
HAL Id: hal-01281425
https://hal.science/hal-01281425

Preprint submitted on 2 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sharing the road: the economics of autonomous vehicles
Raphaël Lamotte, André de Palma, Nikolas Geroliminis

To cite this version:
Raphaël Lamotte, André de Palma, Nikolas Geroliminis. Sharing the road: the economics of au-
tonomous vehicles. 2016. �hal-01281425�

https://hal.science/hal-01281425
https://hal.archives-ouvertes.fr


Sharing the road: the economics of autonomous vehicles
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Abstract

Automated cars are likely to change mobility substantially in the coming years. Much research

is developed in engineering, about legal and behavioral issues, but the economics of autonomous

vehicle remains an open area. In this paper, we consider a single-bottleneck situation, in which

the capacity of the freeway is divided between conventional and autonomous vehicles. Users of

conventional vehicles freely choose their departure time from home, while users of autonomous

vehicles collaborate with a central operator that ensures they do not queue. An individual-specific

cooperation cost is integrated in the modeling framework. We address the following key issues:

how should infrastructure be allocated to conventional and automated cars? Are there synergies

between the two fleets of vehicle? How should each infrastructure be tolled? Should the government

be a toll leader? Which regulations are needed?
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1 Introduction

Supply- and demand-oriented traffic management techniques are considered the main control ap-

proaches to deal with congestion, due to the lack of available space for new infrastructure and increase

of mobility needs. From the more supply-oriented to the more demand-oriented, these techniques

include: smart control of traffic signals at the network level (see for example Haddad et al., 2013;

Ramezani et al., 2015), dynamic usage of urban space (Eichler and Daganzo, 2006; Guler and Cassidy,

2012; Zheng and Geroliminis, 2013), integrated corridor management (Diakaki et al., 2000), prefer-

ential treatment of public transport, route guidance (Papageorgiou, 1990; Yildirimoglu et al., 2015),

congestion pricing (Vickrey, 1969) and car sharing. Given the huge number of private cars associated

with limited network capacity, supply-oriented techniques cannot fully eliminate congestion as the de-

mand for travel in the peak hours of cities is far beyond capacity. Properly integrating demand- and

supply-oriented policies remains a challenging direction that would require bringing together realistic

physical models of congestion, economic principles and user acceptability. Nowadays, new technolo-

gies and intelligent transport systems can further increase the capacity of the roads under the same

available space.

A promising direction is the integration of autonomous vehicles in city traffic. This integration is

significantly more difficult if conventional and automated vehicles coexist on the same network, as their

behaviours would obey different rules. Recently, under the Darpa Urban Challenge (DUC)(DARPA,

2008), different car manufacturers were competing in an environment where autonomous vehicles were

capable of driving in traffic, performing complex maneuvers such as recognize blockages, merging,

passing, parking and navigating through intersections. A new DUC challenge is under preparation.

While some experts might find this rather optimistic, various executives of many major industry

players and the US Secretary of Transportation have announced that fully autonomous cars will be

available on the market by horizons ranging from 2017 to 20251. Standardization is likely to take more

time but expert IEEE members forecasted in 2012 that by 2040, autonomous vehicles will account for

up to 70 percent of cars on the road (IEEE, 2012). The level of automation might improve gradually in

conventional vehicles, or fully automated vehicles might be directly deployed in limited but gradually

expanding contexts (International Transport Forum, 2015).

Eventually, autonomous vehicles will reshape our relation to mobility. Vehicle automation rep-

resents more than simply improved safety, higher speeds, higher densities and the possibility to use

commuting time more productively. The ability to drive itself also means that the same vehicle can

serve many different users throughout the day instead of staying idle and using parking space. In this

1See a list of links to interviews here: http://www.driverless-future.com/?page_id=384 (accessed on December 1,

2015).
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sense, autonomous vehicles are much more similar to a taxi service than to conventional vehicles. We

believe that the most important consequences of the rise of autonomous vehicles will not come from

the mere technical superiority of robot drivers, but from the transition from an ownership-oriented

mobility paradigm to one which is service-oriented.

The cost of congestion is often estimated to be in the order of 1% of the GDP in developed countries.

Technically, autonomous vehicles might be able to reduce this cost by reducing the headways between

vehicles and increasing the traveling speeds. However, purely capacity-oriented measures have been

shown to lead almost systematically to the induced demand phenomenon: as cheaper mobility encour-

ages more trips, congestion levels hardly change on the long term (Goodwin, 1996). Thus, capacity

management allows for more mobility but the only sustainable way to reduce congestion on the long

term is demand management. Vickrey (1969, 1973) and many other transportation economists have

argued for decades for congestion pricing, which is the conversion of the deadweight loss represented

by time spent waiting in congestion into a source of revenue for the collectivity. However, public

acceptability (H̊arsman and Quigley, 2010; Börjesson et al., 2012), heterogeneous travelers, lack of

realistic modeling of traffic dynamics (Geroliminis and Levinson, 2009) and technical difficulties have

almost systematically prevented such implementations. The emergence of a service-oriented approach

to mobility paves the way for a new approach of congestion management. From the customer point of

view, what matters is the generalized cost of traveling. If the central operator can guarantee a short

travel time and a reasonable arrival time at work, competition for a limited road capacity does not

need to translate into long waiting times at the bottleneck.

In this paper, we consider a single-bottleneck situation, in which the capacity of the freeway is

divided optimally between conventional and autonomous vehicles. Users of conventional vehicles freely

choose their departure time from home, while users of autonomous vehicles collaborate with a central

operator towards creating system optimum conditions for the entire freeway. The operator informs

autonomous car users when they should depart from home with a guarantee of no congestion cost. This

work addresses some of the aforementioned modeling and implementation limitations by considering

heterogeneous travelers, partially reserved lanes and the integration of a new scheduling service.

The details of the implementation of this scheduling service remain voluntarily vague at the moment,

but the analytical description of this work will also shed some light in this direction. For example,

departure times could be allocated randomly, on a first-registered basis, in an equitable way across all

cooperative users in the long term, or based on some auction (similarly to railway or airline companies’

strategies aimed at filling up their vehicles). However, we acknowledge that the obligation to follow

some schedule should be associated to a cost. This cost, named the “cooperation cost”, can be thought

of as the sum of a (positive) cost associated to scheduling and of a (possibly negative) cost that is

specific to the autonomous vehicles’ technology. The cooperation cost is assumed to be distributed
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among individuals but to be constant for one individual over time. This new cost then plays the

role of the selecting criterion: at equilibrium, users would choose to use autonomous vehicles only if

by doing so they can reduce their cost associated to travel time and schedule penalty by more than

their personal cooperation cost. Rather than “autonomous car users”, such users will be qualified as

“cooperative” while the others will be qualified as “independent”, both for brevity and because in

terms of congestion, the cooperative behavior matters more than technology. Note also that a similar

concept is used to distinguish planning users from not planning users in previous works related to

public transit (Tisato, 1992; Fosgerau, 2009). In other words, the service proposed can be considered

as some additional alternative between public transit and private vehicles: cooperative users have to

comply with the schedule but enjoy their own vehicle, have shorter travel times, and importantly, do

not waste time in connecting between different modes of transportation.

While this scheme might be difficult to implement with conventional vehicles, it might emerge nat-

urally as the trends toward autonomous vehicles and car-sharing converge. Indeed, the development of

autonomous vehicles is likely to lead to the emergence of separated road networks, to avoid interactions

with human drivers. In addition, car-sharing already imposes some form of cooperation since its users

often have to reserve in advance a vehicle for a given time. Thus, the convergence of these two trends

would create an ideal framework for the implementation of the scheme described.

