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Erratum to: Database preference queries - a possibilistic

logic approach with symbolic priorities

Didier Dubois · Allel Hadjali · Henri Prade ·

Fayçal Touazi

Abstract This note corrects a claim made in the above-mentioned paper about the exact

representation of a conditional preference network by means of a possibilistic logic base

with partially ordered symbolic weights. We provide a counter-example that shows that the

possibilistic logic representation is indeed not always exact. This is the basis of a short

discussion on the difficulty of obtaining an exact representation.

This note corrects a claim made in [6] about the representation of Conditional Preference

networks (CP-nets for short) [1] by means of a possibilistic logic base [2], as well as a

similar claim in [7, 8].

A CP-net encodes a set of preference statements concerning the values of Boolean deci-

sion variables, conditioned on the values of other Boolean decision variables that influence

the former. More formally, let V = {X1, · · · , Xn} be a set of Boolean variables. We denote

by Ast(S) the set of interpretations of variables of S (⊆ V ).

Definition 1 A CP-net N over V = {X1, · · · , Xn} is a directed graph with nodes

X1, · · · , Xn, and there is a directed edge from Xi to Xj if the preference about the value

Xj depends on the value of Xi . Each node Xi ∈ V is associated with a conditional pref-

erence table CPTi that associates a strict preference (xi > ¬xi or ¬xi > xi) with each
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IRIT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

e-mail: prade@irit.fr

D. Dubois

e-mail: dubois@irit.fr

F. Touazi

e-mail: faycal.touazi@irit.fr



possible instantiation u
j

i ∈ Ast(Pa(Xi)) of the parents Pa(Xi) of Xi (if any). Each entry

in a conditional preference table CPTi is of the form φ = u
j

i : ⋆jxi > ⋆j¬xi , where

u
j

i ∈ Ast(Pa(Xi)), ⋆j is blank if the preference is xi > ¬xi and is ¬ otherwise.

Each interpretation ω, i.e., an instantiation of all variables in V , is understood as a solu-

tion to the decision problem described by the preference statements in the CP-net. A CP-net

induces a partial preference ordering over solutions defined as follows. Each conditional

preference statement u
j

i : ⋆jxi > ⋆j¬xi expresses a preference between any two solutions

ω1 and ω2 that satisfy u
j

i and only differ on variable xi , that is, ω1 satisfies xi and ω2 satis-

fies ¬xi . Namely, the preference of xi over ¬xi is valid in context u
j

i , all other things being

equal, what is called the ceteris paribus assumption.

Definition 2 A worsening flip consists in turning an interpretation ω1 into ω2 by flipping

the truth-value of a single variable xi , so that ω1 is preferred to ω2.

In other words, a worsening flip compares two solutions differing only on one vari-

able, according to the conditional preference table of this variable, completed by applying a

ceteris paribus principle to the variables that do not appear in the table.

Definition 3 A CP-net N defines a partial order ≻N over the interpretations of V =

{X1, · · · , Xn} such that ω1 ≻N ω2 if and only if there is a sequence of worsening flips

changing ω1 into ω2.

The encoding of a CP-net in possibilistic logic is supposed to be made as follows [2, 6]:

– Each entry of the form u
j

i : ⋆jxi > ⋆j¬xi in the table CPTi for each node Xi, i =

1, . . . , n is encoded by the possibilistic logic clause
(

¬u
j

i ∨ ⋆jxi, αi

)

, where αi is a

symbolic weight (whose value is unspecified). This is the syntactic counterpart of the

constraint N
(

¬u
j

i ∨ ⋆jxi

)

≥ αi > 0, where N is a necessity measure [3], αi is a

symbolic weight representing a certainty value in a necessity scale (a totally ordered set

with bottom element 0).

