
HAL Id: hal-01281862
https://hal.science/hal-01281862

Submitted on 2 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Greedy Routing in Overlay Networks Using
Virtual Coordinates from the Hyperbolic Plane

Damien Magoni, Cyril Cassagnes

To cite this version:
Damien Magoni, Cyril Cassagnes. Dynamic Greedy Routing in Overlay Networks Using Virtual
Coordinates from the Hyperbolic Plane. Transactions on emerging telecommunications technologies,
2015, �10.1002/ett.2987�. �hal-01281862�

https://hal.science/hal-01281862
https://hal.archives-ouvertes.fr

Dynamic Greedy Routing in Overlay Networks

Using Virtual Coordinates from the Hyperbolic Plane

Damien Magoni∗, Cyril Cassagnes†

Abstract

Greedy routing algorithms based on virtual coordi-

nates have attracted considerable interest in recent years.

Those based on coordinates taken from the hyperbolic

plane have interesting theoretical scalability properties.

However, their scalability and reliability are yet to be en-

sured when applied to large scale dynamic networks. In

this paper, we propose a scalable and reliable solution for

creating and managing dynamic overlay networks where

nodes have hyperbolic coordinates. In this context, our

solution provides a greedy routing algorithm based on the

hyperbolic distance. To cope with network dynamics, we

have defined two methods for avoiding temporary local

minima and one method for maintaining the greedy em-

bedding over time. Through analysis, we evaluate the

complexity costs of our solution. Through simulations,

we assess the scalability of our solution on static networks

and its reliability on dynamic networks. Results show that

using our solution based on hyperbolic geometry provides

scalability and reliability to both addressing and routing

tasks in dynamic overlay networks.

1 Introduction

Overlay networks built on top of transport layer protocols are very
useful for providing advanced services to applications. Such ser-
vices include application layer multicast, multimedia streaming de-
livery and swarm content distribution. When an overlay is created
and managed by end users as a peer-to-peer (P2P) network, it
enables the sharing of the users’ resources without relying on cen-
tralized corporate infrastructures such as data centers and network
operators. Overlays can thus be used to extend the freedom and
the flexibility of network communications. However, P2P overlay
protocols often enforce specific topologies upon their participating
members in order to be able to use simple routing algorithms inside
their overlays. Indeed, regular routing protocols are not suitable
inside overlays because of their size and churn issues. Therefore,
an interesting but challenging task is to be able to build a P2P
overlay which could have any topology while keeping a scalable
and reliable routing solution.

For scalability purposes, greedy routing algorithms have the in-
teresting property of not using any routing tables. Those algo-
rithms only require each node to know its neighbors’ addresses.
Greedy routing algorithms rely on distance metrics, thus they need
position-related addresses. Geographic coordinates are the sim-
plest choice but greedy routing does not work on general topologies
when geographic coordinates are used.

∗University of Bordeaux, LaBRI, 351, Cours de la Libération, 33405
Talence Cedex, France. Phone: +33 540 003 540. Fax: +33 540 006
669. E-mail: magoni@labri.fr

†University of Luxembourg, SnT, Luxembourg

This is the reason why virtual coordinates are more appropriate.
Indeed, they do not require any geographic knowledge concerning
the nodes. In this context, the hyperbolic plane is useful to pick
virtual addresses because it provides a proper distance metric for a
greedy routing algorithm as well as a tree-like exponential address-
ing capability. Furthermore, a P2P overlay also has to smoothly
cope with network dynamics in order to be reliable. Network dy-
namics consist in the setup and tear down of overlay links as well
as the joins and leaves of overlay nodes at any time (also called
churn). Because virtual coordinates depend on the relative posi-
tion of a node to each others, the churn implies timely changes of
the nodes’ addresses inside the overlay.

Our aim is thus to provide an efficient solution for building and
maintaining scalable and reliable P2P overlay networks. Our so-
lution is based on hyperbolic greedy routing for scalability as well
as distributed addressing tree maintenance and recovery for relia-
bility. Our contributions are as follows:

• We relate our work to previous papers that provided insightful
ideas as foundations for defining our solution (Section 2).

• We present some geometric properties of the Poincaré disk
model of the hyperbolic plane and we define how we compute
virtual coordinates (Section 3).

• We define our distributed addressing and greedy routing so-
lution for building reliable and scalable dynamic P2P over-
lay networks (Section 4) including recovery methods (Sub-
section 4.3.1) and local minima avoidance heuristics (Subsec-
tion 4.3.2).

• We evaluate the performances of our solution over both static
and dynamic overlays in order to demonstrate both its scala-
bility and reliability (Section 5).

This paper is based on our previous work published in [1]. We
have added here the definition and evaluation of two routing heuris-
tics for circumventing local minima appearing in dynamic topolo-
gies (Subsection 4.3.2). We have also added an analysis of the
complexity costs of our solution (Subsection 4.4). We have carried
out new extended simulations covering real as well as synthetic
topologies, and have added results concerning four routing heuris-
tics used on dynamic overlays (Subsection 5.3).

2 Related work

Many existing distributed routing schemes rely on greedy algo-
rithms [2, 3, 4, 5]. The simplest routing schemes based on geo-
graphic coordinates are greedy algorithms, in the sense that nodes
always forward messages to the neighbor which is closest to the
destination by using the Euclidean metric [6, 7, 8, 9]. However,
the greediness may be wrong when there exists a node which is
nearer to the destination than all of its neighbors without itself
being the destination. This node is called a local minimum and
packets crossing this node will fail to reach the given destination.
Face routing techniques can be used for overcoming this problem

1

but they have poor performances, that is why some researchers
have even tried to predict local minima such as Liu and Wu [10].

To avoid local minima, another solution is to define an embed-
ding. An embedding is a graph embedded in a metric space, which
is a space where the notion of distance between elements is prop-
erly defined. An embedding is greedy, if and only if greedy routing
is always successful. The notion of the greedy embedding of graphs
was defined in 2005 by Papadimitriou and Ratajczak. They mainly
investigated planar 3-connected graphs embedded in the Euclidean
space [11].

Two of the earliest researchers to investigate the hyperbolic
space to embed Internet maps were Shavitt and Tankel in 2004
with their work on the curvature of the Internet and its use for
overlay construction and distance estimation [12, 13]. They defined
the Internet geometric curvature, and showed how embedding the
Internet metric in a hyperbolic space with a proper curvature gives
accurate distances. Their work was later followed by Kleinberg in
2007 who proved that any connected finite graph has a greedy em-
bedding in the hyperbolic plane [14]. Kleinberg also showed that
we can easily embed a graph greedily in the hyperbolic plane by
creating a spanning tree of the graph in a distributed manner. Be-
cause Kleinberg’s algorithm needs to know the value of the highest
degree node and does not cope with dynamic topologies, it can
only be applied to small size static networks. In 2009, Cvetkovski
and Crovella [15] have complemented the work of Kleinberg with
the Gravity-Pressure algorithm to solve the local minimum issues
that arise in dynamic networks subject to node and link failures.

