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Abstract. We introduce a new variant of the number field sieve algo-
rithm for discrete logarithms in Fp» called exTNFS. The most important
modification is done in the polynomial selection step, which determines
the cost of the whole algorithm: if one knows how to select good polynomi-
als to tackle discrete logs in Fp~, exTNFS allows to use this method when
tackling Fpn~= whenever ged(n, k) = 1. This simple fact has consequences
on the asymptotic complexity of NF'S in the medium prime case, where the
complexity is reduced from Lg(1/3, ¥/96/9) to Lg(1/3, ¥/48/9), Q = p™,
respectively from Lg(1/3,2.15) to Lg(1/3,1.71) if multiple number fields
are used. On the practical side, exTNFS can be used when n = 6 and
n = 12 and this requires to update the keysizes used for the associated
pairings-based cryptosystems.

Keywords: Discrete Logarithm Problem; Number Field Sieve; Finite
Fields; Cryptanalysis

1 Introduction

The discrete logarithm problem (DLP) is at the foundation of a series of public key
cryptosystems. Over a generic group of cardinality /N, the best known algorithm
to solve the DLP has an exponential running time of O(v/N). However, if the
group has a special structure one can design better algorithms, as it is the case
for the multiplicative group of finite fields Fg = Fp» where the DLP can be
solved much more efficiently than in the exponential time.

When the characteristic p is small compared to the extension degree n, the
best known algorithms have quasi-polynomial time complexity [6,17].

DLP over fields of medium and large characteristic Recall the usual
Lg-notation,

Lo(l,c) = exp (c(log Q)e(log log Q)l_e)7

* This work is a merged version of two consecutive works [20] and [4].



for some constants 0 < ¢ <1 and ¢ > 0. We call the characteristic p = Lo (¢y, c;)
medium when 1/3 < ¢, < 2/3 and large when 2/3 < £, < 1. We are in the
boundary case if £, = 2/3.

For medium and large characteristic, in particular when @ is prime, all the
state-of-art attacks are variants of the number field sieve (NFS) algorithm. Initially
used for factoring, NFS was rapidly introduced in the context of DLP [16,26]
to target prime fields. One had to wait almost one decade before the first
constructions for Fp» with n > 1 were proposed [27], known today [7] as the
tower number field sieve (TNFS). This case is important because it is used to
choose the key sizes for pairings based cryptosystems. Since 2006 one can cover
the complete range of large and medium characteristic finite fields [18]. This
latter approach that we denote by JLSV has the advantage to be very similar to
the variant used to target prime fields, except for the first step called polynomial
selection where two new methods were proposed: JLSV; and JLSVs.

In the recent years NFS in fields F,» with n > 1 has become a laboratory
where one can push NFS to its limits and test new ideas which are ineffective
or impossible in the factorization variant of NFS. Firstly, the polynomial se-
lection methods were supplemented with the generalized Joux-Lercier (GJL)
method [22,5], with the Conjugation (Conj) method [5] and the Sarkar-Singh (SS)
method [25]. One can see Table 1 for a summary of the consequences of these
methods on the asymptotic complexity. In particular, in all these algorithms the
complexity for the medium prime case is slightly larger than that of the large
prime case.

Table 1: The complexity of each algorithms in the medium and large prime cases.
Each cell indicates c if the complexity is Lg(1/3, (¢/9)%).

p=Lqg(tp) 1/3 <4, <2/3 bestl,=2/3 2/3<l,<1
TNFS [27,7] none none 64
NFS-JLSV [18] 128 64 64
NFS-(Conj and GJL) [5] 96 48 64
NFS-SS [25] 96 48 64
exTNFS (this article) 48 48 64

Secondly, a classical idea which was introduced in the context of factorization
is to replace the two polynomials f and g used in NFS by a polynomial f and
several polynomials g;, ¢ = 1,2,... which play the role of g. All the currently
known variants of NFS admit variants with multiple number fields (MNFS) which
have a slightly better asymptotic complexity, as shown in Table 2. The discrete
logarithm problem allows to have a case with no equivalent in the factorization
context: instead of having a distinguished polynomial f and many sides g; all
the polynomials are interchangeable [8].



Table 2: The complexity of each algorithms using multiple number fields. Each
cell indicates an approximation of ¢ if the complexity is Lo (1/3, (¢/ 9)%)

p= Lg(tp) 1/3 <€, <2/3 bestl,=2/3 2/3<4,<1
MTNES [7] none none 61.93
MNFS-JLSV [8] 122.87 61.93 61.93
MNFS-(Conj and GJL) [24] 89.45 45.00 61.93
MNFS-SS [25] 89.45 45.00 61.93
MexTNFS (this article) 45.00 45.00 61.93

Thirdly, when the characteristic p has a special form, as it is the case for fields
in several pairings-based cryptosystems, one might speed-up the computations
by variants called special number field sieve (SNFS). In Table 3 we list the
asymptotic complexity of each algorithm. Once again, the medium characteristic
case is harder than the large characteristic one.

Table 3: The complexity of each algorithms used when the characteristic has a
special form (SNFS) Each cell indicates an approximation of ¢ if the complexity

is Lq(1/3,(c/9)%)

p=Lqg(lp) 1/3<46,<2/3 2/3<4,<1
JP [19] 64 32
STNFS [7] none 32
SexTNFS (this article) 32 32

Our contributions Let us place ourselves in the case when the extension degree
is composite with relatively prime factors, n = nx with ged(n, k) = 1. The basic
idea is to use the trivial equality

Fpn == F(pn)w.

In the JLSV algorithm, F,» is constructed as Fp[z]/k(x) for an irreducible
polynomial k(z) of degree n. In the TNFS algorithm F,» is obtained as R/pR
where R is a ring of integers of a number field where p is inert. In our construction
Fpn = R/pR as in TNFS and Fp» = (R/pR)[z]/(k(z)) where k is a degree x
irreducible polynomial over F».

Interestingly, this construction can be integrated in an algorithm, that we call
the extended number field sieve (exXTNFS), in which we can target Fp»~ with the



same complexity as Fp« for a prime P of the same bitsize as p”7. Hence we obtain
complexities for composite extension degrees which are similar in the medium
characteristic case to the large characteristic case. Since the previous algorithms
have an “anomaly” in the case ¢, = 2/3, where the complexity is better than in
the large prime case, when n is composite we obtain a better complexity for the
medium prime case than in the large prime case.