As this is the first time that the economics of this scheme is studied, many configurations are

investigated, sometimes to conclude that some of them should simply not be implemented in the real

world. However, the study of the user equilibrium under optimal distribution of capacity and of the

social optimum revealed a great potential. It is found that, unlike in the classic theory with a single

bottleneck, these two regimes have very similar social costs. This finding is of great importance in

practice as significant benefits could be obtained by simply offering this service, without collecting any

toll. Furthermore, we prove analytically under mild conditions on the distribution of the cooperation

cost that if the capacity split is optimally chosen, the user equilibrium with partial cooperation Pareto-

dominates the case with no cooperation. Thus, our approach of cooperation would benefit from a

greater public acceptability while implementation would be eased by the absence of toll.

The remainder of this paper is structured as follows: Section 2 lays the background by introducing

the general assumptions, expressions of the different costs, and rapidly addresses the problem without

cooperation cost to provide some intuition. Then, the socially optimal demand and capacity splits

are studied in Section 3. It is shown in Section 4 that many results obtained for the social optimum

remain valid under user equilibrium and that the user equilibrium can be made socially optimal with

a simple constant toll (decentralization of the social optimum). It is also shown that unlike the social

optimum, the user equilibrium with a socially optimal capacity split Pareto-dominates the case with

no cooperation. The management of a route by a private operator is considered in Section 5 to
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assess the impact of profit-maximizing strategies on the social cost and finally, conclusions are drawn

and suggestions for future research are stated in Section 7. The impact of automation is addressed

separately at the end of each section.

2 Background

2.1 Impact of automation

While this paper is primarily concerned with the great potential of cooperation, automated vehicles

will also impact our transportation systems in many different ways that should not be ignored.

First, although there is no consensus on the scale of this change, automation will impact the

capacity of the road network. The impact should be globally positive on highways, with authors

estimating capacity improvements ranging from 20% to more than 100% (Varaiya, 1993; Faggio and

Silva, 2014). For urban networks, the impact is even more uncertain. Different research groups working

on intersection control showed that communication technologies could allow for reductions in delays at

intersections (Fajardo et al., 2012; Qian et al., 2014). On the contrary, Le Vine et al. (2015) argued that

users of autonomous vehicles would have a lower acceptance to accelerations and decelerations, which

would actually slow down traffic in urban areas. Progress in terms of safety could also significantly

improve the capacity overall. Indeed, since traffic incidents are responsible for approximately 10-30%

of the total congestion delay (see e.g. Skabardonis et al. (2003)) and since human error is the critical

factor in the vast majority of crashes, reducing crashes would also increase the average capacity of

roadways. Based on the literature above, various values of g between 1 and 2 are used for numerical

applications in this paper. Fortunately, the theoretical results obtained remain valid for any value of

the automation factor g > 0.5, which seems to be an extremely reasonable assumption.2

Second, automation would radically change the way transportation is experienced. While some

users will certainly always prefer conventional cars because they wish to keep their autonomy or

simply enjoy driving, others might appreciate not having to drive or might favor automated vehicles

for others reasons (e.g. safety or travel time reliability). This preference a priori for one mode of

transportation or the other is also captured here by the cooperation cost, introduced in Section 2.4.

Additionally, the value of the in-vehicle time might also be impacted as users can have other

activities instead of driving. If autonomous and conventional vehicles have to share the same road,

this is likely to push conventional users away from the common desired arrival time and to reduce

the cost of autonomous vehicle users (van den Berg and Verhoef, 2015). However, it is well known

that if all users are homogeneous, the individual costs do not depend on the value of the in-vehicle

2It can be easily shown that such a scheme cannot reduce the social cost if g is smaller than 1
2

- see Section 2.6.1.2.

5



time (Arnott et al., 1990b). In the case at hand, conventional and autonomous cars are physically

separated, so the users of each route are homogeneous and the value of in-vehicle time does not impact

the individual congestion cost. While the cost of the free-flow part of the trip might still depend on the

type of car used, this cost is independent of the traffic conditions and hence can also be captured by

the constant individual specific cooperation cost considered in this work3. The different components

of the individual costs are described in more details in Section 2.4.

2.2 Comparison with fast lanes

There are several evidences suggesting that partial space allocation can solve the acceptability issues

associated with congestion pricing. Empirically, the contrast between the ordeals experienced for all

full congestion pricing projects and the extremely rapid emergence of managed lanes (e.g. the High-

Occupancy Toll (HOT) lanes) in the US and around the world is unequivocal. On the theoretical side,

second-best tax rules for situations where not all links can be tolled have been studied extensively in

the static case (Lévy-Lambert, 1968; Verhoef, 2002) but fewer authors have looked at the dynamic case.

One important contribution on this topic was made by Fosgerau (2011), who showed analytically that

temporarily reserved lanes can be Pareto-improving with Vickrey’s bottleneck model, as the costs of

prioritized users can be reduced without increasing the cost of the others. The fundamental assumption

behind this result is that “when the capacity is not used, it is available for the nonprioritized travelers”.

Note that although the work of Fosgerau (2011) was not specifically focused on autonomous vehicles,

prioritized vehicles could be considered to be autonomous vehicles without requiring any additional

change (except maybe an automation factor similar to the variable g considered in our work).

Nevertheless, the present work has very specific characteristics that result from its focus on au-

tonomous vehicles. First, the scheduling of departures introduced here allows entirely removing queues

on the cooperative route. While this could also be achieved in theory with fast lanes by creating as

many levels of priority as users, this would either lead to a significant amount of wasted capacity during

transitions, or to a need for users to schedule, which would have to be associated to a cost, like in the

present work. Second, as autonomous vehicles might require specific road infrastructures, a permanent

capacity split was considered here. It is striking that this still allows for a Pareto improvement, while

fast lanes require real-time adaptive capacity allocation to have this property. Third, thanks to its

longer time horizon, the scheme proposed here permits reducing the costs of all users. Indeed, as the

purchase of a vehicle is a long-term decision, the coexistence of different vehicles or different types of

ownership requires considering the average cost over a long time horizon. Thus, unlike with fast lanes,

trips can be scheduled over a longer time period on the cooperative route than on the independent one,

3Note that this does not stand if the bottleneck capacity depend on the queue length, as for instance in urban networks

with a Macroscopic Fundamental Diagram representation (Geroliminis and Levinson, 2009).
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in such a way that all average individual costs are reduced. Finally, the arbitrary selection of the users

allowed on fast lanes is politically difficult and might even be regressive if it is based on the capacity

to buy some expensive vehicle. With scheduling however, users choose themselves to be cooperative

or independent based on their own cooperation cost. Hence, this selection is entirely endogenous.

2.3 Problem description

Let us consider a single origin/single destination situation with only one route and a bottleneck of

capacity S and a total (inelastic) demand N . This route can be divided into two parallel sub-routes,

which have bottlenecks at the same location as the original route and which are reserved for inde-

pendent and cooperative users, respectively. The proportion of the demand that is cooperative and

the proportion of the bottleneck capacity that is allocated to them are denoted by x and y ∈ [0, 1].

However, for the reasons given above, the effective capacity of the cooperative sub-route is likely to

differ as it is used by autonomous vehicles. Thus, a cooperative infrastructure with a “traditional-

vehicle-capacity” of yS would have an effective capacity of gyS, where the automation factor g would

characterize how much more/less efficiently the facility is used (g would be equal to 1 if the cooperative

service was implemented with conventional cars). Table 1 summarizes the notations utilized in the

paper.

In this work, the only heterogeneity considered among users is their cooperation cost, in case they

choose to be cooperative. This is in agreement with an important part of the literature that considers

only homogeneous users (Arnott et al., 1990b). In particular, all users value their time in the same way

and have the same desired arrival time. Thus, in a classic equilibrium with no cooperation, all users

should have the same cost. In order to have a similar property for cooperative users, it is assumed that

the decision to be independent or cooperative is taken only once for a long time horizon and that the

allocation mechanism is assumed to be fair on the long term, i.e. all cooperative users have in average

(over long enough periods) the same cost (excluding their personal cooperation cost). This can be

obtained for instance with a variable allocation of departure times or by compensating any difference

in schedule penalty by other means (financial for instance).