Also in 2009, Westphal and Pei constructed in [16] a greedy em-
bedding on a space of dimension O(log(n)) with route tables of
polylogarithmic size at each node thus making routing scalable.
Flury et al. proposed in [17] the first polynomial-time algorithm
that embeds combinatorial unit disk graphs into O(log2(n)) di-
mensional space, permitting greedy routing with constant stretch.
Other work on greedy embedding in the hyperbolic space followed
in 2010 such those by Papadopoulos et al. who studied their use
in dynamic scale-free networks [18] and by Zeng et al. who inves-
tigated their use for resilient routing in sensor networks [19]. An
interesting idea in wireless sensor networks would be to use infec-
tion spreading [20] by following the hyperbolic addressing tree thus
limiting redundant information forwarding.

Which metric to use is a crucial choice. For instance, in [6]
the metric space is the Euclidean plane, virtual coordinates are as-
signed using a distributed version of Tutte’s rubber band algorithm
and the embedded graph is planar, namely it can be drawn in the
plane so that the edges are continuous curves that do not intersect
each other. More recently, Moitra and Leighton [21] resolved a
conjecture of [11] that every 3-connected planar graph admits a
greedy embedding into the Euclidean plane. Thus, to map virtual
coordinates to network nodes, one has to define a subgraph and
a space. Because a metric space biases the type of the subgraph,
another approach is to find an adequate metric space to avoid this
issue as proposed by Goodrich [22]. However, this proposition is
difficult to implement in a distributed context and this aspect has
not been studied in his paper.

In this paper, we follow the ground-breaking work of Klein-
berg [14] by modifying his method in order to apply it to large
dynamic overlay networks. We use the hyperbolic plane as our
metric space for selecting virtual coordinates and we define a dis-
tributed algorithm for dynamically assigning those coordinates to
the overlay nodes. We do not need to know the highest degree
node as we fix the addressing tree degree once and for all. We can
manage network dynamics by a recovery technique on the address-
ing tree such as our flush method defined below. We can overcome
temporary local minima by heuristics such as Tree Ancestor and
Push Back which are less costly than Gravity Pressure.

n1 [0.5;0]

n2 [-0.25;0.433]

n3 [-0.25;-0.433]

n0 [0;0]

n5

n4

n6

n7

n8

n9

Figure 1: 3-regular tree in the hyperbolic plane.

3 Hyperbolic geometry

In this section, we recall some properties of the hyperbolic geom-
etry and explain how we can leverage them.

3.1 Properties of the hyperbolic plane

Hyperbolic geometry is similar to Euclidean geometry in many re-
spects. It has the concepts of distances and angles, and there are
many theorems common to both. The simplest hyperbolic space is
the two-dimensional hyperbolic plane H2 of constant negative cur-
vature −1 as opposed to the Euclidean space which is not curved.
We use this hyperbolic plane as our addressing space. The model
that we use to represent the hyperbolic plane is called the Poincaré
disk model. In this model, the hyperbolic plane is represented by
an open unit disk where the circle of radius 1 represents the infin-
ity. Lines are arcs of circles intersecting the disk and meeting its
boundaries at right angles. We refer to points of the hyperbolic
plane by using complex coordinates.

3.2 Tiling of the hyperbolic plane

An important property of the hyperbolic plane is that it can be
tiled with polygons of any sizes, called p-gons. Each tessellation is
represented by a notation of the form {p, q} where each polygon
has p sides with q of them at each vertex. This form is called a
schläfli symbol. There exists a hyperbolic tessellation {p, q} for
every couple {p, q} obeying (p − 2) × (q − 2) > 4. In a tiling, p
is the number of sides of the polygons of the primal and q is the
number of sides of the polygons of the dual.

Our purpose is to partition the plane and address each node
uniquely. That is why, we set p to infinity, thus transforming the
primal into an infinite regular tree of degree q. The dual is then
tessellated with an infinite number of q-gons (the red triangles in
Figure 1). This particular tiling splits the hyperbolic plane into
an infinite number of distinct spaces and constructs an infinite q-
regular tree. An example of such a tree with q = 3 is shown in
Figure 1.

We aim at creating and maintaining a large and dynamic over-
lay network. In order for our solution to be scalable, we define a
distributed addressing scheme where a new node selects a unique
address from a pool of addresses managed by an already addressed

2

node. The newly addressed node then derives its own pool of ad-
dresses to distribute, which is built from its own address. Therefore
when the overlay grows, the addressed nodes form a spanning tree
where each node address is derived from the address of its ancestor
in the tree. We call hyperbolic addressing tree this spanning tree of
addressed nodes. The hyperbolic plane enable us to easily define
such pools of non overlapping addresses by mapping the address-
ing tree to the previously defined q-regular tree. In this context,
each node in the overlay has a unique virtual address represented
by a point in the hyperbolic plane and is able to distribute q − 1
addresses to other new nodes.

3.3 The hyperbolic distance

In the Poincaré disk model, the distance between two points a and
b is given by a curve called geodesic which minimizes the distance
between these two points. To compute the length of a geodesic be-
tween two points a and b and thus obtain their hyperbolic distance
dH , we use the Poincaré metric which is an isometric invariant:

dH(a, b) = argcosh(1 +
2(|a− b|2)

(1− |a|2)(1− |b|2)
) (1)

The hyperbolic distance dH(a, b) is additive along geodesics and is
a Riemannian metric. For more details on the Poincaré metric, we
refer the reader to the proof in [23].

3.4 Isometries and generators

An isometry is a distance-preserving map between metric spaces.
In our context, isometries are used to determine the coordinates of
the points belonging to the addressing tree. An isometry is a geo-
metric transformation defined in the complex plane and composed
of two operations: a rotation and a translation. Each operation is
defined by a complex number. The first complex number r defines
the rotation while the second complex number t defines the trans-
lation. Given any complex number z and an isometry I = {r, t},
then:

I(z) =
r × z + t

1 + t× r × z
(2)

Given two isometries I1 = {r1, t1} and I2 = {r2, t2}, then:

I1 × I2 =

{

r1 × r2 + r2 × t1 × t2

r1 × t2 × t1 + 1
,

r1 × t2 + t1

r1 × t2 × t1 + 1

}

(3)

Given an isometry I = {r, t}, then its inverse is defined by:

inv(I) = {r, 0} × {1,−t} (4)

Generators are specific isometries that are used to create the
points of the addressing tree. There are exactly q generators, with
q being the degree of the regular tree defined above. Each generator
is constructed from two isometries, a rotation isometry noted R
defined as:

R =
{

e
i 2π

q , 0
}

(5)

and a translation isometry noted T defined as:

T =







1, tanh



argcosh





1

sin
(

π
q

)















× {−1, 0} (6)

When the degree q of the addressing tree is chosen at the creation
of the overlay, any node can then use Algorithm 1 to calculate the
q generators.

Algorithm 1: Defining the generators.

