Fonctions multiplicatives, sommes d'exponentielles, et loi des grands nombres

Abstract : We provide essentially optimal, effective conditions to ensure that, when available, the Halberstam–Richert upper bound for the mean value of a non-negative multiplicative function actually furnishes the true order of magnitude. This is applied, in particular, to short sums of multiplicative functions over arithmetic progressions, to exponential sums with multiplicative coefficients, and to strong law of large numbers with multiplicative weights.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [17 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01281732
Contributor : Gérald Tenenbaum <>
Submitted on : Wednesday, March 2, 2016 - 4:31:07 PM
Last modification on : Wednesday, October 10, 2018 - 11:08:40 AM
Document(s) archivé(s) le : Friday, June 3, 2016 - 11:33:20 AM

File

Fm&LGN.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Gérald Tenenbaum. Fonctions multiplicatives, sommes d'exponentielles, et loi des grands nombres. Indagationes Mathematicae, Elsevier, 2016, 27, pp.590-600. ⟨10.1016/j.indag.2015.11.007⟩. ⟨hal-01281732⟩

Share

Metrics

Record views

117

Files downloads

111