The long time horizon considered is supported by the fact that the vehicles are different for both

routes and that the purchase of a vehicle is only required for independent users. While a vehicle owner

could easily decide to stop being cooperative whenever she is given a departure time that she does

not like, a car-sharing user does not have this flexibility as she needs to have access to a vehicle. This

distinction matters as it means that the cooperative route could potentially be used longer than the

independent one, which would allow reducing the cost of independent users as well. Hence, it was

chosen in this work to consider cooperation as a long-term decision. Ability of cooperative users to
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Variables Unit Description

α $/h unit cost of travel time

β $/h unit cost of arriving early

γ $/h unit cost of arriving late

δ $/h , βγ
β+γ

t∗ h desired departure timall users aree from the bottleneck

S veh/h capacity of the bottleneck

N veh/h demand

x 0 proportion of the demand that is cooperative

y 0 proportion of the capacity that is reserved for cooperative users

g 0 automation factor (characterizes the impact on the effective capacity)

θ 0 type of user or (normalized) cooperation cost

θ̂ 0 critical value of θ separating cooperative from independent users

κ $ unit cooperation cost

f, F 0 probability (pdf) and cumulative (cdf) density function of θ

Θ 0 support of f

¯
θ, θ̄ 0 infimum and supremum of Θ

τ $ a toll imposed for each trip on the independent route

τpc, τpi, τgc, τgi $ toll imposed for each trip by the government (g) or the private

operator (p) on the cooperative (c) or on the independent (i) route

cc, ci $ individual congestion cost for cooperative and independent users

r 0 cost ratio equal to δN
κS

yo(θ̂), θ̂o(y), xo(y) 0 socially optimal values, given the variables in parentheses

θ̂(y), x(y) 0 user equilibrium values (no toll) for a given capacity split y

yp, xp, cpc , c
p
i profit-maximizing values

ye 0 , F ((1− 1
2g )r), capacity split such that at equilibrium x = y

SC(θ̂, y) $ social cost as a function of θ̂ and y

SC(x, y) $ social cost as a function of x and y

SC(θ̂) $ , SC(θ̂, yo(θ̂)), social cost function with a socially optimal capacity split

SC(y) $ , SC(θ̂o(y), y), social cost function with a socially optimal demand split

SCref , cref $ social and individual cost in the reference scenario (no cooperation)

S̃C 0 , SC
SCref ; the same tilde notation is used for other variables and it always

indicates the ratio of the variable divided by its value in the reference

scenario (no cooperation).

Table 1: Notations

8



Time

C
u
m
u
la
t
iv
e
n
u
m
b
e
r
o
f
u
s
e
r
s

Outflow

Desired arrivals

Inflow

N

N

S

δ
α
N

S

δ
β
N

S

δ
γ
N

S

t∗

Figure 1: Bottleneck dynamics for the independent route

partially deny the offered time of departure will be considered in the future, as the mathematical

derivations become tedious.

2.4 Individual costs

Keeping the original assumptions of Vickrey (1969) and Arnott et al. (1993), we consider that users

have a personal generalized cost related to congestion that is the sum of a travel time cost (assumed

to be proportional to the travel time with a coefficient α) and of a schedule penalty, that accounts for

the inconvenience of arriving too early or too late (proportional to the time early with coefficient β or

to the time late with coefficient γ). All users share the same value of α, β, γ and the same desired

arrival time t∗.

Then, since N users want to pass a bottleneck with capacity S, the duration the bottleneck is used

is given by N
S . If all individuals are independent and identical, then they must all have the same cost

at equilibrium. If there is no toll, this cost is the sum of a schedule penalty and a travel time cost

due to congestion. For the first and last users, there is no delay caused by congestion so the entire

cost is their schedule penalty. If the first user has an advance T1 and the last user a lateness TN ,

then T1 + TN = N
S and since they must have the same total cost βT1 = γTN . By combining these

two equations, the individual equilibrium cost can be expressed as the sum of a congestion cost and

of a fixed cost: c = δNS + αt0, where δ = βγ
(β+γ) and t0 is the free-flow travel time. Without loss of

generality, it is assumed from now on that t0 = 0, i.e. that there is no fixed cost. The dynamics are

illustrated in Fig. 1.

Thus, with the notations defined above, the equilibrium cost ci for a user of the independent route
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is:

ci =

 δN
S

1−x
1−y if y ∈ [0, 1[

∞ if y = 1.
(1)

Since their departure times are properly scheduled, cooperative users do not have any queuing time.

However, they still incur a schedule penalty cost, which is a uniformly distributed random variable

taking values between 0 and δN
S

x
gy . Thus, their average schedule penalty is δN

S
x

2gy . In addition,

cooperative users also incur a cooperation cost, which is a characteristic of each individual. The

probability density function (pdf) of this cost in the entire population is assumed to be known and to

verify the following condition:

Condition 1. The support of the probability density function of the cooperation cost is an interval

including 0, positive for at least some users, bounded below but not necessarily above.

Note that this condition allows the cooperation cost to be negative for some users. This might

happen for instance if travel time reliability is highly valued or if the technology used for cooperative

vehicles has significant advantages. Since the cooperation cost is the only source of heterogeneity,

users can be characterized by their individual cooperation cost, relatively to the entire population: an

individual of type θ has the cooperation cost κθ, where κ is referred to as the unit cooperation cost.

The pdf of the type θ is denoted by f , its support by Θ, and its infimum and supremum by
¯
θ and θ̄.

Condition 1 imposes that
¯
θ ∈ R− and θ̄ ∈ R+∗ ∪ {+∞}. With these notations, the average cost for a

cooperative individual of type θ is:

cc + κθ =

 δN
S

x
2gy + κθ if y ∈]0, 1]

∞ if y = 0,
(2)

where cc is referred to as the congestion cost for cooperative users.

2.5 Primary analysis of the social cost

Since individuals differ only by their cooperation cost, the cooperative population consists only of the

individuals with the smallest value of θ, both under user equilibrium and under social optimum. Thus,

there exists a critical type denoted by θ̂ such that all individuals of type θ < θ̂ are cooperative, while

all individuals of type θ > θ̂ are independent. Note that θ̂ might potentially be equal to
¯
θ or θ̄, in

which case all users belong to the same category. The proportion of the demand that is cooperative is

simply given by the cumulative distribution function (cdf) F of the cooperation cost θ evaluated at θ̂

(see Fig. 2):

x
(
θ̂
)

= F
(
θ̂
)
. (3)

By assumption (cf Condition 1), f(u) > 0 for all u ∈]
¯
θ, θ̄[ so x is a strictly increasing function of
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Figure 2: Example of a distribution of the cooperation cost among the population and separation

between cooperative and independent users

θ̂. Consequently, θ̂ → x
(
θ̂
)

is a bijection from [
¯
θ, θ̄] to [0, 1]. Then, the social cost is expressed as a

function of the demand and capacity splits by:

SC(θ̂, y) =



Nκ

θ̄∫
¯
θ

uf(u)du+ δN2

S
1
2g if (θ̂, y) = (θ̄, 1)

Nκ

θ̂∫
¯
θ

uf(u)du+ δN2

S
x2

2gy + δN2

S
(1−x)2

1−y if (θ̂, y) ∈ [
¯
θ, θ̄]×]0, 1[

δN2

S if (θ̂, y) = (
¯
θ, 0),

(4)

where x = x
(
θ̂
)

according to Eq. (3). The social cost is infinite for θ̂ 6=
¯
θ and y = 0 and for θ̂ 6= θ̄

and y = 1.