Overview We introduce the new algorithm in Section 2 and analyse its com-
plexity in Section 3. The multiple number field variant and the one dedicated to
fields of SNFS characteristic are discussed in Section 4. In Section 5 we make a
precise comparison to the state-of-art algorithms at cryptographic sizes before
concluding with the consequences on the key size estimations for pairing-based
construction.

2 Extended TNFS

2.1 Setting

Throughout this paper, we target fields Fg with @ = p™ where n = nx such that
ged(n, k) = 1 and the characteristic p is medium or large, i.e. £, > 1/3.

First we select a polynomial h(t) € Z[t] of degree n which is irreducible
modulo p. We put R := Z[t]/h(t) and note that R/pR ~ F,». Then we select two
polynomials f and g with integer coefficients whose reductions modulo p have a
common factor k(z) of degree x which is irreducible over F,». Our algorithm is
unchanged if f and g have coefficients in R because in all the cases we use the
number fields Ky (resp. K ) defined by f (resp. g) above the fraction field of R
but this generalization is not needed for the purpose of this paper, except in a
MNFS variant.

The conditions on f, g and h yield two ring homomorphisms from R[z]/f(z)
(resp. R[z]/g(z)) to (R/pR)/k(x) = Fpn«: in order to compute the reduction of a
polynomial in R[z] modulo p then modulo k() one can start by reducing modulo
f (resp. g) and continue by reducing modulo p and then modulo k(z). The result
is the same if we use f as when we use g. Thus one has the commutative diagram
in Figure 1 which is a generalization of the classical diagram of NFS.

After the polynomial selection, the exXTNFS algorithm proceeds as all the
variants of NFS, following the same steps: relations collection, linear algebra and
individual logarithm. Most of these steps are very similar to the TNFS algorithms
as we shall explain below.

2.2 Detailed Descriptions

Polynomial Selection



Rz]

W/\

Ky D Rlxl/(f R[z]/{9(2)) C K,

mm) A}o

mod @) Rl k() 0T

Fig. 1: Commutative diagram of exTNFS. When R = Z this is the diagram of
NF'S for non-prime fields. When k(x) = z —m for some m € R this is the diagram
of TNFS. When both R =Z and k(z) = x — m this is the diagram of NFS.

Choice of h We have to select a polynomial h(t) € Z[z] of degree n which is
irreducible modulo p and whose coefficients are as small as possible. As in TNFS
we try random polynomials h with small coefficients and factor them in F,[¢]
to test irreducibility. Heuristically, one succeeds after 7 trials and since n < 3"
we expect to find h such that ||h]| = 1. For a more rigorous description on the
existence of such polynomials one can refer to [7].

Next we select f and g in Z[z] which have a common factor k(z) modulo
p of degree x which remains irreducible over F,.. It is here that we use the
condition ged(n, k) = 1 because an irreducible polynomial k(z) € Fp[z] remains
irreducible over F,» if and only if ged(n, k) = 1. If one has an algorithm to select
f and g in R[z] one might drop this condition, but in this paper f and g have
integer coefficients. Thus it is enough to test the irreducibility of k(z) over F),
and we have the same situation as in the classical variant of NFS for non-prime
fields (JLSV): JLSV;, JLSV,, Conjugation method, GJL and Sarkar-Singh. Let
us present two of these methods which are important for results of asymptotic
complexity.

JLSVy method We briefly describe the polynomial selection introduced in Section
3.2 of [18]. One first chooses a monic polynomial fo(x) of degree x with small
coefficients, which is irreducible over F,, (and automatically over F,» because
ged(n, k) = 1). Set an integer W ~ p'/(P+1) | where D is a parameter determined
later subject to the condition D > k. Then we define f(z) := fo(xz + W). Take
the coefficients of g(z) as the shortest vector of an LLL-reduced basis of the
lattice L defined by the columns:

L:=(p-x°.. ., p-x"f(x),xf(x),...,xPT17"f(x)).

Here, f(x) denotes the vector formed by the coefficients of a polynomial f. Finally,
we set k = f then we have

K

— deg(f) =k and || f|lc = O(p?+7);

K

— deg(g) = D > k and ||g]|cc = O(pP+7).




Conjugation method We recall the polynomial selection method in Algorithm 4
of [5]. First, one chooses two polynomials g1 (z) and go(z) with small coefficients
such that deg g, < deg gy = . Next one chooses a quadratic, monic, irreducible
polynomial p(x) € Z[z] with small coefficients. If p(x) has a root ¢ in ), and
go+0g1 is irreducible over F,, (and automatically over F,n because ged(n, k) = 1),
then set kK = g9 + dg1. Otherwise, one repeats the above steps until such g1,
go, and ¢ are found. Once it has been done, find v and v such that 6 = u/v
(mod p) and u,v < O(,/p) using rational reconstruction. Finally, we set f =
Resy (u(Y), go(x) + Yg1(z)) and g = vgo + ug1. By construction we have

— deg(f) = 2k and || f||oc = O(1); 1
— deg(g) = w and [|g]lc = O(y/p) = O(Q%").

The bound on || f||s depends on the number of polynomials gg+ dg; tested before
we find one which is irreducible over F,. Heuristically this happens on average
after 2 trials. Since there are 32® > 2 choices of gg and g; of norm 1 we have

[flloe = 1.

Relation Collection The elements of R = Z[z]/h(z) can be represented
uniquely as polynomials of Z[z] of degree less than deg h.

We proceed as in TNFS and enumerate all the pairs (a,b) € Z[t]* of degree
<1 — 1 such that ||a]/co, ||b]|ec < A for a parameter A to be determined. We say
that we obtain a relation for the pair (a,b) if

N¢(a,b) == Res;(Resz(a(t) — b(t)x, f(z)), h(t)) and
Ngy(a,b) := Resi(Res; (a(t) — b(t)z, g(x)), h(t))

are B-smooth for a parameter B to be determined (an integer is B-smooth if all
its prime factors are less than B). If ¢ denotes a root of h in R our enumeration
is equivalent to putting linear polynomials a(t) — b(¢)z in the top of the diagram
of Figure 1. One can generalize exTNFS to the case where one puts non-linear
polynomials r(z) € R[z] in the diagram but this is not necessary in this paper.
For each pair (a,b) we can write a linear equation and this part, although
computationally negligible, demands some mathematical details.

