant coefficients. In the case of the digital detector, the coefficient a is 

negative (when Al thickness increases, signal decreases and grey levels become black), and it 



7 

 

is positive in the case of radiographic film (the light intensity is measured through the 

radiographic film).  

Finally, Eqs. (5) and (6) allowed us to obtain a relation between grey levels and DMB as 

follows: 

*)ln(* bGLaDMB       (7) 

 

where a*=K.a and b*=K.b. The obtained DMB as a function of grey levels is plotted in Fig. 4. 

This calibration curve allowed us to determine the DMBs for all possible values of grey levels 

in the range of interest.  

For the system using radiographic films, the gain of the microscope camera was chosen in order 

to optimize the dynamic range in the domain of grey levels which were close to the bone tissue 

values. This is why five steps were used for the whole grey-level range. 

The calibration was validated with the digital system by exposing a sample of 98% pure HA 

with a density of 3.08 g.cm-3. The density calculated from the procedure was 3.015 g.cm-3, i.e., 

a relative difference of 2.1%. 

 

 
Fig. 4. Calibration curves of DMB as a function of grey-level, with film and digital detector. 

 

5. Quantification of the image quality based on the contrast to noise ratio (CNR) and 

spatial resolution 

 

5.1 CNR 

 

The DMB is calculated from the grey-level. The smallest distinguishable DMB values are 

directly related to the grey-level contrast resolution. The noise level must be taken into account, 

especially for digital systems. An essential image quality parameter is the CNR. The CNR is 

defined as the grey-level difference between two thicknesses of a reference sample divided by 

the noise level [16]. CNR is given by the relation in Eq. (8): 
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where: GLi is the average grey level in zone i 

 σGLi the standard deviation of grey level in zone i. 

 

A CNR of one means that the grey-level difference is equal to the noise level, i.e., the two 

thicknesses will be undiscernible. The higher the CNR, the better is the image quality in terms 

of contrast resolution. CNR increases when the contrast improves, which is known to be related 

to the energy of the X-ray beam: a low energy improves the contrast. On another hand, the CNR 

improves when the signal to noise ratio (SNR) improves, which is known to be related to the 

number of photons. Thus, the best quality should be obtained at a low energy and a high photon 

intensity. In our case, when increasing the high voltage, the mean energy of the spectrum 

increases, but the spectrum is still dominated by the copper characteristic line. A higher voltage 

increases also the total number of photons present in the spectrum, which increases the SNR. 

Overall, the CNR is better when increasing the high voltage. 

 

In our study, CNR was calculated between two Al steps of 62.5 and 75 µm, since they 

corresponded to the closest values of DMB generally observed. In order to optimize the settings 

of the X-ray tube, we performed two tests: (1) the high voltage was changed while keeping a 

constant power of 2 W (which means that the intensity decreased when high voltage increased, 

keeping the same integration time of 7 s); and (2), high voltage was changed with a constant 

exposure of 0.35 µA.s (which means the same intensity and integration time, but an increasing 

power). Fig. 5 shows that in both cases, CNR increased with high voltage, for the reason given 

above.  

 

 
Fig. 5. Contrast to noise ratio as a function of high voltage either with a constant power (solid 

line) or constant exposure values (dotted line). 

  

As a matter of comparison, CNR obtained with radiographic film was about 6.5 with an 

acquisition time of 20 min at 25 kV, 25 mA (optimized setting values for film [11]). 

With regard to the digital system settings, a high voltage of 40 kV was selected (just before the 

maximal value of 45 kV). Concerning the current, our objective was to preserve the best spatial 

resolution (as the focal spot size increased with current), a low power had thus to be selected (2 

W, i.e., 50 µA at 40 kV).  
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To maximize the flux of photon, it is possible to increase the detector integration time and 

average several images, at the expense of total acquisition time. Indeed, the CNR increases with 

the square root of the number of integrated images. 

An average of 6 pictures was chosen here as a good compromise. All these parameters allowed 

to achieve a CNR of 5.5 which was acceptable, although less than the film CNR. 

 

5.2 Spatial resolution 

 

Spatial resolution measures the ability of a system to separate details which are close together. 

It is influenced by the resolution of the detector and by the geometric unsharpness which 

depends on the magnification factor and the focal spot size (the latter being related to the tube 

intensity). Following the Nyquist sampling theorem, a digital detector is able to discern an 

object whose size is at least greater than twice the size of a pixel. In our case, the detector pixels 

have a size of 9 µm, thus the maximum intrinsic resolution (i.e. the resolution strictly due to the 

detector, without magnification and thus without geometric unsharpness) is expected to be 18 

µm. 

A mean for estimating the spatial resolution is to calculate the modulation transfer function 

(MTF) of the system [17]. This is obtained using a regular edge object of high attenuation, and 

then to realize the Fourier transformation of the derivative curve profile. MTF curves for the 

film and the detector with different magnification are illustrated in Fig. 6. Using the digital 

detector, the closest line corresponding to the film system is obtained for a magnification of 

3.7.  