Besides the demand and capacity splits x and y, Eq. (4) also involves the exogenous variables N ,

S, κ and δ. To further simplify this expression and the expressions that are derived thereafter, we now

introduce the relative social cost, that is the social cost divided by the social cost under a reference

scenario. The reference scenario chosen here is the situation with no cooperation at all (x = 0, y = 0).

In this case, the social cost is simply SCref = δN2

S . Similarly, we will also consider individual costs

relative to the individual cost in the reference scenario cref = δN
S and the duration the network is
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used, relative to N
S . With this transformation, the relative social cost is given by:

S̃C(θ̂, y) ,
SC(θ̂, y)

SCref
=



1
r

θ̂∫
¯
θ

uf(u)du+
1

2g
if (θ̂, y) = (θ̄, 1)

1
r

θ̂∫
¯
θ

uf(u)du+
x2

2gy
+

(1− x)2

1− y
if (θ̂, y) ∈ [

¯
θ, θ̄]×]0, 1[

1 if (θ̂, y) = (
¯
θ, 0),

(5)

where r = δN
κS . Note that r has a physical interpretation: it represents the ratio of the congestion costs

(if all users are independent, δNS is the individual cost, i.e. the sum of the schedule delay penalty and

of the travel time cost) divided by the unit cooperation cost. Note that the relative social cost is only a

function of the capacity y, the automation factor g, the cost ratio r and the critical cooperation cost θ̂.

If both the demand split and the capacity split are optimally chosen, the relative social cost depends

only on g and r. Similarly, it is shown in Section 4 that the demand split under user equilibrium is

only a function of g, r and y and that hence, the relative social cost under user equilibrium with a

socially optimal capacity split is also a function only of g and r.

We will also denote by S̃C the relative social cost functions that use other input arguments.

However, to avoid any ambiguity, the relevant input arguments will always be mentioned. For instance,

since there is no cooperation cost in Section 2.5, we will use the function S̃C(x, y). Later in this work,

the functions S̃C(θ̂) = S̃C(θ̂, yo(θ̂)) and S̃C(y) = S̃C(θ̂o(y), y) will be used to refer to relative social

cost functions of one variable only, assuming that the other split is fixed (or optimal).

2.5.1 Optimal capacity split with fixed demands

Before studying the impact of the demand split at the social optimum or at the user equilibrium, one

can consider the problem of determining the socially optimal capacity, given an arbitrary demand split.

Such a problem would occur for instance if the cooperation scheme was implemented with autonomous

vehicles of a given fleet size. Since the demands for both sub-networks are fixed, the cooperation cost

plays no role in this problem. However, this result will be useful when both the capacity and demand

splits will be optimized, in Section 3.2. Since the demand split is fixed, S̃C is considered in this section

as a function of y only.

Proposition 1. For any given demand split x ∈ [0, 1], there exists a unique capacity split that mini-

mizes the social cost. It is independent of the cooperation cost and congestion parameter δ, and it is

given by:

yo(x) =
x√

2g(1− x) + x
. (6)
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This capacity split is continuous and strictly increasing on [0, 1]. The cooperative route is used
√

2g

times longer than the independent route.

Proof. If x = 0 (or x = 1), the socially optimal capacity split is trivially given by yo = 0 (resp. yo = 1).

Now, if x ∈]0, 1[, the choices y = 0 and y = S lead to infinite values of the social cost. Thus, we

can restrict the search to y ∈]0, 1[. By differentiating Eq. (5), we get for y ∈]0, 1[:

dS̃C

dy
(y) = − x2

2gy2
+

(1− x)2

(1− y)2
.

Thus, dS̃C
dy (yo) = 0 is equivalent to: √

2g
1− x
1− yo

=
x

yo
, (7)

so that we obtain Eq. (6) for x ∈]0, 1[.

It is trivial to show that this solution is interior for x ∈]0, 1[ and that d2S̃C
dy2 (y) is strictly positive

for y ∈]0, 1[. Therefore, the social cost reaches its global minimum for y = yo(x).

Finally, the function yo is clearly continuous on ]0, 1[ while:

lim
x→0+

(yo(x)) = 0 = yo(0) ; lim
x→1−

(yo(x)) = 1 = yo(1).

Hence, yo is continuous on [0, 1].

As highlighted in Proposition 1, Eq. (7) has the intuitive interpretation that the cooperative route

is used
√

2g times longer than the independent route. Since the total cooperation cost is a constant,

the social optimum simply minimizes congestion costs and as routes are always either used at capacity

or not used at all, the duration a route is used is simply the demand to capacity ratio. It is natural

that the social optimal requires a higher ratio on the cooperative route as there is no queueing, only

schedule penalties.

2.6 No cooperation cost

The cooperation cost introduced in this work has important consequences on the user equilibrium and

social optimum. In order to better highlight the need for such a cost, we first address such a system

with a cooperative subnetwork without cooperation cost (κ = 0). This intermediate step is also useful

for comparison purposes and gives a quick overview of the problem with few calculations.

2.6.1 Social optimum

The objective of this first sub-section is to determine the smallest social cost that can be achieved,

when only the demand split or both the capacity and demand splits can be set optimally. Besides their

theoretical interest, these two problems also correspond to practical situations. On one hand, at the
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tactical level, transportation authorities often consider the capacities of different facilities as given and

seek to optimize the demand only. On the other hand, the strategic level involves not only demand

management but also longer term decisions such as the construction/reconversion of new/existing

roads. Thus, these two mathematical problems are representative of real world challenges, which make

the insights derived here of practical importance.

2.6.1.1 Optimal demand split with fixed capacities

With fixed capacities, the social cost is only a function of the demand split (and of the exogenous

factors g and r). For y = 0 (resp. y = 1), the socially optimal demand split xo(y) is trivially xo = 0

(resp. x = 1).

Consider now y ∈]0, 1[. By differentiating Eq. (5), we get that the optimal demand split xo should

satisfy dS̃C
dx (xo) = 0, i.e.

xo

gy
− 2(1− xo)

1− y
= 0, (8)

or

xo =
2gy

1 + (2g − 1)y
. (9)

Note that Eq. (8) imposes that the ratio of demand to capacity (or equivalently, the duration the

route is used) is twice as big for the cooperative route as for the independent one. This is consistent

with the classical results of Arnott et al. (1990b), who showed that queueing time represents exactly

half of the social cost at equilibrium when all users are perfectly identical. Cooperation removes

queuing and as by definition marginal costs must be equal on both routes at the social optimum, the

cooperative route should be used twice as long as the independent one.

2.6.1.2 Socially optimal demand and capacity splits

Instead of considering S̃C as a function of two variables, we can take advantage of one of the closed-

form expressions giving the socially optimal value of one split as a function of the other. Let us consider

for instance the function S̃C(y) that associates to a capacity split its social cost assuming a socially

optimal demand split (see Eq. 5):

S̃C(y) =
(xo)2

2gy
+

(1− xo)2

1− y
.

By using Eq. (8):

S̃C(y) =
(xo)2

2gy
+ (1− xo) x

o

2gy
=

xo

2gy
.

Finally, by using the expression of xo from Eq. (9):

S̃C(y) =
1

1 + (2g − 1)y
.
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For g > 1
2 , S̃C(y) is a decreasing function of the capacity split y. Hence, the social cost is minimized

for y = 1, i.e. when cooperation is the only alternative (and then xo = 1).