Factor base Let ay (resp. ay) be a root of f in Ky (resp. of g in K,), the
number field it defines over the fraction field of R. Then the norm of a(t) —
b(v)ay (resp. a(t) — b(1)ay) over Q is Resi(Resg(a(t) — b(t)z, f(x)), h(t)) (resp.
Rest(Resy (a(t) — b(t)x, g(x)), h(t))) up to a power of I(f) (resp. I(g)), the leading
coefficient of f (resp. g). We call factor base the set of prime ideals of Ky and K,
which can occur in the factorization of a(t) — b(¢)ay and a(c) — b(¢)ay when both
norms are B-smooth. By Proposition 1 in [7] we can give an explicit description
of the factor base as F(B) := Fy(B)|J F4(B) where

_ __\ . 9isaprime in Q(¢) lying over a prime
FrB)=q(@a—-1): p<Band f(y)=0 (mod q)
prime ideals of K¢ dividing I(f)Disc(f)} .
f

and similarly for F,(B).



Schirokauer maps If (a(¢) — b(t)ay) = qu]_-f(B) gvelaa()=ber) and (a(1) —
b(L)Oég> _ qu]—"g(B) qvalq (a(t)—b(

Z valg(a(t)—=b(t)oy)log g+eg(a,b) = Z valg(a(t)—b(t)ag) log q+€q4(a, b)
qeF;(B) q€F,(B)

g) we write

where the log sign denotes virtual logarithms in the sense of [26] and [18] and €
and €, are correction terms called Schirokauer maps which were first introduced
in [26].

The novelty for TNFS and exTNFS with respect to JLSV is that K and K,
are constructed as tower extensions instead of absolute extensions. On the other
hand, it is more convenient to work on absolute extensions when we compute
Schirokauer maps. We solve this problem by computing primitive elements 0
(resp. 04) of K;/Q (resp. K,/Q). For a proof we refer to Section 4.3 in [18].

Linear algebra and individual logarithm These two steps are unchanged
with respect to the classical variant of NFS. The linear algebra step, comes
after relation collection and consists in solving the linear system over F; for
some prime factor [ of the order of Ff,. Using Wiedemann’s algorithm this has
a quasi-quadratic complexity in the size of the linear system, which is equal to
the cardinality of the factor base. In [7] it is shown that the factor base has
(2 +0(1))B/ log B elements, so the cost of the linear algebra is B2+(1).

In the individual logarithm step one writes any desired discrete logarithm
as a sum of virtual logarithms of elements in the factor base. Since the step is
very similar to the corresponding step in NF'S we keep the description for the
Appendix.

3 Complexity

The complexity analysis of exTNF'S follows the steps of the analysis of NFS in
the case of prime fields. It is expected that the stages of the algorithm other
than the relation collection and the linear algebra are negligible, hence we select
parameters to minimize their cost and afterwards we check that the other stages
are indeed negligible.

Let us call T' the time spent in average for each polynomial r € R[z| enumer-
ated in the relation collection stage (in this paper r = a(¢) — b(¢)x), and let Py
(resp. Py) be the probability that the norm Ny (resp. IN,) of r with respect to f
(resp. g) is B-smooth. The number of polynomials that we test before finding
each new relation is on average 1/(PyPy), so the cost of the relations collection
is #F(B)T/(P;P,).

We make the usual heuristic that the proportion of smooth norms is the
same as the proportion of arbitrary positive integers of the same size, so Py =
Prob(Ny, B) (resp P, = Prob(Ny, B) ) where Prob(z,y) is the probability that
an arbitrary integer less than z is y-smooth. The value of T" depends on whether
we use a sieving technique or we consider each value and test smoothness with



ECM [21]; if we use the latter variant we obtain T = Lp(1/2,v/2)(log Q)°™, so
T = B°WM. Using the algorithm of Wiedemann [28] the cost of the linear algebra
is (#F(B))?>t°M) = p2+o(1) Hence, up to an exponent 1+ o(1), we have

B

. _ 2
complexity(exTNFS) = Prob(N;, B)Prob(N,, B) + B~ (1)

This equation is the same for NFS, TNFS, exTNFS and the corresponding SNFS
variants. The differences begin when we look at the size of Ny and N, which
depend on the polynomial selection method. In what follows we instantiate
Equation (1) with various cases and obtain equations which have already been
analysed in the literature.

Lemma 1. Let h and f be irreducible polynomials over Z and call n := degh
and k := deg(f). Let a(t),b(t) € Z[t] be polynomials of degree at most n — 1 with
llalloos [1b]lcc < A. We put Ng(a,b) := Resi(Resg(a(t) — b(t)z, f(x)), h(t)). Then

we have

1.
N (a,b)| < AT*|fIZ RIS D O, k), (2)

where C(n, k) = (n 4 1)GsHn/2(, 4 1)31/2,
2. Assume in addition that ||h||s s bounded by an absolute constant H and
that p = Lq(£p,c) for some , >1/3 and ¢ > 0. Then

Ny(a,b) < E*||f[%Lq(2/3,0(1)), (3)
where B = A"

Proof. 1. This is proven in Theorem 3 in [7].
2. The overhead is bounded as follows

log([|]|5""DC(n, k)) < rnlog H + 3knlogn + 3nlog k
= O(log(Q)" " (loglog Q)*7)
= o(1) log(Q)??(loglog Q).

O

If Ny = Lg(2/3) then we can forget the overhead Lg(2/3,0(1)) as the
Canfield-Erdos-Pomerance theorem states that the smoothness probability satis-
fies, uniformly on z and y in the validity domain,

Prob(z!T°M 4} = Prob(z,y) oW,
The next statement summarizes our results.

Theorem 1. (under the classical NFS heuristics) If Q = p" is a prime power
such that

— p=Lg(ly,cp) with1/3 < ¥,;



l algorithm [ C [ conditions

exTNFS-JLSV; (64/9)3 |k =0 ((1023{5)?@)%)
I —T S T
exTNFS-GJL (64/9)3 K< (%) 3 (lolg ng )3 1
£y <2 £, =2 d 123
exTNFS-Conj (48/9)% p < /7310r lp /f» and ¢, < 123
K=12"3 (1 og Q )3
og long
w=o((nphia)t)
SexTNFS (32/9)3 log log Q

pis d-SNFS with d — 2/3)3+o() (9%
K og log
MexTNFS-JLSV, | (22£26vV13)5 |4 — o (( log Q )%)
T
3

27 loglog Q

— S T
MexTNFS-GJL | (ZH28VE)3 [, < (T2V15)1/3( JoeQ )3
MexTNFS-Conj 34y/8(1114v6) | fp < 2/3 or £y = 2/3 and ¢, < (W)I/B

(strav®) 7 | 1 = (CEEY6) 179 4 o1)) (o2 )

Table 4: Complexity of exTNFS variants

— n = nk such that ged(n, k) =1

then the discrete logarithm over Fg can be solved in Lo(1/3,C) where C' and the
additional conditions are listed in Table 4.