DefineGenerators(Generator[], q)
begin

R =
{

ei
2π
q , 0

}

T =

{

1, tanh

(

argcosh

(

1

sin(π
q)

))}

× {−1, 0}

for i← 0 to q − 1 do

Generator[i] = Ri × T × inv(Ri)

4 Addressing and routing in the hy-

perbolic plane

We now explain in this section how we create the hyperbolic ad-
dressing tree and how packets are routed in the overlay. We pro-
pose two distributed algorithms, one for address allocation and the
other for greedy routing. Our solution has two properties shown
later on in this section:

1. Each node in the overlay can compute its pool of attributable
addresses without having any global knowledge of the topol-
ogy.

2. The overlay is dynamic and thus can grow and shrink over
time as nodes join, leave or fail.

4.1 Distributed building of the addressing

tree

We recall that the hyperbolic coordinates (i.e., a complex number)
of a node of the addressing tree are used as the address of the
corresponding node in the overlay. A node of the tree can give
the addresses corresponding to its children in the tree. Thus each
node will be able to give q − 1 addresses and the root node will
be able to give q addresses. The degree q of the tree is fixed at
the beginning for all the lifetime of the overlay. In the overlay, a
node can connect to any other node at any time in order to obtain
an address thus fixing the degree does not prevent the overlay to
grow.

If a node has already given all its addresses, it sends to the re-
questing node a reply containing the IP addresses of its neighbors,
so that the requesting node can ask for addresses from any of them.
This process is repeated until the requesting node is satisfied. Op-
timizations to this broadcast method can be done firstly by only
giving the IP addresses of nodes still having available addresses
and secondly by not sending all of them.

By definition, leaf nodes always have addresses to give. This
specificity renders our method scalable because unlike [14], we do
not have to make a two-pass algorithm over the whole network to
find its highest degree. Furthermore, this would be impossible to
do on large overlay networks of thousands of nodes or more.

The overlay is built incrementally, with each new node joining
one or more existing nodes (it will get only one address from one of
those nodes though). Over time, the nodes will leave the overlay
until there is no node left which sets the end of the overlay. The
first step in the creation of an overlay is to choose the degree of the
addressing tree and to start the first node. The first node of the
overlay always takes the address of the root node of the addressing
tree (i.e., (0, 0))

Each node of the overlay possesses one address which is equal
to a point in the hyperbolic plane. The address is composed of
the coordinates of the point in the unit disk as already explained,
but also of an index and an isometry. The latter two are defined

3

and used in order to enable the algorithm to be fully distributed
(i.e., any node must store its corresponding index and isometry
to be able to compute its children’s addresses without the help of
another node). Algorithm 2 is used to initialize the address of the
root node of the addressing tree.

Algorithm 2: Initializing the parameters of the root

node.

InitializeRootParameters(Root)
begin

Root.Coordinates← (0, 0)
Root.Index← 0
Root.Isometry ← {1, 0}

A new node can obtain an address simply by asking an existing
node to be its parent and to provide it with an available address. If
the asked node has already given all of its addresses, the new node
must ask an address to another existing node. Finally, Algorithm 3
is used by the new node when it obtains a new address in order
to compute the addresses that this node will be able to give to
its children. The addressing tree is thus incrementally built at
the same time than the overlay. This algorithm only needs local
information and thus is distributed. The fact that the addresses
are taken from the q-regular tree ensures that each node has unique
coordinates.

Algorithm 3: Calculating the coordinates of the children

of a node.

CalculateChildrenCoordinates(Node, Generator[], q)
begin

for i← 0 to q − 1 do

if i = 0 and Node 6= Root then

continue

Child.Index← Node.Index+ i mod q

Child.Isometry ←
Node.Isometry ×Generator[Child.Index]
Child.Coordinates← Child.Isometry(0)

Our procedure for addressing the nodes is different from the one
presented by Cvetkovski and Crovella in [15]. We set the degree
q of the regular tree at the beginning of the procedure and thus a
parent node will never be able to provide more than q addresses
to its children, whereas in their procedure, a node can add up
as many children as possible until reaching the limits of floating
point precision. As we consider overlay networks, we assume that
a new node can look for an alternate parent if the chosen one has
no more addresses to give (plus, the new node can still connect
to the first one by a redundant link if possible and desired). In
our procedure, we can use all the addresses of the q-regular tree
whereas by construction, their procedure implies loosing some ad-
dressing space each time they add a node to a given parent node
as they recursively split the addressing space in two, and get closer
to the unit circle as shown on Figure 3 of paper [15]. Those two
procedures show the trade-off between maximizing the number of
available addresses and giving the possibility for any given parent
node to connect to a theoretically unlimited number of children.

4.2 Greedy routing in the overlay network

When a new node has connected itself to nodes already inside
the overlay and has obtained an address from one of those nodes,

it can start sending data packets. The routing process is done
in each node on the path (starting from the sender) towards the
destination by using a greedy algorithm based on the hyperbolic
distances between the nodes. When a packet is received by a node,
the node calculates the distance from each of its neighbors to the
destination and forwards the packet to its neighbor which is the
closest to the destination as shown in Algorithm 4. If no neighbor
is closer than the node itself then the packet has reached a local
minima and other methods explained in Section 4.3 must be used
to successfully route the packet to the destination. If no other
method is successful then the packet is dropped.

Algorithm 4: Routing a packet in the overlay.

GetNextHop(Node, Packet) return Node

begin

Nmin ← Node

u← Node.Coordinates

w ← Packet.DestinationNode.Coordinates

dmin ← argcosh
(

1 + 2|u−w|2

(1−|u|2)×(1−|w|2)

)

foreach Neighbor ∈ Node.Neighbors do

v ← Neighbor.Coordinates

d← argcosh
(

1 + 2|v−w|2

(1−|v|2)×(1−|w|2)

)

if d < dmin then

dmin ← d

Nmin ← Neighbor

return Nmin

4.3 Coping with dynamic topologies

In a dynamic context, several problems can appear. Authors of [15]
say that the greediness of the embedding in [14] depends critically
on the connectivity provided by the underlying embedded spanning
tree. Indeed, the routing in the hyperbolic plane is robust as long
as the tree integrity is maintained. In real network environments,
link and node failures or departures are expected to happen often.
Clearly, the drawback of the greedy routing is the resilience to
failures. In our overlay networking approach, we define two types
of failures:

• The first type deals with failures inside the addressing tree
(i.e., the q-regular spanning tree).

• The second type deals with failures inside the overlay graph
(i.e., of links not belonging to the addressing tree).

4.3.1 Recovery methods

In the first type of failure, if a link belonging to the spanning tree
fails then the greedy hyperbolic routing will fail for all the paths
taking this link. In addition, if a node other than a leaf node
fails, this will partition the tree into a forest of up to q sub-trees
and thus will disturb the connectivity of the tree [15]. We thus
need a recovery mechanism for restoring the addressing tree. If
the addressing tree is broken, two solutions can be used to restore
the connectivity:

• Flush the addresses attributed to the nodes beyond the failed
node or link and reassign addresses to those nodes.