2.6.2 User equilibrium

Proposition 2. For any given capacity split, the socially optimal demand split and the equilibrium

demand split are identical if there is no cooperation cost.4

Proof. At equilibrium, no user can reduce her cost by changing her decision. If only one network is

used, the cost on this network is necessarily positive while the other network has zero cost for users

with no cooperation cost (i.e. as assumed in this section). Hence, at equilibrium both sub-networks

should be used and the equilibrium demand split Ne
c should satisfy the following condition:

cc = ci ⇔
x(y)

2gy
=

1− x(y)

1− y
, (10)

which is also the equation of the social optimum (Eq. (8)).

Thus, without a cooperation cost, both the social optimum and the user equilibrium lead to a

system that is entirely cooperative, with no alternative (see Section 2.6.1.2). Of course, such a system

would be unacceptable for the users who wish to keep the control of their departure time. We will see

in Section 3 how these results are affected by the introduction of a cooperation cost.

2.7 Specific distributions and numerical values

An effort was made throughout this work to keep a general scope and assumptions about specific

distributions or numerical values were avoided when appropriate. However, some analytical expressions

and the graphical illustrations require assumptions. When necessary (and it is always mentioned),

a uniform distribution is assumed for the cooperation cost. Some numerical applications are also

replicated with a log-normal or an exponential distribution with the same expected value.

Based on Eq. 5, the results depend only on dimensionless relative quantities that are used in all

graphical illustrations. However, some intuition about reasonable values of r = δN
κS is critical to assess

the scale of the benefits that should be expected. The numerical evaluation of the reference individual

cost δN
S is relatively common. Typical values of earliness (β = 0.5α) and lateness (γ = 2α) (Small,

1982) lead to δ = βγ
β+γ = 0.4α, where α is the value of time at home while N

S is simply the length of

the peak period (∼ 2h for instance).

Concerning the scale κ of the cooperation cost, mode choice models can suggest an educated guess

since most of them also require that users plan their trips in advance (e.g. carpooling, buses with long

4Arnott et al. (1990a) found the same result for two simple routes in parallel (with non-cooperative users).
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headways, trains, and planes). Bhat (1995) for instance proposed different models for mode choice

between cities, including a multinomial logit. The ratio of the mode-specific parameter and of the

parameter associated to in-vehicle travel time leads to the following estimates: the train has a mode-

specific cost that is approximately equal to the cost of 51 min of travel time and the mode-specific cost

of taking the plane is about 62 min (compared to the car). However, this intrinsic utility does not only

account for the cooperation cost but also for other characteristics of the mode which penalize public

transit (e.g. comfort). Thus, the cooperation cost would most likely have a smaller value if personal

vehicles were used, say around 30 min. If the time unit is 1h, then the average value of κθ should be

around 0.5α so with a uniform distribution on [0, 1], this leads to κ = α. Altogether, these estimates

lead to the best guess r = δN
κS ∼ 0.8.

3 Social optimum

Similarly to what was done in Section 2.5 for the case κ = 0, the aim of this section is to determine the

configuration that leads to the smallest possible social cost when (i) only the demand split varies, and

(ii) when the capacity split varies as well. As explained in Section 2.5.1 (Proposition 1), the case with

fixed demand split does not depend on the cooperation cost and thus does not need to be addressed

again.

3.1 Optimal demand split with fixed capacities

In this part, the relative social cost is seen as a function of the demand split only since the capacity

split is fixed. However, since the cooperation cost plays a crucial role in this section, we will consider

S̃C as a function of θ̂ rather than x.

Before studying potential optimal demand splits, we state the following technical lemma, whose

proof is given in A and that will be useful for different propositions.

Lemma 1. Let G(θ̂) = θ̂ + aF (θ̂) − b, where a, b > 0 and F denotes the cumulative distribution

function (cdf) of the cooperation cost. Then G(θ̂) = 0 has a unique interior solution denoted by θ̂sol

if and only if θ̄ + a − b > 0. If the probability density function f is continuous, then θ̂sol is a locally

continuous and differentiable function of a and b, decreasing with a and increasing with b.

Proposition 3. For a given capacity split and for a cooperation cost verifying Condition 1, there

exists a unique demand split that minimizes the social cost. If y ∈]0, 1[, then the optimal demand split

is interior and is the unique solution of

1

r
θ̂o +

1 + (2g − 1)y

gy(1− y)
x(θ̂o)− 2

1− y
= 0. (11)
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In addition, θ̂o is a continuous function of the automation factor (for g ∈ [ 1
2 ,+∞[), the capacity

split (for y ∈ [0, 1]) and the cost ratio (for r ∈]0,+∞[), increasing with g and y. It increases (resp.

decreases) with r if θ̂o > 0 (resp. θ̂o < 0).

Proof. If y ∈ {0, 1}, there is only one demand split that yields a finite social cost, so the result is

trivial. Let us now consider y ∈]0, 1[. By differentiating Eq. (5): ∀θ̂ ∈ Θ,

dS̃C

dθ̂
(θ̂) =

1

r
θ̂f
(
θ̂
)

+
x
(
θ̂
)

gy
f
(
θ̂
)
−

2(1− x
(
θ̂
)

)

1− y
f
(
θ̂
)

=
1

r
f
(
θ̂
)
G(θ̂),

where we define:G(θ̂) , θ̂ + r
(

1
gy + 2

1−y

)
x
(
θ̂
)
− 2r

1−y . G has the form of the function required by

Lemma 1 with:

θ̄ + a− b = θ̄ + r

(
1

gy
+

2

1− y

)
− 2r

1− y
= θ̄ +

r

gy
> 0.

Thus, there exists a unique demand split θ̂o ∈]
¯
θ, θ̄[ satisfying G(θ̂o) = 0, i.e. satisfying Eq. (11).

Finally, since
f(θ̂)
r > 0, ∀θ̂ ∈ Sθ, dS̃Cdθ̂ (θ̂) has the same sign as G(θ̂), i.e. dS̃C

dθ̂
(θ̂)>=< 0 for θ >=< θ̂

o so S̃C

reaches its global minimum for θ̂ = θ̂o.

The second part of Lemma 1 implies that θ̂o is locally continuous and increases with g. Since this

is valid for every g ∈ [ 1
2 ,+∞[, θ̂o is continuous and increasing everywhere. Similarly, by the implicit

function theorem, θ̂o is continuous and increases (resp. decreases) with r on ]0,+∞[ if θ̂o > 0 (resp.

θ̂o < 0) and is continuous and increases with y on ]0, 1[. To generalize this last result to the close

interval y ∈ [0, 1], note first that θ̂o =
¯
θ for y = 0 and θ̂o = θ̄ for y = 1. Then Eq. (11) can be

rewritten as: x(θ̂o)
gy(1−y) = − θ̂

o

r −
2g−1
g(1−y)x(θ̂o) + 2

1−y . As the left-hand term is clearly positive, so must be

the right-hand term. In addition, the right-hand term is bounded above by −¯
θ
r + 2

1−y . Consequently,

x(θ̂o) is non-negative and bounded above by gy(1 − y)
[
−¯
θ
r + 2

1−y

]
, and thus converges toward 0

when y tends towards 0, which ensures continuity in 0. Similarly, Eq. (11) can also be rewritten as

1 − y = r
θ̂o

[
2− 2x(θ̂o)− 1−y

gy x(θ̂o)
]
. The left-hand term clearly converges towards 0 when y tends

towards 1, so the right-hand term must do so as well. The right-hand term however is the product of

two terms that are related: if the first is small (i.e. θ̂o is big), then y must be close to 1 so the second

term must be small as well, and vice versa. Thus it is trivial to show that both terms tend towards 0,

or, equivalently, that y converges towards 1.