In the rest of this section we prove this statement. In any case in the table, one

shares the conditions kK = o ((log’ng)%) or K < c(log)fgogQ)% for some constant

¢ > 0. These are equivalent to say that P = p”7 = Lo(¢p) for some ¢p > 2/3.

3.1 exTNFS-JLSV,

In this section we assume that n has a factor x such that

. ( log(Q) )“3
loglog(Q)
Let us introduce ||h||oo = O(1) and the values of || f||o; |g]lce = p/ P+ coming
from the JLSVy method (Section 2.2) in Equation (2). Then we get

140(1)

‘Nf(a,b)| < (A’?%(ppil )TI) _ (Eﬁpﬁ)1+o(l)’ @
14o0(1) _

IN,(a,b)] < (A"P(pmim)n) o = (B poi) o) (5)

where we set £ := A" and P := |R/pR| = p".

One recognizes the expressions for the norms in the large prime case [18,
Appendix A.3.], where P = p and x = n. We conclude that we have the same
complexity:

complexity (exTNFS with JLSV,) = Lg(1/3, v/64/9).



3.2 exTNFS-GJL
We relax a bit the condition from the previous section: we assume that n has a
factor k such that
log(@Q) \"*
] .

o= 6 (s

Recall the characteristics of our polynomials: ||kl = O(1) and degh = n;
[ flloe = O(1) and deg f = d + 1 for a parameter d > &; ||g|lo = p*/(**1) and
deg g = d. We inject these values in Equation (2) and we get

Nt (a,b)| < B Lo(2/3,0(1)), (6)
[Ny (a,b)| < BIQY D Lo(2/3,0(1)), (7)

where we set E := A" and P := |R/pR| = p". We recognize the expression in the
first equation of Section 4.2 in [5], so

complexity (exTNFS with GJL) = Lo(1/3, v/64/9).

3.3 exTNFS-Conj

We propose here a variant of NFS which combines exTNFS with the Conjugation
method of polynomial selection.
Let us consider the case when n = nk with

! log(@ )"
= | 7= 1 — .
" <121/3 ol )) (log log(@Q)
As before, evaluating the values coming from the Conjugation method (Section 2.2)

in Equation (2), we have

[Nt (a,0)| < E**Lo(2/3,0(1)), (®)
[Ny (a,0)] < E*(p™")"/ ) Lo(2/3,0(1)). 9)

When we combine Equations (8) and (9) we obtain
[Ny(a, )] - [Ng(a, )] < B2 QU@

But this is Equation (5) in [5] when ¢t = 2. The rest of the computations are
identical as in point 3. of Theorem 1 in [5], so

complexity (exTNFS-Conj) = Lo (1/3, (48/9)'/3).

4 Variants

4.1 The case when p is has a special form (SexTNFS)

In some pairings-based constructions p has a special form, e.g. in the Barreto-
Naehrig curves [9] p = 36u® + 36u® + 24u? + 6u + 1 of embedding degree 12 and

10



in the Freeman pairings construction of embedding degree 10 [14, Section 5.3]
p = 25u* 4+ 25u3 + 25u? + 10u + 3. For a given integer d, an integer p is d-SNFS if
there exists an integer u and a polynomial IT(x) with integer coefficients so that

p=1(u),

deg IT = d and ||I||» is bounded by an absolute constant.

oz \M/3
We consider the case when n = nk, ged(n, k) =1 with k = 0 (logﬁ)gQ)

and p is d-SNFS. In this case exTNFS is unchanged: we select h, f and g three
polynomials with integer coefficients so that

— h is irreducible modulo p, deg h = 1 and ||h]| = O(1);
— f and g have a common factor k(z) modulo p which is irreducible of degree «.

Choice of f and g using the method of Joux and Pierrot Find a polynomial S
of degree k — 1 with coefficients in {—1,0,1} so that k(z) = 2" + S(z) — u is
irreducible modulo p. Since the proportion of irreducible polynomials in I, of
degree k is 1/k and there are 3" choices we expect this step to succeed. Then we

set
{g =z"4+ S(z) —u
f=H(x"+ S(x)).

If f is not irreducible over Z[z], which arrives with negligible probability, start
over. Note that g is irreducible modulo p and that f is a multiple of g modulo p.

By construction we have:
— deg(g) = x and [|g] = u = p"/%
— deg(f) = rd and || f]lec = 29[ 1I[|oc = O(29).

Let us compute the analysis of this particular case of exTNFS. We inject
these values in Equations (2) and obtain

[Nt (a,b)| < E*'Lo(2/3,0(1))
Ny (a,0)] < E*PYLq(2/3,0(1)),

where E := A" and P := |R/pR| = p". We recognize the size of the norms in the
analysis by Joux and Pierrot [19, Section 6.3.], so we obtain the same complexity
as in their paper:

complexity (exTNFS for SNFS primes) = Lg(1/3, (32/9)Y/3).

4.2 The multiple polynomial variants (MexTNFS)

Virtually every variant of NFS can be accelerated using multiple polynomials
and exTNFS makes no exception. The multiple variant of exTNFS is as follows:
choose f and g which have a common factor k(x) modulo p which is irreducible
of degree k using any of the methods given in Section 2.2. Next we set f; = f

11



and fo = g and select other V — 2 irreducible polynomials f; := p; fi + v; fo
where p; = Z?;& pi ) and v; = Z;’;g v; ;17 are elements of R = Z[t]/hZ[t] such
that || lloos |Villee < V7 where V = Lg(1/3,¢,) is a parameter which will be
selected later. Denote «; a root of f; fori=1,2,...,V.

Once again the complexity depends on the manner in which the polynomials

f and g are selected.

MexTNFS-JLSV, Barbulescu and Pierrot [8, Section 5.3.] analysed the com-
plexity of MNFS with JLSV5, so we only need to check that the size of the norm
is the same for NFS and exTNFS for each polynomial f; with 1 <i < V. By
construction we have:

— deg(f1) =k and | filloo = pP*T; )
— deg(fi) =D > r and ||filloo = VZipDH for 2<i < V.

As before, we inject these values in Equations (2) and obtain

N7, (a,b)| < E*(p™)TF Lg(2/3,0(1))
Ny, (a,b)| < EP(p™) D51 Lo (2/3,0(1)) for 2 < i < V.