• Try to restore the tree by replacing the failed link by an iden-
tical new link or the failed node by a new node with the same
connections.

4

The first solution that we call the flush method may be costly
if the overlay area beyond the failed node or link is large as it can
lead to the renumbering of a large part of the network. When a
node looses its parent, Algorithm 5 is triggered.

Algorithm 5: Loosing the parent node.

OnParentFailure(Node)
begin

Node.ParentAddress← Nil

Tear down parent link

Node.Address←
GetAddressFromNonChildNeighbor

T ← T imeraddress_search

while Node.Address = Nil and t < T do

Search and link to new neighbors

Ask and get address from new neighbors

if Node.Address 6= Nil then

Forward new address to its children

else

Node.Address← Nil

Node.ChildrenAddresses← Nil

Forward flush message to all children

while Node.Address = Nil do

Search and link to new neighbors

Ask and get address from new neighbors

When a node receives a flush message, Algorithm 6 is applied.

Algorithm 6: Receiving a flush message.

OnFlushMessageReception(Node)
begin

Node.Address← Nil

Node.ParentAddress← Nil

Node.ChildrenAddresses← Nil

Forward flush message to all children

while Node.Address = Nil do

Search and link to new neighbors

Ask and get address from new neighbors

The second solution that we call the restore method is cheaper
because the addresses are kept but it is much more difficult to
implement in the case of a node failure. Indeed, it may be hard
for the new node to set up the same connections as those of the
failed node that it replaces. An alternative is to directly connect
the ancestor of a failed node to its descendants and to also connect
themselves together. Figure 2 shows in green the links that must be
created in order to circumvent the failed node n6 and to maintain
the correctness of the greedy routing algorithm.

In order to detect node failures and to trigger a recovery method,
nodes regularly send keep-alive messages to their neighbors. We
currently only have defined and implemented the flush method. If
the root node fails, the first of its living children (i.e., the child
having the foremost attributable address) becomes the root and
executes the flush method to renumber the overlay. It optimizes
the renumbering by attributing to any given node the same address
as its previous address if possible. The restore method is left for
future work.

n2

Ancestor

n6
n14n15

Siblings

Figure 2: Setting alternate overlay links to overcome the fail-

ure of a node.

In the second type of failure, if a link of the overlay graph not
belonging to the addressing tree fails or if a leaf node fails then the
addressing tree will remain valid and the greedy hyperbolic routing
algorithm will still work without error although the overlay paths
may be longer.

4.3.2 Alternate routing heuristics

When failures of the first type occur and while the addressing
tree is not restored yet (by the flush or the restore methods), the
packets being routed by the greedy algorithm may get trapped in
local minima. A local minimum for a packet is a node in which
the packet is currently in, which is given as the best next hop node
without being the destination. Local minima must be avoided
in order to temporarily ensure routing success while the tree is
being repaired. Any packet stuck in a local minimum is marked
for alternate routing (including its current distance to destination)
and is then routed by using one of these four alternate routing
solutions:

• Tree Ancestor: the packet is sent to the neighbor node which
is the next ancestor in the addressing tree until the reached
node is closer to the destination than the packet’s stored dis-
tance. If the packet reaches the root, it is deleted.

• Push Back: the packet is sent to the neighbor node whose
distance to the local minimum is the biggest. When in this
new node, the packet is then routed greedily as usual, unless
this node is also a local minimum. In this latter case, the
push back solution is applied again.

• Relaxed Greedy: the packet is sent to the neighbor node
whose distance to the destination is the smallest, without
looking at the current node. This solution was proposed by
Krioukov et al. in [24].

• Gravity-Pressure: the packet maintains a list of all the nodes
it has visited since it entered the alternate routing mode, as
well as the count number of visits to each node. This process
continues until the packet finds a node whose distance to the
destination is smaller than the packet’s stored distance. This
solution requires the storage of variable length information in
the packet header which may be difficult and cumbersome to
implement. This solution was defined by Cvetkovski et al. in
[15] and also used in [18].

5

As already noted in these solutions, when the packet reaches a node
whose distance to destination is strictly lower than the packet’s
stored distance, then the packet is unmarked and proceeds with
the regular greedy routing algorithm. It must be noted that the
first three solutions are only heuristics and therefore they do not
guarantee that the routing will succeed. The last solution is guar-
anteed to succeed if a path leading to the destination exists but it
may store up to O(n) information into the packet’s header. The
first three solutions may also induce loops. In order to avoid stor-
ing state information for solving loop issues, we currently use a
TTL mechanism to get rid of the looping packets. The first two
solutions are new and proposed by us while the last two solutions
have been already proposed and defined in the literature.

4.4 Analysis of the complexity costs

We provide here a brief analysis of the complexity costs of our so-
lution. In our solution, the nodes in the overlay connect to each
others as they wish, thus no strict topology is enforced. Any node
can have as many links as it wants with other nodes and one link
being of course a minimum to connect to the overlay. The only
requirement is that the embedded addressing tree which is a span-
ning tree of the overlay shall remain valid for the greedy routing
to work. Because any overlay will be at least (when no redundant
links exist) composed of its addressing tree, the distances between
any two nodes are expected to be of the order of O(log(n)) hops.
If the nodes have a large number of redundant links (i.e., links
not belonging to the addressing tree), the distances will be much
shorter. If the overlay topology takes the form of a scale free net-
work, the distances will be the order of O(log(log(n))) as shown
in [25]. Whatever the topology, the number of paths crossing any
one node (its congestion level) will have an expected probability
of at most O(log(n)/n).

Because we use a greedy routing, we do not construct and main-
tain routing tables and the number of states to maintain in any
one node is only equal to the number of its neighbor nodes which
does not grow with n thus giving a constant complexity cost be-
ing of the order of O(1). When a node joins the overlay, only
its neighbors (i.e., those having setup a link with the new node)
need to update their state information which bears a message cost
complexity independent of n. Similarly, when a node leaves the
overlay, only its neighbors need to update their state information
also giving a message complexity cost being of the order of O(1).

However, if the addressing tree is broken and can not be restored
in a reasonable amount of time, a partial readdressing of the net-
work can occur. All nodes having addresses derived from the failed
or unreachable node’s address will have to be renumbered. Let’s
assume that the addressing tree has a degree of q and a depth of
d and that each node in the network has the same probability of
failing. Because of the structure of the addressing tree, the max-
imum probability of a failing node being at depth lower or equal
to df (with df > 0 and df < d) is given by:

p =
Ndf

N
=

2− q(q − 1)df

2− q(q − 1)d
≈ (q − 1)df−d (7)

We can see that when df is small and d grows, the probability
tends towards 0. This is expected as most nodes are peripheral in
the addressing tree and their failures induce less renumbering. On
the contrary, if a node close to the tree center fails (i.e., df small),
then a large part of the tree will need to be renumbered. This latter
case is expected to be uncommon given the above probability. The
maximum number r of nodes to renumber will be given by:

r = (q − 1)d−df (8)

If df ≪ d, the message cost complexity (i.e., the renumbering
procedure) is expected to be of the order of O(qd) ≈ O(n).