– Since the same weight is attached to each clause built from CPTi , the set of weighted

clauses induced from CPTi is equivalent to one weighted formula (φi, αi), for

each variable Xi , where φi =
∧

u
j
i ∈Ast(Pa(Xi ))

¬u
j

i ∨ ⋆jxi , since N(φ ∧ ψ) =

min(N(φ),N(ψ)). So, each node in the CP-net is associated with a single possibilistic

pair made of a propositional logic formula and a symbolic weight.

– Additional constraints over symbolic weights are added. The weight αi attached to each

node Xi , is supposed to be strictly smaller than the weight of each of its parents (thus

accounting for the observed priority of father nodes over children nodes in CP-nets).

Let ΣN be the possibilistic base that encodes the CP-net N . At the semantic level, we

can associate to each interpretation ω of the propositional language generated by V =

{X1, · · · , Xn} a vector ω(ΣN ) with as many components as formulas in ΣN . In the ith

component of the vector ω(ΣN ) associated to the weighted formula (φi, αi) ∈ ΣN , we put

1 if ω satisfies φi and 1−αi if not, in agreement with possibilistic logic semantics [3]. Here,

1−(�) just denotes the order-reversing map of the necessity scale, so that 1 > 1−αi, ∀i (due

to αi > 0). Vectors ω(ΣN ) associated with each interpretation ω, have a specific format.

Namely their component vi (one per CP-net node) lies in {1, 1 − αi} for i = 1, . . . , n. The



comparison between these vectors is solely dictated by the constraints relating the weights

of father and children nodes together with the assumption 1 > 1 − αi,∀i.

Let v and v′ be two vectors having the same number n of components that lie in a partially

ordered set. Let C(v) = {vi : i = 1, . . . n} be the set of distinct components appearing in v,

and min C(v) denote the set of least elements in C(v). Here, the components of the vectors

ω(ΣN ) lie in the set {1, 1 − αi : i = 1, . . . , n}, where the αi’s are distinct and positive.

These vectors can then be compared by means of one of the following ordering relations.

Definition 4 (min) v ≻min v′ iff min(C(v) ∪ C(v′)) ⊆ C(v′).

This is the usual ordering on interpretations induced by a possibilistic knowledge base,

here extended to partial orders. It can be refined as follows:

Definition 5 (discrimin) Delete all pairs
(

vi, v
′
i

)

such that vi = v′
i in v and v′. Thus, we get

two sets R(v) and R(v′) of remaining components. Then, v ≻discrimin v′ iff min(R(v) ∪

R(v′)) ⊆ R(v′).

This partial ordering refines the previous one and can be further refined as follows:

Definition 6 (leximin) Let vσ be the reordered vector v by permutation σ of its components,

i.e., vσ
i = vσ(i). Then v ≻leximin v′ iff ∃σ, vσ ≻discrimin v′.

The leximin comparison comes down to deleting all pairs
(

vi, v
′
j

)

such that vi = v′
j

in v and v′ (each deleted component can be used only one time in the deletion process).

Thus, we get two minimal non overlapping sets R∗(v) and R∗(v′) of remaining compo-

nents, namely R∗(v)∩R∗(v′) = ∅. Then, the leximin ordering comes down to v ≻leximin v′

iff min(R∗(v) ∪ R∗(v′)) ⊆ R∗(v′). As shown in [5], for vectors of the form ω(ΣN ),

the discrimin and leximin orderings coincide, because the coefficients 1 − αi in different

components always differ.

It was claimed in [6] that the above possibilistic logic encoding of a CP-net can exactly

capture the CP-net ordering (defined in terms of worsening flips, as recalled at the begin-

ning of this note) using the leximin (or discrimin) order for comparing vectors associated

to interpretations of the corresponding possibilistic base. Indeed, each vector reflects the

preference constraints that are satisfied or are violated by the considered solution. Unfor-

tunately, this is true only for particular CP-nets. In actual fact, results in [5] suggest it may

only provide a refinement of the CP-net ordering of solutions, namely, let N be an acyclic