We emphasize that (Vﬁ)’7 =V2 = Lo(1/3,¢,/2) = Lg(2/3,0(1)) which is true
without any condition on 7. Hence we obtain

13\ 1/3
complexity(MexTNFS-JLSV2) = Lg (1 /3, (M) ) _

27

MexTNFS-Conj and GJL Pierrot [24] studied the multiple polynomial variant
of NFS when the Conjugation method or GJL are used. To show that we obtain
the same complexities we need to show that the norm with respect to each
polynomial is the same as in the classical NFS, except for a factor Lg(2/3,0(1)),
which boils down to testing again that (Vﬁ)r] = Lg(2/3,0(1)) which is always
true. When P = p" = Lg(2/3,cp) such that cp > (%)1/3 and t is the
number of coefficients of the enumerated polynomials r, then the complexity
obtained is Lg(1/3,C(t,cp)) where

2 20 2
C(t,Cp) = Cipt + \/W + ch(t — 1)

The best case is when cp = (W)l/‘3 and ¢t = 2 (linear polynomials):

3+1/3(11 4+ 4/6)
complexity(best case of MexTNFS-Conj) = Lg | 1/3, 73
(18(7+ 3V6))

where the second constant being approximated by 1.71.
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5 Comparison and examples

NFS, TNFS and exTNFS have the same main lines:

— we compute a large number of integer numbers;
— we factor these numbers to test if they are B-smooth for some parameter B;
— we solve a linear system depending on the previous steps.

If we reduce the size of the integers computed in the algorithm we reduce the
work needed to find a subset of integers which are B-smooth, which further
allows us to adapt the other parameters so that the linear algebra is also cheap.
A precise analysis is complex because in some variants one tests smoothness
using ECM while in others one can sieve (which is faster). Nevertheless, as a first
comparison we use the criterion in which one must minimize the bitsize of the
product of the norms.

5.1 Precise comparison when p is arbitrary

Each method of polynomial selection has a different expression of the norm
bitsize, which depends on the number ¢ of coefficients of the polynomials r(z)
that are enumerated during the relation collection. Let us reproduce Table 2
in [25], which we extend with TNFS and exTNFS:

l Method ‘norms product ‘ conditions
NFS-JLSV, |E# Q™+
3(ntD) -1
NFS-JLSV, |E-F QD+ D>n
2D i-1
NFS-GJL |E~ & Q7+t r>n
NFS-Conj |EF Q=
27)(2r+1) t—T
NFS-SS E Qnir+1) n=nkK,Tr>K
2(d+1) 2(E=1)

TNFS E Q 4Ft n small
exTNFS-JLSV; BT tQ R = n = nk,ged(n, k) = 1,71 small
exTNFS-JLSV, Ez(HD) QD+11 n =nk,ged(n, k) = 1,17 small,r > k

exTNFS-GJL E2(2'+1) e n =nk,ged(n, k) = 1,1 small,r > k
exTNFS-Conj B Q(t = n = nk,ged(n, k) = 1,71 small
exTNFS-SS Ezd(%ﬂ) Qd(*+1> n = dnk,ged(n, k) = 1,n small,r > k

Table 5: Comparison of norm sizes.

Note that the method of Sarkar and Singh requires that n is composite. The
settings based on TNFS (TNFS, exTNFS-GJL etc) have an overhead due to the
combinatorial factor which is not written in this table, so we add the condition
that the degree of the intermediate number field must be small. Finally, exTNFS
requires the additional condition that x and 7 are relatively prime.
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Extrapolation E The parameter E depends on the implementation of NFS and
might be different for one variant to another. Let us take for example three
computations with NFS which tackle various problems of the same bitsize:

— Danilov and Popovyan [13] factored a 180-digit RSA modulus using log, E ~
30 (although the size of the pairs (a,b) in theirs computations is not written
explicitly, one can compute E using the range of special-q’s and the default
cardinality of the sieving space per special-q, which is 230);

— Bouvier et al. [11] computed discrete logarithms in a 180-digit field F,, using
logy E =~ 30 (computed from other parameters).

— Barbulescu et al. [5] computed discrete logarithms in a 180-digit field I
using logy E =~ 29.

We see that in the first approximation F depends only on the bitsize of the field
that we target and has the same value as in the factoring variant of NFS. Let us
extrapolate E from the pair (logy, @ = 600, logy E = 30) using the formula

E = cLo(1/3,(8/9)'?).
Since exTNFS requires that ged(n, k) = 1, the first case to study is n = 6.

The case of fields F,s When n = 6 we can use the general methods

— NFS-JLSV; (bitsize E% Q%, best values of ¢ are 3 and 2)

— NFS-GJL with 7 equal to its optimal value, 6 (bitsize E%Q%, best values
of t are 3 and 2 )

— TNFS with deg f = 5, its optimal value for this range of fields (bitsize
E#Q'5, best value of ¢ is 2)

as well as the methods which exploit the fact that n is composite

— Sarkar-Singh (NFS-SS) with n = 2 and r = 3, best value so that r > n/n for
this range of fields, (E%SQ%) respectively n = 3 and r = 2, best value so
that r > n/n for this range of fields, (bitsize E% Q'S , best t are 4 and 3 )

— exTNFS with n =2 or n = 3 and one of two methods for selecting f and g

e exXTNFS-GJL with n = 3, r = 2 its best value so that r > n/n, (bitsize
E*# Q5 best value of ¢ is 2 )

e exXTNFS-GJL with np = 2, » = 3 its best value so that r > n/n, (E% Q%,
best values of t are 3 and 2 )

e exTNFS-Conj with 1 = 2 (bitsize E* Q5 , best values of ¢ is 2).

e exXTNFS-Conj with n = 3 (bitsize E? Q%, best values of ¢ are 3 and 2).

We plot the values of the norms product in Figure 2. Note that exTNFS with
the Conjugation method seems to be the best choice for fields between 300 and
1000 bits.

For even more insight enter into details on a specific field.
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Fig. 2: Plot of the norms bitsize for several variants of NFS

Example 1: Let us consider the field Fjs when
p = 3141592653589793238462643383589.