Readdressing is needed to provide to the nodes the ability of
connecting to whatever nodes they want. If we force some nodes
to connect to some specific nodes for restoring the addressing tree
(as done by Chord, where a node’s IP address determines to which
nodes it must connect) then the message cost complexity is ex-
pected to be of the order of O(1) for a leaving node. Thus read-
dressing must be seen as a costly feature that can be opted out if
performance is desired over flexibility.

4.5 Analysis of the addressing capacity

As indicated in the previous sections, the address of a node is
composed of its coordinates in the hyperbolic plane. Thus an ad-
dress contains two real numbers. For practical reasons, we use the
usual hardware implemented float and double fundamental data
types but arbitrary precision arithmetic could also be used. In
order to evaluate the size of the addressing space, we have com-
puted the number of addresses for those two cases. We have set
the precision conservatively to 10−6 for float numbers and 10−12

for double numbers, to avoid the rounding errors involved by the
use of mathematical functions. Addresses have a length of 64 bits
with floats and 128 bits with doubles. Table 1 shows the number
of addresses available given the address size. Of course, as for any
addressing space, these values may not be reached if the addressing
tree is not fully filled. When using floats, the floating point pre-
cision is the limiting factor: when the degree increases, the points
get closer to the unit circle and their numbers is much reduced.
When using doubles, this phenomenon can not be seen because
the computation of the addresses has reached the memory limits
of our computer (16GB of RAM). The values vary with the degree
because of the way we stored the computed isometries. The values
in the third column would be much higher if more memory was
available and the precision would be the limiting factor. To con-
clude this analysis, we can see that using 128-bit addresses would
provide for an addressing capacity in the order magnitude of 108

which should be sufficient for overlay applications.

Table 1: Addressing capacity.

Degree float addresses double addresses

4 999753 345064143
8 333281 271535818

16 142609 263709515
32 66049 262677051
64 32065 286537546

128 16257 311691037
256 7937 359347909

5 Evaluation

In this section, we present results obtained by simulations that we
have carried out on various topologies to assess the performances
and the scalability of our addressing and routing solution based on
virtual hyperbolic coordinates.

5.1 Settings and parameters

In order to evaluate our overlay solution on various and realistic
topologies, we have used four Internet maps created from real In-
ternet data measurements obtained by nec [26] and CAIDA [27].
We have used one IPv4 75k-node map created in 2003, another
12k-node map created in 2004, one BGP4 34k-node map created
in 2010 and one IPv6 4k-node from 2003. Although these maps

6

are not recent, they exhibit typical power laws and small world
properties that have been found to be constant over time [28]. We
have also generated synthetic maps by using the nem software [29].
More precisely, we have generated maps of sizes 5k, 10k, 20k and
40k nodes, following the Erdös-Rényi model (ER), the Waxman
model (WM) and the Magoni-Pansiot model (MP). These three
models present different ways of creating edges as shown in Table
2. The floating point precision threshold is set to 10−9 for all sim-
ulations. In all simulations, the first node creating the overlay is
always randomly selected.

Table 2: Topology models for synthetic maps.

Model Edge probability p(u, v) Reference

Erdös-Rényi (ER) C [30]

Waxman (WM) β exp −d(u,v)
αL

[31]
Magoni-Pansiot (MP) f(d(u, v), deg(u), deg(v)) [32]

In Subsection 5.2 concerning the static topologies, we have con-
sidered that every node of the map is a member of the overlay.
Thus, the topology of the overlay is equal to the topology of the
map. The simulations are defined as static because the nodes are
always operational all the time and the packets are instantly deliv-
ered between the nodes with no errors. The advantage of running
static simulations is that the computation costs are low so we can
use all the nodes of the map as overlay members and thus assess
the scalability of our solution.

In Subsection 5.3 concerning the dynamic topologies, we have
considered that only some nodes at any given time are acting as
overlay nodes. The simulator’s engine manages a simulation time
and each overlay node starts at a given time for a given duration on
a random node of the map. The packets are delivered between the
nodes by taking the transmission time of the links into account.

5.2 Performance results of the routing

schemes on static topologies

In this section, we use for comparison a hierarchical addressing
scheme such as the one that we defined in [33] as well as the hy-
perbolic addressing scheme previously presented in Section 4. We
carry out simulations to measure the following metrics: average
path length (measured in hops), average stretch and average con-
gestion ratio. We study these metrics in function of the degree
q of the addressing tree which also corresponds to the maximum
number of addresses per level (i.e., the maximum label size) in the
hierarchical addressing scheme. Each point shown on the following
graphs is the average value of 105 runs and the associated standard
deviation values are plotted as error bars.

Figure 3 shows on a log-log scale the average path length ob-
served with the hierarchical addressing. The distance is computed
as the number of hops taken by the greedy routing. The smaller
is the distance, the better is the routing efficiency. We see that
the degree has a very small impact on the path length, reduc-
ing the path length a little when it is increased. The BGP4 map
has the smallest length (around 5), which is logical as it is a map
composed of Autonomous Systems where distances are small. The
40k-node Waxman map has the highest length (around 50), which
is explained by the fact that links are created with a probability
that decreases with the distance between the nodes. Thus, a 40k-
node map exhibits long path lengths. All the other topologies have
path lengths between 7 and 10, despite their sizes. This is due to
the existence of shortcuts found in small world graphs as well as
ER graphs (where links are randomly created thus covering long
distances).

 1

 10

 100

 4 8 16 32 64 128 256

N
um

be
r

of
 h

op
s

(m
ea

n)

Degree

IPv6-4k
IPv4-12k

BGP4-34k
IPv4-75k

ER-40k
MP-40k
WM-40k

Figure 3: Average path length in hops vs the degree of the

hierarchical addressing tree.

 1

 10

 100

 4 8 16 32 64 128 256

N
um

be
r

of
 h

op
s

(m
ea

n)

Degree

IPv6-4k
IPv4-12k

BGP4-34k
IPv4-75k

ER-40k
MP-40k
WM-40k

Figure 4: Average path length in hops vs the degree of the

hyperbolic addressing tree.

Figure 4 shows on a log-log scale the average path length ob-
served with the hyperbolic addressing. We see that the plots are
very similar to the ones using the hierarchical addressing. As we
have observed this phenomenon with all the other results, we only
show the plots of our hyperbolic addressing system on the follow-
ing figures. The 90th percentile path length values of all the plots
are all below 12, except for the WM-40k map were they are below
150.