Note that this is consistent with the results of Section 2.6.1.1 as Eq. (11) reduces to Eq. (9) with

no cooperation cost.
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3.1.1 Special case: uniform distribution

In order to find a closed-form expression of θ̂o, we assume a uniform distribution of the type θ:

f(θ) = 1 if θ ∈ [0, 1] and f(θ) = 0 elsewhere. Hence, ∀θ̂ ∈ [0, 1], x = θ̂ and Eq. (11) has an explicit

solution given by gy(1− y)θ̂o + r(1 + (2g − 1)y)θ̂o = 2rgy, or

θ̂o =
2rgy

gy(1− y) + r(1 + (2g − 1)y)
. (12)

It can be easily verified that this solution is interior, i.e. that ∀y ∈]0, 1[, θ̂o ∈]0, 1[. The expression of

θ̂ given by Eq. (12) is plotted for different values of r in Fig. 3a. In agreement with Proposition 3, θ̂o

increases with y, regardless of the value of r, and with r, regardless of y.

Note that since x = θ̂, dividing Eq. (12) by the capacity split y yields the demand to capacity ratio

for the cooperative route, i.e. the duration this route is used (relatively to the reference scenario).

Similarly, the duration the independent route is used is given by:

1− x
1− y

=
1− θ̂o

1− y
=

gy + r

gy(1− y) + r(1 + (2g − 1)y)
.

The optimal demand split is illustrated as a function of the capacity split y for different cost ratios r in

Fig. 3a. As argued in Proposition 3, the optimal demand split increases with both r and y. Note that

besides the very specific cases where the network is entirely allocated to one route (x = 0 and x = 1),

the curves for different cost ratios r are quite different: those associated to small values of r have a

S shape while those associated to large values of r appear to be concave. Nevertheless, all curves are

similar for the range of small capacity splits y, which is a natural consequence of the limited number

of cooperative users. Indeed, as only the users with almost no cooperation cost are cooperative when

the capacity split y is small, such situations can all be approximated by the case with no cooperation

studied in Section 2.6.1.1. Hence, as the independent users have a demand to capacity ratio close to

1, the demand to capacity ratio of the cooperative user (i.e. the slopes of the curves here) must tend

towards 2 as the capacity split y tends towards 0, regardless of the cost ratio r.

The relative durations are represented in Figs. 3b. While Fig. 3a highlighted the similarity between

all cases and the case with no cooperation for small capacity splits, Fig. 3b shows that this similarity

also exists for larger capacity splits, but only for large values of the cost ratio r, i.e. when cooperation

is relatively less costly. Indeed, for r = 2, the cooperative sub-route is used approximately twice longer

than the independent sub-route, regardless of the capacity split. However, for other values of r, the

ratio between these two durations is highly variable, which suggests that the network might not be

optimally used.

In order to assess the social impact of the scheme proposed, the relative social cost obtained for the

optimal demand split is plotted in Fig. 3c for different values of r. Fig. 3c shows that even with an
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Figure 3: Graphical representations with a uniform distribution of the cooperation cost of (a) the

critical cooperation cost, (b) the relative durations each sub-route is used and (c) the relative Social

Cost as functions of the capacity ratio for different values of r in the social optimum case (g = 1).

optimal demand split, some values of the capacity split may lead to a social cost that is much higher

than the social cost in the reference case.

3.2 Optimal demand and capacity splits

We now take a longer-term perspective and look for the pair of demand and capacity splits that

minimizes the social cost. Unlike in the case with no cooperation cost, there is no general closed-form

relationship between a capacity split and the socially optimal demand split. However, we will build on

the relationship defined in Eq. (6), that relates a demand split to the corresponding socially optimal

capacity split. Thus, we consider here the function S̃C
(
θ̂
)
, S̃C

(
θ̂, yo

(
x
(
θ̂
)))

, where we use the

same notation with a slight abuse of notation. Before looking for potential minima, we first show the

continuity of this function.

Lemma 2. The relative social cost with a socially optimal capacity split S̃C
(
θ̂
)

is a continuous

function on [
¯
θ, θ̄] and, with x = x

(
θ̂
)

,

S̃C(θ̂) =
1

r

θ̄∫
¯
θ

uf(u)du+

(√
2g(1− x) + x

)2
2g

. (13)

Proposition 4. If the cooperation cost satisfies Condition 1, there exists a unique pair of demand and

capacity splits that minimizes the social cost. This solution is interior if and only if r < θ̄ g√
2g−1

. In

this case, the demand split x
(
θ̂
)

is given implicitly by:

1

r
θ̂ +

(√
2g − 1

)2
g

x
(
θ̂
)
−
(√

2g − 1
)√2

g
= 0. (14)
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Both the demand split x and capacity split y increase with the cost ratio r and with the automation

factor g. If r ≥ θ̄ g√
2g−1

, at the social optimum all vehicles should cooperate.

Thus, there is an interior solution if and only if the maximum cooperation cost within the population

(κθ̄) is more than
√

2g−1
g times the individual cost when all users are independent. Since

√
2g−1
g ∈]0, 0.5]

for g > 0.5, the following sufficient condition holds:

Corollary 1. If the maximum cooperation cost within the population is greater than half the individual

cost with no cooperation (κθ̂ > δN
2S ), the optimal demand and capacity splits are interior.

The assumption included in Condition 1 that the closure of the support of the pdf of the cooperation

cost includes 0 is critical here. Thanks to this assumption, allocating at least some part of the capacity

to cooperative users is always socially beneficial. Else, allocating capacity to cooperative users would be

detrimental unless there is at least some minimum level of congestion, which would slightly complicate

the derivations and properties. However, as for homogeneous independent users waiting time represents

in average half the individual congestion cost, it suffices that some users have a cooperation cost smaller

than half the individual congestion cost without cooperation to ensure that the optimum features a

cooperative route.

3.2.1 Special case: uniform distribution

Proposition 5. If the cooperation cost is uniformly distributed on [0, 1] and if r < θ̄ g√
2g−1

, then the

socially optimal demand and capacity splits are given by:

θ̂o =
r
√

2g
(√

2g − 1
)

g + r
(√

2g − 1
)2 (15a)

yo = r

√
2g − 1

g
. (15b)

Proof. In the case of a uniform distribution and assuming that the optimum is interior (i.e. θ̄ >

r
√

2g−1
g ), the optimality condition is H(θ̂o) = 0, so

θ̂ +
r

g

((√
2g − 1

)2

θ̂ −
(

2g −
√

2g
))

= 0,

which is equivalent to Eq. (15a). Then, with a uniform distribution Eq. (6) can be rewritten:

yo =
θ̂o

√
2g − (

√
2g − 1)θ̂o

,

and by using Eq. (15a) for θ̂o, we obtain the required expression Eq. (15b).

Note that the absolute value of the capacity that is reserved to cooperative users is equal to

δN
κ

√
2g−1
g and does not depend on S. Alternatively, the criterion for the existence of an interior
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solution in Proposition 4 can be rewritten as S > δN
κθ̄

√
2g−1
g , i.e either the total capacity is too small

and 100% of the capacity is reserved for cooperative users, or the total capacity is big enough and

the capacity that is reserved for cooperative users does not depend on S. This surprising result is the

outcome of two processes canceling out: as the total capacity increases, the proportion of the capacity

that is reserved to cooperative users y decreases (the total peak hour is shorter, so users have less

reasons to bear the cooperation cost). With a uniform distribution, the product of the two processes

is constant but numerical applications with other distributions of the cooperation cost show that this

result should not be expected in general.

The relative social cost also has a rather simple expression for a uniform distribution of the coop-

eration cost on [0, 1]. Indeed, Eq. (13) becomes:

S̃C
(
θ̂
)

=
θ̂2

2r
+

(√
2g
(

1− θ̂
)

+ θ̂
)2

2g
.