The bitsize of @ = p® is 608 and its number of decimal digits is 182. Since the
parameter E can only be chosen after an effective computation we are bound
to make the hypothesis that it will have a similar value as in a series of record
computations with NFS having the same input size:

In the following log, F = 30. Let us make a list with the norm sizes obtained
with each version of NFS:

1. NFS-JLSV;. We take for example f = x% — 1772453850905517 and ¢ =
177245385090551525 + 96769484157334. The sieving space contains polyno-
mials of degree two 7(x) = a + xb + cx?, i.e. t = 3, and the upper bound on
the norms’ product is

1
norms bitsize(NFS-JLSV;) = 8log, E + 3 log, @ ~ 440.
2. TNFS. We take f = 25 + 72713923 + 53896222 + 5137162 + 691133, g =
x—1257274 and h = 2% +2* +2 +1. This time ¢ = 2. Note that the parameter
d = deg f is equal to 5, so that we have

1
norms bitsize(TNFS) = 6log, E + 3 log, @ =~ 380.
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3. exTNFS-Conj with n = 2 and k = 3. We take f = 26—3, g = 309331385734750x> —
1851661516636217 and h = 2 + 2. Here t = 2. Hence we obtain

1
norms bitsize(exTNFS n = 2) = 9log, F + 6 log, Q =~ 370.
4. exTNFS-Conj with n = 3 and k = 2. We take f = 2% — 223 + 22 -3, g = 22 +
3141592653589793238462643383588x + 2607544377307649649616026264183
and h = 23 + 2 + 1. Again t = 2. This leads to

1
norms bitsize(exTNFS x = 2) = 6log, £ + 1 log, Q =~ 330.

We conclude that in this example the best choice is exTNFS with k = 2.
The condition ged(n, k) = 1 restricts the values of n where exTNFS applies
ton =6, 10, 12, 14, 18, 20, 24 etc, but we do not discuss them in detail.

5.2 Precise comparison when p is SNFS

To compare precise norm sizes when p is a d-SNFS prime, let us consider Table 6.

Method | condition [norms product
2(d¥1) __t—1

STNFS [ Ta
2n(d+1) _t—1

SNFS-JP|E— &  Qmnad
2r(d+1)  t—1 n=mnkK

SexTNFS|E™ ¢ w | ged(k,m) =1

2<n<n

Table 6: Comparison of norm sizes when p is d-SNFS prime.

Note that SexTNFS encompass SNFS-JP when n = 1, and STNFS when
1n =n, so we only call it SexTNFS when 2 < n < n.

As in the case when p is arbitrary, we do not have precise estimations of
E, especially in the large range of fields log, @ € [1000,10000]. We are going
to extrapolate from the pair (log, @ = 1039, log, E = 30.38), due to the record
of [1], using the formula

E = cLq(1/3,(4/9)3).

Let us introduce a notation for the bitsize of SexTNFS, for any integers k > 1
and ¢t > 2:
2k(d + 1 t—1
MlogE—f— y log Q.
K

For each k, Corm(t, k) has a minimum at the integer ¢ > 2 which best approxi-

2 1/2
mates <2n d(ld+1) log E) '
og Q

Cnorm (tv ’i) =
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The case of 4-SNFS primes . To fix ideas, we restrict at the case d = 4. When

k =1, i.e. STNFS, the norm size has its minimum at ¢ = 2 as soon as % >

40/22% = 10. In our range of interest (300 < log, @ < 10000), the ratio log Q/log E
is always larger than 19. So, we only take care of sieving linear polynomials
in the case of STNFS with d = 4. Similarly, it suffices to consider sieving
linear polynomials in the case of SexTNFS with k = 2 (resp. k = 3) whenever
log@Q/log E > 40 (resp. log Q/log E > 90). It is satisfied when @ is of at least
1450 bits (resp. 6300 bits).

Let us compare the norm sizes of STNFS and SexTNFS when we sieve only
linear polynomials (t = 2) in both cases. The value Cporm (2, £) has a minimum

1/2
at kK = (%) . In the case of d = 4, this value has minimum at x = 2

or k = 3 whenever 20 < log Q/log E < 180 = 20 - 32. Thus, in fields with large
size, SexTNFS with x = 2 or k = 3 is better than STNFS.

In Figure 3 we plot the norm sizes of SNFS-JP, STNFS, and SexTNFS for
n =12 and d = 4 for @ is of from 300 bits to 5000 bits. We also compare these
values with the best choice for general prime cases (exTNFS with Conjugation
when £ = 3). From the plots we remark that STNFS could be a best choice
for small @ otherwise SexTNF'S with small £ becomes an important challenger
against any other methods as the size of Q) grows.

T T X

1,600 - |- -- STNFS T

—  SexTNFS(k = 3) Rl

1400) | SNFS_J.P P )

exTNFS_Conj(k = 3) RO

1,200 | e A

1,000 | |

800 |- .

600 | :..,‘ ,’1 |

a0 A .
200 £ ‘

| | | | | | |
500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
Fig. 3: Comparison when n = 12 and d = 4 for 300 < log, @ < 5000
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To get a better intuition, let us see in detail a specific field.
Example 2: We consider the prime p = Py(u4) where

Py(z) = 362* + 3623 + 2422 + 62 + 1 and uy = 2158 — 2128 968 41

(Section 6 in [2]), and note that p is 4-SNFS. The bitsize of p'? is 7647 for which
we predict by extrapolation that log, ' = 76.15.
Let us make a list with the norm sizes obtained with each version of NFS:

1. STNFS. The size of the norms is E2(@+1/tQ(t=1)/d 3nd has its minimum for
t = 2. Take for example h =22+ 204+ 2° —25—1, f=Pyand g = = — u4.

1
norms bitsize(STNFS) = 5log, E + 1 log, Q =~ 2292.

2. SNFS-JP. The size of the norms is E2"(d+1/tQ(t=1)/(nd) and has its minimum
when ¢ = 8. Take for example f = Py(z'? + 25 + 2% + 1) and g = (212 + 2% +
23+ 1) — uy.

120 1
norms bitsize(SNFS-JP) = — log, E + 3 log, @ ~ 2257.

3. SexTNFS-JP n = 4. In this case the norm size is Ez"(d“)/tQ(de and has
its minimum when ¢ = 2. Take for example h = 2* — 2z — 1, f = Py(23 — 2?)

and g = 23 — 22 — uy.

1
norms bitsize(SexTNFS) = 15log, E + 3 log, Q =~ 1779.

One can do a similar analysis in the cases d = 5, d = 6 etc, but we do not present
the details here.