Figure 5 shows on a log-log scale the average path length ob-
served with the hyperbolic addressing on various sizes of the syn-
thesized maps. The MP maps show no influence of the size on the
average path length. This is expected as these maps are built fol-
lowing an Internet-like topology and it as been shown in numerous
studies that the average distance is nearly constant [26]. The ER
and WM maps however, have path lengths that increase when the
size increases. As the plots are linear on a log-log scale, we can
deduce that the path length follows a power law with respect to
the map size (i.e., path = α× sizeβ). The ER maps have a much
smaller slope than the WM maps. Indeed, the latter maps have
long distances between far off nodes as long links are very scarce.
As ER maps have random links, they have more long distance
(shortcut) links and thus a lower path inflation given the size of
the map.

In order to better evaluate the efficiency of our greedy routing
scheme, we measure here the stretch of the routing paths. The
stretch is equal to the path length given by the greedy hyperbolic
routing divided by the shortest path length given by a global rout-
ing (i.e., the shortest possible path computed in a centralized way
by the Dijkstra algorithm). Figure 6 shows that the degree has an

7

 1

 10

 100

 1000 10000

N
um

be
r

of
 h

op
s

(m
ea

n)

Network size

ER
MP
WM

Figure 5: Average path length in hops vs overlay size when

using the hyperbolic addressing.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 4 8 16 32 64 128 256

P
at

h
st

re
tc

h
(m

ea
n)

Degree

IPv6-4k
IPv4-12k

BGP4-34k
IPv4-75k

ER-40k
MP-40k
WM-40k

Figure 6: Average stretch measured when using the hyperbolic

addressing.

impact on the stretch at low values. When the degree is between
4 to 16, the stretch gradually decreases when the degree increases.
At degree 32 and above, the stretch does not vary much anymore.
This can be explained by the fact that the degree is just the maxi-
mum number of addresses (minus 1) that can be attributed to the
children of a node, but they may not all be given. As expected,
the BGP4 map has the lowest stretch values. The ER maps on
the opposite have the highest values. This means that the hyper-
bolic addressing tree is not able to fully leverage those topologies
as they possess a lot more links compared to the other topologies.
For all the other maps and for degrees above 16, we can see that
the average stretch is around or below 1.4 which is good for a
greedy routing on large maps. The 90th percentile stretch values
for degrees above 16 of all the plots are all below 2.0, except for
the ER-40k map were they are below 2.5.

We observe the average congestion ratio in the nodes. Given
a set of source-destination pairs, we define the average congestion
ratio of a node as the number of paths linking those pairs crossing
through this node divided by the total number of paths linking
those pairs in the map. Figure 7 shows the average congestion
given the degree chosen. Unlike the stretch, these plots show that
the degree has a very weak influence on the congestion. We notice
that the IPv6 map has the highest congestion values (around 0.1),
closely followed by the WM-40k map (0.06). This is due to the
fact that these maps have fewer links (hence paths) with respect
to their sizes. All the other maps have congestion ratio values
around 0.01 which is rather low. The 90th percentile congestion
ratio values of all the plots are all below 0.1, except for the IPv6
map were they are below 0.3.

 0.001

 0.01

 0.1

 1

 4 8 16 32 64 128 256

C
on

ge
st

io
n

ra
tio

 (
m

ea
n)

Degree

IPv6-4k
IPv4-12k

BGP4-34k
IPv4-75k

ER-40k
MP-40k
WM-40k

Figure 7: Congestion measured when using the hyperbolic

addressing.

Results shown in this section have illustrated that our addressing
and routing solution can scale for overlays having sizes up to 75k
nodes. Measured path lengths between 7 to 10, stretches between
1.2 to 1.5 and congestion metrics between 0.1 to 0.01 exhibit values
that are in accordance with the analysis of Section 4.4 given most
topologies (except for Waxman graphs) and an implementation of
our solution should therefore be able to scale to at least an order
of magnitude of 105 nodes.

5.3 Performance results of the hyperbolic

greedy routing on dynamic topologies

Results shown in this section come from simulations carried out in
the OMNeT++ simulator [34, 35]. Our implementation is freely
available on the Web 1.

Each simulation runs for 2 hours, thus only measurements past
the beginning of the simulation (around 25 minutes or more) can
be considered as representing a steady state regime. The number
of new nodes trying to join the overlay each minute is dependent
on their random inter-arrival times which are set with a proba-
bility following an exponential distribution with λ = 0.25. Each
node has a random lifetime set with a probability following an
exponential distribution with λ = 2.10−3 which gives a median
value of 350 seconds and a 90th percentile value of 1000 seconds.
Given these values, this roughly amounts to 12% of the total of
the overlay nodes joining and leaving every minute. These param-
eters are chosen as such because they are typical of P2P live video
streaming overlays as shown in [36, 37, 38]. As each dynamic sim-
ulation lasts for 2 hours, this distribution of the session lengths
produces a lot of churn. The new nodes create overlay links with
other nodes by selecting those which are closer in terms of network
hops. The average size of the overlay in each of these simulations
is 2000 nodes. This value was the maximum we could use given
our hardware as these simulations have very high computation and
memory costs. We collect measurements every 100 seconds. Data
packets are sent by each node at a rate of 1 every 5 seconds. The
degree q of the addressing tree has been set to 5 because a low value
is more realistic for a real overlay where end-nodes typically don’t
have much bandwidth, although the stretch will be worse as shown
in the previous subsection. The routing success ratio for a given
node is equal to the number of data packets properly received by
their destinations divided by those sent by the node. Each point
shown on the following graphs is the average value of 10 runs and
the associated standard deviation values are plotted as error bars.
We only use here the hyperbolic greedy routing scheme presented

1http://www.labri.fr/perso/magoni/sr2d3/

8

 90

 92

 94

 96

 98

 100

 0 20 40 60 80 100 120

R
ou

tin
g

su
cc

es
s

ra
tio

 (
%

)

Time (mn)

Greedy
Tree

Relaxed
Pushback
Grav-Pres

Figure 8: Routing success ratio for the alternate heuristics.

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Time (mn)

Greedy
Tree

Relaxed
Pushback
Grav-Pres

Figure 9: Average path length in hops.

in section 4. When the addressing tree is broken because of nodes
leaving, the addressing tree is restored by using the flush method
described in Section 4.

Figure 8 shows the impact of the various alternate routing
heuristics on the routing success ratio. They do increase the suc-
cess ratio over the greedy routing algorithm used alone. How-
ever, because the parameters have already been optimized, the
gain brought by the alternate heuristics are not significant. The
Gravity-Pressure method, which has been set to store at most 32
crossed nodes, gives the best results. However, the other methods
nearly provide the same results. Results show that in this dy-
namic environment, the successful delivery of the packets can be
very close to 100% when using the flush method and the alternate
routing heuristics.

Figure 9 shows the average path length of the hyperbolic greedy
routing algorithm. The path length is measured as the number
of hops covered by the packet from the source node to the desti-
nation node. After the warm up phase, the path length remains
roughly constant in time at around 13 hops. We can see that val-
ues are larger than the ones measured on the static maps which
were around 8 to 10 hops because here only a subset of the nodes
are belonging to the overlay thus this statistically increases the
distances. Furthermore the churn also causes the paths to increase
as local minima may have to be circumvented. They is nearly no
difference between the various heuristics and the greedy routing
excepted around 40 to 60 minutes where the greedy algorithm out-
performs the others. This is to be expected as the alternate paths
will always be longer than the greedy ones. However the success
ratio will also be lower in the greedy case without heuristics.