Then, by combining it with the expression of the optimal demand split in Eq. (15a), one obtains the

expression of the optimal social cost:

S̃C
o
(
θ̂o
)

=
g

g + r
(√

2g − 1
)2 . (16)

The socially optimal demand and capacity splits obtained with the Eqs. (15a) and (15b) are plotted

as functions of the cost ratio r in Fig. 4a, together with the relative social cost and the ratio 1−S̃Co

1−S̃Cmin
1
y ,

where S̃C
min

is the minimum relative social cost that can be obtained with such a capacity (with no

cooperation cost) and S̃C
o

is given by Eq. (16). As g is the only exogenous parameter here, this graph

has a very general scope. It shows that for the entire spectrum of possible states, the socially optimal

capacity split y and the demand split x are relatively close, although in most cases the cooperative

users have a demand to capacity ratio that is slightly bigger than on the independent route (y < x).

Note that independent users are never worse off in such conditions. Note as well that the relative social

cost is a decreasing function of r and although it is not visible here, it converges to 0.5 when r tends

towards infinity 5. This is conform to intuition since for given δ, N , and S, reducing the cooperation

cost (κ) reduces the cost of cooperative solutions. Finally, the ratio 1−S̃Co

1−S̃Cmin
1
y is a good indicator of

performance of the system proposed. 1 − S̃C
min

represents the ideal gain that could be obtained if

there was no cooperation cost and all the capacity was used. Thus, the ratio 1−S̃Co

1−S̃Cmin represents how

close the system gets from this ideal gain and to be fair, it is divided by the capacity split y that is

used to obtain this gain. Hence, this ratio allows us to answer to the following question: if the optimal

capacity split is n% of S, is the gain in terms of social cost more or less than n% of the ideal maximum

5This is the classic result for Vickrey’s bottleneck model that can be obtained without cooperation cost and with a

fine toll on all the network - cf Arnott et al. (1990b).
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Figure 4: Representations as functions of the cost ratio r for the case of a uniform distribution with

g = 1 of: (a) the socially optimal demand and capacity splits as well as the relative social cost and

the ratio 1−S̃Co

1−S̃Cmin
1
y , where SCmin is the relative minimum possible social cost, obtained without any

cooperation cost (b) the decomposition of the relative social cost obtained for the social optimum into

strict congestion costs and costs of cooperation and (c) the relative individual cost of independent

users and the minimum and maximum relative individual costs of cooperative users.

gain with no cooperation cost? Because of the cooperation cost, the gain is smaller than n%, but

graphically, it is never smaller than approximately 0.6n%.

Second, the different components of the relative social cost are displayed in Fig. 4b. Note that for

small values of r, the part of the cost that is not due to cooperation (i.e. the schedule penalty and the

waiting time:
∑
cc+

∑
ci

SCref ) is reduced almost twice as much as the total social cost S̃C
o
. Since there are

external costs that are related only to the presence of vehicles on the road (e.g. pollution and travel

time variability) that are not taken into account here, this indicates that the real gain in social cost

will be even higher in real conditions.

Finally, Fig. 4c shows the relative individual costs of independent users and of the extreme coop-

erative users (
¯
θ = 0 and θ̂). As expected, these costs decrease with r. More remarkably, the relative

individual cost for some cooperative users is greater than 1 for small values of r, i.e. the individual

cost for these users is bigger than in the reference case. In such a situation, some cooperative users

are “sacrificed” to reach the social optimum. This statement is confirmed by the analysis of the cost

for independent users (identical for all of them). One can see that it is always smaller than in the

reference case and that it is decreasing with r, as the number of cooperative users being “sacrificed”

increases (cf. Fig. 4a) (although their individual sacrifices are reduced). Note that this “sacrifice” is

somehow justified as for realistic values of r (close to 1), the maximum cost is only 15% higher than

in the reference case, while the minimum cost is 65% of the reference case. Nevertheless, as described
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Figure 5: Comparison with socially optimal demand and capacity splits of the (a) probability density

functions, (b) the demand split and (c) the relative social cost, for a uniform, an exponential and a

log-normal distribution of the cooperation cost (g = 1).

in section 4.3, it is also possible to greatly reduce the social cost (although not as much) without

sacrificing anyone.

3.2.2 Numerical application with other distributions

In order to obtain a closed-form expression of the demand split, it was assumed in the previous part that

the cooperation cost was uniformly distributed. Nevertheless, common sense suggests that for any given

cost, one can always find a user with a higher cooperation cost and that a more realistic distribution

should have a long tail. Hence, two additional distributions with supports [0,+∞[ are considered:

the exponential and log-normal distributions. To allow for a fair comparison, the parameters of the

log-normal distribution were set to µ = ln( 1
2 ) − 1

8 and σ = 0.5 (µ and σ are the expected value and

standard deviation of the variable’s natural logarithm) while the rate parameter λ of the exponential

distribution was set to 2. Thus, the expected value of the type θ is equal to 1
2 with both distributions,

as for the uniform distribution. These distributions are represented in Fig. 5a. The demand split and

the relative social cost were numerically evaluated with these distributions and the results are plotted

in Fig. 5b and Fig. 5c, together with the uniform distribution case.

The analysis of Fig. 5 suggests that for our best guess estimate of the cost ratio (r ∼ 0.8), the

gains in terms of social cost depends on the exact distribution of the cooperation cost. While all

the distributions used have the same expected value, the social cost reductions obtained vary from

−8% to −17%, with the log-normal and exponential distributions respectively. Intuitively, only the

cooperation costs of users who are likely to be cooperative do impact the benefits that can be obtained

by allowing cooperation. Thus, a higher proportion of users with a low cooperation cost allows further
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Figure 6: Comparison of the relative social cost obtained with socially optimal demand and capacity

splits with (a) different values of g and with a uniform distribution, (b) g = 1.5 but with a uniform, a

log-normal and an exponential distribution.

reductions of the social cost while users with a very high cooperation cost only have an impact for

values of r that are unreasonably high (based on the considerations given in Section 2.7).

3.2.3 Impact of automation

In order to measure the impact of a more efficient use of the roadway by automation, the relative social

cost with socially optimal capacity and demand splits was represented in Fig. 6a for different values

of g (based on the literature reviewed in Section 2.1). This relative social cost is also represented in

Fig. 6b for different distributions of the cooperation cost for g = 1.5. As expected, a more efficient

use of the roadway by cooperative vehicles allows for further reductions in the social cost and this gain

naturally increases with r, as low values of r imply a relatively large cooperation cost, which restricts

the use of the roads benefiting from higher capacity. These figures show that overall a higher value of

g has positive effects, and as it increases the proportion of users that are cooperative at equilibrium,

it also tends to reduce the impact of the distribution chosen for the cooperation cost (as long as all

distributions have the same expected value).

4 User equilibrium

In this section we show that many of the results obtained for the system optimum case, have similar

properties under user equilibrium conditions. We first investigate (Section 4.1) the properties of the

user equilibrium when the capacities for each group of users are set externally. Additionally, in Section

4.2 we derive the optimal tolling for the above case to reach System Optimum conditions. The findings
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of Section 4.3 are significant for the applicability of the general scheduling framework described in this

paper. We show that unlike the social optimum, the user equilibrium for the optimal capacity split is

Pareto-improving. Finally, in Section 4.4, we demonstrate that the price of anarchy is relatively small

for different values of automation factor g.

As explained in the proof of Proposition 2, both sub-networks should be used in user equilibrium

as long as some users have no cooperation cost (i.e. some users have θ = 0, which has been assumed

to be the case in Condition 1). Hence, the critical cooperation cost at equilibrium θ̂(y) should satisfy

the user equilibrium condition:

κθ̂(y) + cc = ci + τ , (17)

where τ is the toll on the independent route (if the toll is on the cooperative route, then τ is simply

negative).

4.1 User equilibrium with given capacities

Proposition 6. For a given capacity split and with no toll, a demand split satisfies the user equilibrium

equation (17) with a unit cooperation cost κ = K if and only if it satisfies the social optimum equation

(11) with a unit cooperation cost κ = 2K.