A useful criterion to compare several systems is to assess the spatial resolution limit as the one 

given for a certain MTF value, typically 10% [18]. For a magnification of 3.7, for instance, the 

spatial resolution limit is 100 lp/mm, i.e., 5 µm. At this magnification level, the object pixel 

size is 2.43 µm (detector pixel size divided by the magnification factor), which means a Nyquist 

value of 4.86, in good agreement with the result, indicating that resolution is limited by pixel 

size and not by the scintillator effect. 

 

 
Fig. 6. Modulation transfer function curves obtained for several magnifications M with digital 

detector (full lines) compared to film (dashed line). 

 

The use of a calibration bar-space pattern (gold bars engraved in a plastic sheet) is another way 

to determine and verify the spatial resolution of the system. The contrast transfer function (CTF) 

is a plot of the contrast obtained versus the spatial frequency. The procedure of measurement is 
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represented in Fig. 7: from the image of the reference object, a grey-level profile is extracted 

and allows computing the contrast obtained for each spatial frequency. CTF is always above 

the MTF because it corresponds to a rectangular pattern, while by definition the MTF 

corresponds to a sinusoidal one.  

CTF curves obtained for different magnifications with the digital system (full lines) and with 

radiographic film (dashed line) are shown in Fig. 7(c). This confirms that a magnification of 4 

is necessary with the digital system to correspond with film.  

It must be noted that the spatial frequency is limited to 20 lp/mm due to the minimal bar-space 

of the pattern which is 25 µm, and thus the curve cannot be plotted above this value. 

 

 
Fig. 7. Calculation of the contrast transfer functions (CTF). (a) image of the bar space pattern, 

(b) the corresponding grey-level profile and (c) CTF curves obtained for film and digital 

detector with different magnifications. 

 

Given the MTF, the CTF can be also determined by the Coltman formula [19] with the use of 

Eq. (9): 
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where, M(f) = sine wave MTF 

C(f) = bar target CTF 

f = spatial frequency. 

 

The CTF values are in agreement with the MTF values using this relation.  
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5.3 Comparison of an image obtained by the two systems on the same bone sample 

 

Fig. 8 shows images performed with the two systems on an identical bone sample (Fig. 8(a)). 

For the digital system, two images were taken: one with a magnification of 3.7 (Fig. 8(c)) and 

another with the maximum magnification 10.8 (Fig. 8(d)). With the magnification of 3.7, the 

system allowed to obtain overall the same structures than with the radiographic film (Fig. 8(b)), 

but the image was less sharp. With the magnification of 10.8, the picture obtained was very 

similar to the radiographic film. For the three configurations, the grey-level profiles were 

plotted along two similar bone structures and they were very similar (Fig. 8(e)). CNR obtained 

with radiographic film and with digital detector (M=3.7 and M=10.8) were respectively 8.2, 7.1 

and 7.9. 
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Fig. 8. (a) Comparison of microradiographs of a human iliac bone biopsy and zoom of a 

specific part of the image obtained with (b) the radiographic film and with the digital system 

at two different magnifications: (c) 3.7 and (d) 10.8. (e) Curves representing the grey-level 

profiles obtained respectively on the images (b), (c) and (d) across two bone specific units.  

 

6 Conclusion 

 

The digital system provides a good CNR (about 5.5 on the range referred DMB with conditions 

specified above). Moving the sample holder allows adjusting the magnification between 1.6 

and 10.8 and this allows to achieve a similar spatial resolution compared to film for a 

magnification factor of 4. A higher magnification allows to achieve an even better MTF than 

film. Final images on bone samples show the same level of detail between film and digital 

detector at the highest magnification factor (10.8). On the other hand, the digital system 

dynamic range is 12 bits (i.e., 4096 values) versus 8 bits (255 values) for system using films. 

So the grey level information is more precise with the digital system. Finally, acquisition 

settings have been fixed as mentioned in Table 2. 

 

Table 2 

Acquisition settings for digital system 
 

Parameter Value 

High voltage (kV) 40 

Current (µA) 50 

Acquisition time (s) 7 

Number of frames 6 

Magnification factor 10.8 

 

The use of a digital detector for radiographic imaging has the advantage of being easier to use 

than films. Indeed, film chemical revelation can be modified by temperature, user manipulation 

and fixator time settings. Moreover, there is no consumable anymore. We can also mention the 

problem of reciprocity of films: the efficiency of a digital detector is linear with exposition, but 

with the film, the efficiency decreases with exposition. This phenomenon is known as the 

Schwarzschild effect [20]. So with the digital system, we can easier control the evolution of 

photon flux when exposure time is modified compared to a system with radiographic films.  

Another point with the two systems is the fact that several images are required to cover the 

entire sample, especially when the magnification factor is higher. Thus, the total acquisition 

time will depend of number of images required. For a sample which needs 12 images, for 

instance, about 8 min are necessary against 20 for the entire sample with the radiographic film. 

In conclusion, the two systems have similar performances with regard to image quality (CNR 

and spatial resolution). The digital system has the advantage of being easier to use than the 

system with films, with lower acquisition times. The use of a digital detector has been validated 

regarding the image quality necessary for characterization of bone mineralization. The next step 

concerns validation of quantitative assessment of bone mineralization variables as mean DMB, 

heterogeneity index. These variables will be measured and compared between the two systems 

for several bone specific units from the same human bone samples. 
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