Figure 10 plots the stretch of the paths given by the hyperbolic

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120

S
tr

et
ch

Time (mn)

Greedy
Tree

Relaxed
Pushback
Grav-Pres

Figure 10: Average stretch.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
on

tr
ol

 p
ac

ke
ts

 p
er

 s
ec

on
d

Time (mn)

Greedy
Tree

Relaxed
Pushback
Grav-Pres

Figure 11: Number of control packets emitted per second.

greedy routing. As before, we define the stretch as being equal to
the hyperbolic routing path length divided by the shortest path
length computed with the knowledge of the full topology. We ob-
serve that the stretch values are higher than in the static maps
because the paths are increased by the alternate routing heuris-
tics. Globally with any heuristic, the average stretch remains sta-
ble over time with values between 1.7 and 2 which is an acceptable
trade-off for the flexibility brought by an overlay greedy routing
solution.

Figure 11 shows the number of control packets emitted per sec-
ond. Once the warm up phase is over, the amount of control traffic
remains roughly constant over time at a rate of roughly 100 pack-
ets per seconds. Given that a control message has a size roughly
equal to 100 bytes, this translate to a control traffic of 80kbps for
a 2000-node overlay. This cost needs to be put in balance with the
above 95% routing success ratio and the high churn endured by
the overlay. We think that the control traffic has a reasonable cost
for properly sustaining the addressing tree. We see that various
heuristics have nearly no influence on the traffic. This is expected
as the heuristics do not rely on control messages although they can
be impacted by the duration of transitory local minima.

Results shown in this section have illustrated that our address-
ing and routing solution can reliably support a highly dynamic
overlay averaging a size of 2000 nodes. The observed success ra-
tio, path length, stretch and control traffic metrics remain stable
over time (after a transitory start up phase) which attests for the
proper maintenance of the overlay. The trade-off obtained between
the success ratio, stretch and traffic control seems promising for
exploitation in streaming overlay networks.

9

6 Conclusion

Providing advanced services to networked applications by using
overlays upon the Internet is a promising way of improving network
technologies. Because of its tessellation properties, the hyperbolic
plane through the use of the Poincaré disk model is well suited for
attributing virtual coordinates to overlay nodes thus enabling an
efficient greedy embedding and routing.

In this paper, we have proposed a P2P overlay solution relying
on the hyperbolic geometry for providing addressing and routing
services to all the overlay nodes. The algorithms used by our solu-
tion are fully distributed and dynamic thus ensuring the scalability
and reliability of the overlay.

Our analysis of the complexity costs has shown that our solution
is scalable with path lengths of the order of O(log(n)) hops. Our
simulation results have demonstrated in the case of static topolo-
gies that the greedy routing yields a reasonable path stretch and a
low congestion ratio for overlay sizes ranging from 4k to 75k nodes.
They have also shown in the case of dynamic topologies with 2k
nodes, that the routing success rate remains above 90% in the pres-
ence of churn and that path lengths still keep their O(log(n)) order
of magnitude.

Future work is already planned in three main directions:

• Concerning the design part, we need to investigate and design
the restore method, that is, how to insert a new node in place
of a failed node while preserving the neighboring addresses.

• Concerning the evaluation part, we need to simulate dynamic
overlays of bigger sizes (at least one more order of magnitude)
and with other sets of parameters (i.e., applications other than
streaming) and we need to study scenarios involving more
realistic data traffic models between the overlay nodes.

• Concerning a future implementation, we need to thoroughly
study the pipe-lining of transport layer connections arising
from the multi-hop routing in the overlay as it may affect the
overall throughput.

Although those many points need further studies, we believe
that the results shown in this paper are promising enough for start-
ing an implementation.

Acknowledgment

This research work is a part of the SR2D project which is sup-
ported by the Regional Council of Aquitaine under grant number
20091104001.

References

[1] Cassagnes C, Tiendrebeogo T, Bromberg D, Magoni D. Over-
lay addressing and routing system based on hyperbolic geom-
etry. Proceedings of the 16th IEEE Symposium on Computers
and Communications, 2011; 294–301, doi:10.1109/ISCC.2011.
5983793.

[2] Liu C, Wu J. Swing: Small world iterative navigation greedy
routing protocol in manets. Proceedings of the 15th Inter-
national Conference on Computer Communications and Net-
works, 2006; 339–350, doi:10.1109/ICCCN.2006.286299.

[3] Nguyen A, Milosavljevic N, Fang Q, Gao J, Guibas L. Land-
mark selection and greedy landmark-descent routing for sen-
sor networks. Proceedings of the 26th IEEE International Con-
ference on Computer Communications, 2007; 661–669, doi:
10.1109/INFCOM.2007.83.

[4] Tao S, Ananda A, Choon CM. Greedy face routing with face
id support in wireless networks. Proceedings of the 16th Inter-
national Conference on Computer Communications and Net-
works, 2007; 625–630, doi:10.1109/ICCCN.2007.4317887.

[5] Stavros A, Christos K, Ilias L, Evi P. An experimental study
of greedy routing algorithms. Proceedings of the International
Conference on High Performance Computing and Simulation,
2010; 150–156, doi:10.1109/HPCS.2010.5547143.

[6] Rao A, Ratnasamy S, Papadimitriou C, Shenker S, Stoica I.
Geographic routing without location information. Proceedings
of the 9th annual international conference on Mobile comput-
ing and networking (MobiCom), ACM, 2003; 96–108.

[7] Xing G, Lu C, Pless R, Huang Q. Impact of sensing coverage
on greedy geographic routing algorithms. IEEE Transactions
on Parallel and Distributed Systems 2006; 17(4):348–360, doi:
10.1109/TPDS.2006.48.

[8] Leong B, Liskov B, Morris R. Greedy virtual coordinates
for geographic routing. Proceedings of the IEEE Interna-
tional Conference on Network Protocols, 2007; 71–80, doi:
10.1109/ICNP.2007.4375838.

[9] Lukic M, Pavkovic B, Mitton N, Stojmenovic I. Greedy geo-
graphic routing algorithms in real environment. Proceedings of
the 5th International Conference on Mobile Ad-hoc and Sen-
sor Networks, 2009; 86–93, doi:10.1109/MSN.2009.11.

[10] Liu C, Wu J. Destination-region-based local minimum aware
geometric routing. Proceedings of the 4th IEEE International
Conference on Mobile Ad-hoc and Sensor Systems, 2007; 1–9,
doi:10.1109/MOBHOC.2007.4428646.

[11] Papadimitriou CH, Ratajczak D. On a conjecture related to
geometric routing. Theor. Comput. Sci. 2005; 344(1):3–14.