6 Cryptologic consequences

The keysizes used in pairings-based cryptosystems are computed under the
hypothesis that DLP in Fp» with 2 <n <12 is at least as difficult as factoring
an integer of the same size as p" (see for example [15]). This hypothesis has been
invalidated for n = 2 by the record computations presented in [5] where DLP in
GF(p?) was 260 times faster than in GF(p), and similar estimations were given
for IF 3. The precise estimation in the same paper concluded however that the
security of fields F,s was much less affected and there was nothing said about
Fp12

Thanks to exXTNFS we addressed the case of IF,,s and by a precise estimation
concluded that it has norm sizes approximatively equal to those in the case of
F,2. This invalidates the keysizes which are currently used for Fpe. In order to
extrapolate the new keysizes it is necessary to use the complexity Lo (1/3, /48/9)
instead of the old Lg(1/3, {/64/9) (a MNFS variant is also available of complexity

18



Lg(1/3,1.71)). The same is true when n = k1 with x = 2 or 3 and ged(x,n) = 1,
e.g. n is in the list
10,12, 14,18, 21, 22, 24.

When p is of special form, as in the Barreto-Naehrig construction, a precise
estimations using STNFS and SexTNFS invalidated the current keysizes. In
order to extrapolate the new keysizes it s necessary to use the new complexity

Lg(1/3,3/32/9) instead of the old Lg(1/3, {/64/9).

A Non-linear polynomials

In all the variants of exTNF'S that we have discussed, one puts linear polynomials
r(z) € R[z] in the diagram of Figure 1. This is justified by the fact that exTNFS
is a way of copying the setting from large characteristic to the medium prime
case. Since in the large characteristic, the best choice is to take linear polynomials
in all the variants, NFS, MNFS, SNFS, we have done the same thing in exTNFS,
MexTNFS and SexTNFS.

The estimation of the norms sizes given in Lemma 1 is central in the analysis
of exTNFS. For completion reasons we generalize this result to arbitrary degrees.

Lemma 2. Let h be an irreducible polynomial over Z of degree n and f be an
irreducible polynomial over Z[i] of degree k. Let v (resp. «) be a root of h (resp.
f) in its number field and set Ky := Q(¢,a). Let A > 0 be a real number and
T an integer such that 2 <T < k. For eachi=0,...,k — 1, let a;(t) € Z[t] be
polynomials of degree < n — 1 with ||a;||cc < A. Then we have

T—1
[Nk, 0 (D as(v)al)| < A fl|E=Dm|n)|EHe=D0=D D(n, k),
1=0

where D(n, k) = (26— 1)(n—1) + 1)77/2(77 +1)@r=DO=1/2((2 — 1)!772")77. The
above formula remains the same when we restrict the coefficients of f to be
integers.

Proof. By abusing the notation, we write f(t,z) := 3, fi(t)z* with deg,(f;) <
k—1for f(z) =Y, fi(t)z" € Z[i][z]. Write A(t,z) := Y, a;(t)z" and r(t) :=
Res, (A(t, x), f(t,x)), then we have

Nk, 00 (Al @) = ().

By Theorem 8 and Theorem 10 in [10], the degree of r(t) is given by (k + T —
1)(n—1) and
Ir(®)llse < (T + 5 = Dl 7 72A%| f 7

Then by Theorem 7 in the same article, we have
[Naw/o(r()] < (degr + 1)%8"/2(deg h + 1)1/ ||r|| S5 ™| 35 ™

Combining all together, we obtain the desired result. ad

19



This result allows to analyze MexTNFS-SS when x = i(logi gQ)?’ and ¢, <

(vV/78/9 +29/36) ~ 1.21. Indeed, in this case one puts non-linear polynomials
in the diagram, as indicated in Table 4 of [25].
Once again we check when D(n, k) = Lo(2/3,0(1)) and obtain the condition

nK = 0((101;%)?@)%). The factor ||2]|S5 "™~ s also negligible under the same

condition. Hence the overhead is negligible for all range £, > 1/3.

B Individual Logarithm

Let s € F;. = [F7,. be an element for which we want to compute the discrete
logarithm. In general, the discrete logarithm of s can be found by following two
steps: smoothing step and special-g descent.

In the smoothing step, the value s is randomized by z := s¢ for random value
e and Bj-smoothness of z (for pre-determined value By > B) is tested. Then, for
each prime ideal ® which is not in the factor base, one finds a linear relation
involving ® and other smaller ideals. This step is called special-g descent. We
recursively produce the special-¢g descent tree, and finally deduce the desired
discrete logarithm.

The complexity of the individual logarithm step differs by polynomial selec-
tion methods. In the following, to fix ideas, we consider only the JLSV, and
Conjugation methods (exTNFS-JLSV5 and exTNFS-Conj), but similar argument
directly applies to any other polynomial selection method.

Smoothing. For each z € F» we compute an element zZ € Ky = Q(¢, ay) which
is sent to z when ¢ is mapped to a root of h in F,» and ay in a root of f in Fpnx.
Then we test if N, (%) is Bi-smooth and squarefree. Let us discuss how to
compute and what is the size of its norm.

JLSV5 As before, we consider the target field Fp» as an extension field Fyn~ =
Fpn(m) = Fpn[z]/k(x) over Fpn = Fy,(1) = Fy[t]/h(t). For a given 2 in Fj., we
write z = Y, z;(c)m’, where the coefficients of z; are non-negative intergers
bounded by p. We set

and, by Lemma 2 for T' = k, we obtain

L+o(1) < 22/ (st D)Ho(1),

INic, a(2)] < (p e/ PFD) )

where, in the last inequality, we used the condition that D > k.
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Conjugation In this case, a direct lift would make that z has degree x instead
of 2k = deg Ky, and the coefficients z;(t) have norm bounded by p. In order to
“spread” the coefficients, i.e. compute another polynomial with the same image in
Fp» of degree 2k and coeflicients of norm p'/2, we need to use the LLL algorithm.
With no extra cost we can obtain a further improvement: use the Waterloo
improvement which consists in replacing the smoothness condition of integers of
a given size X by the smoothness condition of two integers of size X /2.

The Waterloo improvement for exXTNFS-Conj is as follows: we find two
bivariate polynomials u(t,z) = Y7%0 " u;(t)z" and v(t,z) = Y org  vi(t)a' €
Z[t, x] such that z is the image in Fpn of

_ u(e, af)
v(e, ay)

where [|t;]o0]|vj]loo < 27p'/4. For this we LLL-reduce the lattice of dimension
4n defined by the lines of the matrix

p

p
vec(k)

I = ' vec(k)

vec(z mod (h, f)) 1

vec(t'z? z mod (h, f))

vec(t" 122~z mod (h, f)) 1

the first n rows contain only the diagonal coefficient equal to p and where, for
all bivariate polynomial w(t,z) = 327" w; (t)2? with w;(t) = Z?;& w; 1
vec(w) = (Wo,0, -+, Wo,p—15s - -+ W2k—1,05 - - - s Wa—1,y—1) Of dimension 2n. In par-
ticular, k € Fyn[z] has been seen as a two-variate polynomial.