CP-net and ≻N its induced partial preference ordering on interpretations. Then, it can be

conjectured that

∀ω, ω′ ∈ Ω, ω ≻N ω′ ⇒ ω(ΣN ) ≻leximin ω′(ΣN )

The following counterexample shows that the possibilistic logic representation using the

leximin order may compare solutions that the CP-net leaves incomparable:

Example 1 Let us consider the CP-net of Fig. 1 with variables V = {X, Y,Z, S, T },

where X ∈ {x, x̄}, etc., and the interpretations ω = xyz̄s̄t and ω′ = x̄ȳz̄s̄ t̄ . It can

be checked that ω and ω′ are incomparable by the CP-net ordering, since there is no

sequence of worsening flips between these two interpretations. However, the leximin order

can compare them, namely ω ≻leximin ω′: indeed ω(ΣN ) = (1, 1, 1 − α3, 1, 1 − α5) and



ω′(ΣN ) = (1 − α1, 1, 1, 1, 1), where 1 − α1 < 1 − α3 < 1 − α5, with the convention

X = X1, Y = X2, Z = X3, S = X4, and T = X5.

Yet another preference relation on interpretations of a possibilistic logic base can be

obtained using the symmetric Pareto ordering, denoted by ≻SP , and defined as follows:

Definition 7 (symmetric Pareto) Let v and v′ be two vectors having the same number of

components, then v ≻SP v′ if and only if there exists a permutation σ of the components of

v′, yielding vector v′σ , such that v ≻Pareto v′σ (where as usual, v ≻Pareto v′ if and only if

∀i, vi ≥ v′
i and ∃j, vj > v′

j ).

It is obvious that the leximin ordering refines the symmetric Pareto ordering:

v ≻SP v′ ⇒ v ≻leximin v′.

It was also claimed in [7, 8] that using the symmetric Pareto order of interpretations of the

possibilistic logic encoding of a CP-net exactly captures the CP-net ordering. In fact this

result seems to be true only for a special subclass of CP-nets where each node has at most

one child node, (as claimed by Proposition 4 in [5]). The following counterexample shows

that an exact representation of a CP-net is indeed not obtained using the symmetric Pareto

order on networks where nodes can have more than one child node:

Example 2 Let us consider the CP-net of Fig. 1, together with the interpretations ω1 =

xyzs̄t̄ and ω2 = xyz̄s̄t̄ . We notice that ω1 is preferred to ω2 according to the CP-net order.

But the symmetric Pareto order leaves them incomparable. Indeed ω1(ΣN ) = (1, 1, 1, 1 −

α4, 1 − α5) and ω2(ΣN ) = (1, 1, 1 − α3, 1, 1), with 1 − α4 < 1 and 1 − α5 < 1, while

1 − α3 < 1 − α4 and 1 − α3 < 1 − α5.

Fig. 1 CP-net associated to Example 1



In this example, the CP-net ordering proves more discriminant than the symmetric Pareto

ordering. In contrast, the ordering ≻SP agrees with CP-net ordering ≻N on the interpre-

tations considered in Example 1, while the ≻leximin is in turn more discriminant than the

CP-ordering.

In the general case, there are arguments to conjecture that

ω(ΣN ) ≻SP ω′(ΣN ) implies ω ≻N ω′.

See [5] for a proof assuming that in a CP-net, an interpretation ω that violates more prefer-

ence tables than another interpretation ω′ (in the sense of inclusion) is strictly less preferred,

i.e. ω′ ≻N ω (a claim that however does seem to have been proved yet).

To conclude, the question of an exact representation of any CP-net by a partially ordered

set of propositional formulae remains open, but this note suggests that the discrepancies

between the two representation settings look more important than expected (see [4] for

additional discrepancies between CP-net and possibilistic logic, pertaining to the transitivity

of priorities between father nodes and children nodes in CP-nets). All that can be expected

is a formal proof that for general acyclic CP-net structures the ordering ≻N can only be

bracketed by the SP and leximin orderings induced by the associated partially ordered base

ΣN .
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