[12] Shavitt Y, Tankel T. On the curvature of the internet
and its usage for overlay construction and distance esti-
mation. Proceedings of the 23rd IEEE International Con-
ference on Computer Communications, 2004; 384–393, doi:
10.1109/INFCOM.2004.1354510.

[13] Shavitt Y, Tankel T. Hyperbolic embedding of internet graph
for distance estimation and overlay construction. IEEE/ACM
Transactions on Networking 2008; 16(1):25–36, doi:10.1109/
TNET.2007.899021.

[14] Kleinberg R. Geographic routing using hyperbolic space.
Proceedings of the 26th IEEE International Conference on
Computer Communications, 2007; 1902–1909, doi:10.1109/
INFCOM.2007.221.

[15] Cvetkovski A, Crovella M. Hyperbolic embedding and rout-
ing for dynamic graphs. Proceedings of the 28th IEEE Interna-
tional Conference on Computer Communications, 2009; 1647–
1655, doi:10.1109/INFCOM.2009.5062083.

[16] Westphal C, Pei G. Scalable routing via greedy embedding.
Proceedings of the 28th IEEE Conference on Computer Com-
munications, 2009; 2826–2830, doi:10.1109/INFCOM.2009.
5062240.

[17] Flury R, Pemmaraju S, Wattenhofer R. Greedy routing with
bounded stretch. Proceedings of the 28th IEEE Conference
on Computer Communications, 2009; 1737–1745, doi:10.1109/
INFCOM.2009.5062093.

[18] Papadopoulos F, Krioukov D, Boguna M, Vahdat A. Greedy
forwarding in dynamic scale-free networks embedded in hy-
perbolic metric spaces. Proceedings of the 29th IEEE Interna-
tional Conference on Computer Communications, 2010; 1–9,
doi:10.1109/INFCOM.2010.5462131.

10

[19] Zeng W, Sarkar R, Luo F, Gu X, Gao J. Resilient routing
for sensor networks using hyperbolic embedding of universal
covering space. Proceedings of the 29th IEEE International
Conference on Computer Communications, 2010; 1–9, doi:10.
1109/INFCOM.2010.5461988.

[20] Bai F, Munasinghe K, Jamalipour A. Accuracy, latency, and
energy cross-optimization in wireless sensor networks through
infection spreading. International Journal of Communication
Systems 2011; 24(5):628–646, doi:10.1002/dac.1181.

[21] Moitra A, Leighton T. Some results on greedy embeddings
in metric spaces. Proceedings of the 49th IEEE Symposium
on Foundations of Computer Science, 2008; 337–346, doi:10.
1109/FOCS.2008.18.

[22] Eppstein D, Goodrich M. Succinct greedy graph drawing in
the hyperbolic plane. Graph Drawing, Lecture Notes in Com-
puter Science, vol. 5417. Springer Berlin Heidelberg, 2009;
14–25, doi:10.1007/978-3-642-00219-9_3.

[23] Beardon AF, Minda D. The hyperbolic metric and geometric
function theory. International Workshop on Quasiconformal
Mappings And Their Applications, 2006; 9–56.

[24] Krioukov D, Papadopoulos F, Boguñá M, Vahdat A. Greedy
forwarding in scale-free networks embedded in hyperbolic
metric spaces. ACM Performance Evaluation Review 2009;
37(2):15–17.

[25] Cohen R, Havlin S. Scale-free networks are ultrasmall. Phys-
ical Review Letters Feb 2003; 90(5):058 701, doi:10.1103/
PhysRevLett.90.058701.

[26] Magoni D, Hoerdt M. Internet core topology mapping and
analysis. Computer Communications 2005; 28(5):494–506,
doi:10.1016/j.comcom.2004.09.002.

[27] University of California, San Diego,
http://www.caida.org/home. The Cooperative Associa-
tion for Internet Data Analysis.

[28] Magoni D, Pansiot JJ. Analysis of the autonomous system
network topology. ACM Computer Communication Review
2001; 31(3):26–37, doi:10.1145/505659.505663.

[29] Magoni D. Network topology analysis and internet modelling
with nem. International Journal of Computers and Appli-
cations 2005; 27(4):252–259, doi:10.2316/Journal.202.2005.4.
202-1540.

[30] Erdös P, Rényi A. On random graphs i. Publicationes Math-
ematicae 1959; 6:290–297.

[31] Waxman B. Routing of multipoint connections. IEEE Journal
on Selected Areas in Communications 1988; 6(9):1617–1622.

[32] Magoni D, Pansiot JJ. Internet topology modeler based on
map sampling. Proceedings of the 7th IEEE Symposium on
Computers and Communications, 2002; 1021–1027, doi:10.
1109/ISCC.2002.1021797.

[33] Shami K, Magoni D, Lorenz P. Autonomous scalable and re-
silient overlay infrastructure. KICS/IEEE Journal of Com-
munications and Networks 2006; 8(4):378–390, doi:10.1109/
JCN.2006.6182786.

[34] Pongor G. Omnet: Objective modular network testbed.
MASCOTS’93: Proceedings of the International Workshop
on Modeling, Analysis, and Simulation On Computer and
Telecommunication Systems, 1993; 323–326.

[35] Varga A. The omnet++ discrete event simulation sys-
tem. Proceedings of the European Simulation Multiconference
(ESM’01), 2001; 1–7.

[36] Cassagnes C, Magoni D, Chang H, Wang W, Jamin S. On the
Scalability of P2P-Based Push-Driven Live Streaming Sys-
tems. Proceedings of the IEEE International Conference on
Communications, 2010, doi:10.1109/ICC.2010.5502004.

[37] Lin CS. Enhancing p2p live streaming performance by balanc-
ing description distribution and available forwarding band-
width in p2p streaming network. International Journal of
Communication Systems 2011; 24(5):568–585, doi:10.1002/
dac.1173.

[38] Efthymiopoulos N, Tompros S, Christakidis A, Koutsopou-
los K, Denazis S. Enabling live video streaming services re-
alization in telecommunication networks using p2p technol-
ogy. International Journal of Communication Systems 2011;
24(10):1354–1374, doi:10.1002/dac.1250.

11

	1 Introduction
	2 Related work
	3 Hyperbolic geometry
	3.1 Properties of the hyperbolic plane
	3.2 Tiling of the hyperbolic plane
	3.3 The hyperbolic distance
	3.4 Isometries and generators

	4 Addressing and routing in the hyperbolic plane
	4.1 Distributed building of the addressing tree
	4.2 Greedy routing in the overlay network
	4.3 Coping with dynamic topologies
	4.3.1 Recovery methods
	4.3.2 Alternate routing heuristics

	4.4 Analysis of the complexity costs
	4.5 Analysis of the addressing capacity

	5 Evaluation
	5.1 Settings and parameters
	5.2 Performance results of the routing schemes on static topologies
	5.3 Performance results of the hyperbolic greedy routing on dynamic topologies

	6 Conclusion