By dividing if necessary by the leading coefficient, we can assume that k(x) is
monic, hence the right-most coordinate of vec(k) is 1. Then det L = p™ and we
have u, v with ||u;||ec, [|)]lec < 2Un=1/40Q37 < 2"Qwn . By Lemma 2 we obtain
that

2 2
[Nk, st p))Nic, ool )| < 27 Q (ILFIE= 70l & (5= 1) D, 26) )

The term in the later bracket is Lo(2/3,0(1)) and 27* is negligible compared to
Q if and only if £, > 1/2. We conclude that when ¢, > 1/2

|Nk, jo(ult, ap)) N, o (v(e, o)) = Qo).
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Once the lift z has been computed, the smoothing step is carried out as
usual: one tests that the norm of zZ (or u and v) is squarefree and B;-smooth
where By = Lg(2/3, 81) for some constant 51 > 0. We recognize the complexity
analysis done in [12] in the case of prime fields: the complexity of the smoothing
step is L (1/3, Csmooth) With

— Comooth = 63 for exTNFS-JLSV;
— Csmooth = 35 for exTNFS-Conj.

Descent by special-q Recall how the special-q descent is done in the large
characteristic case of NFS (for example NFS-JLSV3). Due to the condition that
Nk, /0(Z) is squarefree the ideal generated by z factors only into prime ideals of
degree 1. For a prime ideal q of degree 1 in Ky that appears in the factorization
of the principal ideal (Z), we write the logarithm of q as a formal sum of virtual
logarithms of ideals in K and K, of norm less than N(q)¢ for a constant ¢ < 1.

For this, we enumerate pairs (a,b) € Z x Z such that q divides (a — bas) to find
one pair such that

— (a — bay)/q factors into prime ideals of norm less than N(q)¢, and
— the ideal (a — bay,) factors into prime ideals of norm less than N (q)°.

To do this we find two pairs (a(™), b)) and (a®,b?)) of euclidean norm less
than a constant times NV (q)%, using LLL. Then we enumerate the pairs iy + io for
all rational integers with |i;[, |i2| < E’. The complexity of the descent is mainly
determined by the size of the norms:

K K 1+o(1
Nk, jola —bay)| < ((E')FN(D)=/2Q (PHD) o)

|NK9/Q(CL _ bOég)| < ((E/)DN(Q)D/QQl/(D+1))H_O(l).

In our two cases, exTNFS-JLSV, and exTNFS-Conj, we enumerate a(t), b(¢) €
R C Q(v) where a(t),b(t) € Z[z] of degree < n — 1 and ||a]lso, ||blleo < (E’)%

so that a(¢) — b(¢)ay = 0 mod q. This can be done in the following manner (cf
Appendix 7.1 in [7]). First, we construct the lattice

L(q) := {(a,b) = (ag, ..., ay-1,b0,...,by_1) € Z*" : a() — b(¢)ay = 0 mod q},

which has determinant N (q). Let (a®), b)), k = 1,2,...,2n, be the LLL-reduced
basis of this lattice. Then we test the above smoothness conditions for pairs
(a,b) = Zill ix(a® b*)) where ij, are rational integers with absolute value

less than I := (E’)%. By Lemma 1, in the case of exTNFS-JLSV5 the size of the
norms is

,_C K 1 1
Nk, jola —bay)| < ((B')FN(q)=/2QY/(P+1) e,

1+o0(1
N, jola — bag)| < ((B')PN(q)P/2QU P+l
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Then, the rest of the analysis is similar to that of Chapter 7.3. in [3] and we
conclude that in exXTNFS-JLSV5 the special-q descent is negligible compared to
the smoothing step.

In the case of exTNFS-Conj, we use again Lemma 1 and obtain:

K ) 1+o(1
Nk, jola—bay)| < ((B')*FN(q)r) 0,

[Nk, jala — bay)| < ((B')"N(q)*/Q/ ).
We make an usual heuristic argument that a number x is y-smooth with the
probability of p(logz/logy) for Dickman function p. So, the probability of the
pair (a,b) to be descended is given by

3rlog ' + (3r/2) logv + (1/(2)) log Q ) Lto(1)

Prob[(a, b) descends] > p (
clogv
(10)
where v := N(q).
In the case when v is large, i.e. v = Lg(2/3,61), where 51 is imposed

by the smoothing step described above, the inverse of the probability can be
approximated by
(3£)_1+0(1) . (1 Cn) 14o(1)
P9 ~9\3 2 ’

where ¢,, = k/ (log’i gQ)% = 127 3. Multiplying this by the time for v*-smoothness

test the total cost becomes
3 1+0(1)
Cg [&95]
L 1/3, — + 24/ — .
Q ( / " 2¢ + 3 )

1/3
This value is minimized by Lg(1/3,(981¢./2)"/?) when ¢ = (Zgil) . When we

use that B, = (1/3)/3 and ¢, = 1275, we deduce the complexity

Lq(1/3,(81/32)%)

that is less than the complexity of the smoothing step.

In the case of small v, i.e. v = Lg(1/3), the hardest descent step corresponds
to the case when v© = B (the smoothness bound for the factor base). In this
case, again by Equation (10), we have the probability of the descent,

c Cr€ 1o\ el
Lo(1/3, =%+~ .
Q</72c+6+60m6’)
The complexity is minimized when the size of sieving space equals to the inverse
of the above probability. This translates to

9 Cr n Cr€ n
€= —+ — .
2c B 6c,. 8
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This shows that the optimal value for ¢ can be any value close but not equal
to 1, e.g. ¢ = 0.999, and the optimal complexity of descent step for small v is
Lg(1/3,2€) where

c 1 c
=(= 2 2) =12"3 ~0.44
= (5+am)/ (%) |

where we used 8 = (2/3)'/3 and ¢, = 127'/3. This complexity is negligible to
the smoothing step.

rels collection special-q extra

algorithm +lin. algebra smoothing descent | conditions

ol

exTNFS-JLSV, (64/9)% (54/9)3 |negligible -
exTNFS-Conj | (48/9)3 | (27/9)3 |negligible| £, > 1/2

ol

Table 7: Complexity of individual logarithm

For medium v, i.e. v = Lgo(¢) with 1/3 < £ < 2/3, it is obviously faster
than the case of large v. So, we omit detailed analysis for this case and refer to
Chapter 7.3. in [3].

We conclude this section of the Appendix with a summary of our results in
Table 7.
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