Proof. Eq. (17) is equivalent to

κθ̂(y) +
δN

S

x
(
θ̂(y)

)
2gy

=
δN

S

(
1− x

(
θ̂(y)

))
1− y

,

or
δN

S

(
1

2gy
+

1

1− y

)
x
(
θ̂(y)

)
=
δN

S

1

1− x
− κθ̂(y),

or

r

(
1 + (2g − 1)y

2gy(1− y)

)
x
(
θ̂(y)

)
= r

1

1− y
− θ̂(y). (18)

It suffices now to note that Eq. (18) with κ = K is identical to the social optimum equation (11) for

κ = 2K.

A consequence of Proposition 6 is that most of the results obtained for the social optimum remains

valid after multiplying κ by two. In particular:

Corollary 2. For a given capacity split and with no toll, there exists a unique demand split satisfying

the user equilibrium equation and it is a continuous function of the automation factor g (on [ 1
2 ,+∞[),

the cost ratio r (on ]0,+∞[), and of the capacity split y (on [0, 1]).

In addition, one just has to notice that for a given capacity split, θ̂o is a decreasing function of κ

to deduce from Proposition 6 this additional corollary:
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Corollary 3. For any interior capacity split, the social welfare can be improved by setting a positive

toll on the independent route.

If there is a non-negative toll, it can be proven that there still exists a unique demand split satisfying

the user equilibrium condition but in this case, the solution is not necessarily interior. The proof is

left to the reader as it is similar to the proof of Proposition 3.

4.1.1 Special case: uniform distribution

When the cooperation cost is uniformly distributed, Eq. (18) reduces to

[2gy(1− y) + r(1 + (2g − 1)y)] θ̂(y) = 2rgy,

which has an explicit solution given by:

θ̂(y) =
2rgy

2gy(1− y) + r (1 + (2g − 1)y)
. (19)

The resulting social cost is studied in more details in Section 5.1.3, together with other situations

involving private operators.

4.2 Decentralization of the social optimum

The objective of this part is to determine, given some capacity split, how the sub-networks should

be tolled to shift the user equilibrium to socially optimal conditions. Corollary 3 implies that the

independent network should be tolled and Proposition 6 can be used to determine the exact amount

without additional calculations.

Indeed, if one solves the social optimum problem to find θ̂o and then sets the toll to τ = 1
2κθ̂

o, Eq.

(17) becomes:

κ

(
θ̂(y)− 1

2
θ̂o
)

+ cc = ci.

Proposition 6 implies that θ̂o is a solution and since the solution is unique, θ̂(y) = θ̂o, i.e. the

equilibrium is the social optimum.

Intuitively, this toll forces some naturally independent users that are close to being cooperative to

become cooperative. Hence, it is natural that it should increase with the cooperation cost of these

users (κθ̂o).

It is of practical interest to notice that this toll is only paid by independent users, is time-

independent and is relatively small. A numerical application showed that for the range of κ considered,

this toll is equal to approximately half the average toll required by Vickrey’s time-dependent tolling

strategy. Thus, the user acceptability of such a pricing strategy in a possible implementation is ex-

pected to be higher, as it may potentially resolve many of the issues highlighted in the introduction of

the paper, that classical pricing schemes carry.
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4.3 Optimal capacity split and Pareto-improvement

Even though Proposition 6 shows the existence of a strong relationship between the user equilibrium

and the social optimum, the properties of these two situations are fundamentally different. In partic-

ular, while the user equilibrium assumes purely selfish users, we showed in Section 3.2 that the social

optimum required the “sacrifice” of some cooperative users. We demonstrate in this section that unlike

the social optimum, the user equilibrium is Pareto-improving for the socially optimal capacity split.

This result is obtained without actually determining the socially optimal capacity split under user

equilibrium as the calculations involved are particularly tedious even with simplistic assumptions6.

Before actually demonstrating this result with Propositions 7 and 8, let us formulate the following

lemma.

Lemma 3. Assume that the distribution of the cooperation cost satisfies condition 1. Let y denote a

capacity split and x(y) denote the associated demand split at user equilibrium with no toll. Let us also

define ye = F ((1− 1
2g )r).

If ye < 1, then x(y) > y for all y ∈]0, ye[, x(y) < y for all y ∈]ye, 1[ and x(y) = y for y ∈ {0, ye, 1}.

If ye ≥ 1, then x(y) > y for all y ∈]0, 1[ and x(y) = y for y ∈ {0, 1}.

Lemma 3 states that the demand split is bigger than the capacity split if and only if the capacity

split is smaller than some constant ye. We argue below that this condition is also necessary and

sufficient to have a Pareto improvement.

Proposition 7. For any distribution of the cooperation cost verifying condition 1, the user equilibrium

with no toll Pareto-dominates the user equilibrium with no cooperation if and only if the capacity split

y is in the interval ]0,min(1, ye)].

Lemma 3 and the proof provided in A provides some intuition about this proposition. Intuitively,

even though there may be a higher demand to capacity ratio on the cooperative route, at equilibrium

cooperative users must always have a cost that is smaller than independent users (otherwise they

would be independent). Thus, we should simply ensure that independent users are better-off, which

requires that they have a demand to capacity ratio that is smaller than in the reference scenario, which,

according to Lemma 3, happens if and only if y ≤ ye (and y > 0).

Pareto-improvements are extremely important from a political point of view. While socially op-

timal policies should theoretically be sought, it happens that sub-optimal measures are implemented

instead, simply because they are Pareto-improving, which is not necessarily the case of socially optimal

6Assuming a uniformly distributed cooperation cost, the differentiation of the function associating to a capacity split

its social cost under user equilibrium leads to a rational function whose numerator is a 4th order polynomial.
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measures. In the situation at hand however, we argue below that the socially optimal capacity split

exists and Pareto-dominates the user equilibrium with no cooperation.

Proposition 8. For any distribution of the cooperation cost verifying condition 1, there exists a

capacity split that minimizes the social cost under user equilibrium with no toll. The associated user

equilibrium Pareto-dominates the user equilibrium with no cooperation.

In other words, Proposition 8 states that the socially optimal capacity split exists and cannot be

greater than ye, i.e. that “sacrificing” the users with a high cooperation cost to reduce the travel

time of more flexible users is overall detrimental. Note however that if we introduce a new source of

heterogeneity by considering that users have different values of time (but the same relative value of

earliness β
α and lateness γ

α ) and that the time of flexible users is more valuable (shift-workers usually

have lower wages), Proposition 8 might not stand anymore. This is considered as a future research

direction.

4.4 Price of anarchy

As explained in Section 4.3, the optimal capacity split under user equilibrium is particularly tedious

to determine analytically. Thus, in order to gain some quantitative insight about the price of anarchy,

the relative social cost was computed numerically for different situations7. Assuming a uniformly

distributed cooperation cost, the relative social cost is given by:

S̃C
e
(y) =

S

δN2

Nκ θ̂(y)∫
0

uf(u)du+
δN2

S

x2
(
θ̂(y)

)
2gy

+
δN2

S

(
1− x

(
θ̂(y)

))2

1− y


=

1

r

(
θ̂(y)

)2

2
+

(
θ̂(y)

)2

2gy
+

(
1− θ̂(y)

)2

1− y
, (20)

where θ̂(y) is given by Eq. (19).

The optimal capacity splits obtained for the user equilibrium are represented in Fig. 7a, together

with those that were obtained analytically for the social optimum. While the overall shapes of these

curves are very similar, it is striking that the demand and capacity splits are consistently closer under

user equilibrium than under social optimum. This difference illustrates how the social optimum requires

some naturally independent users to become cooperative for the greater good.

Despite these differences, it is of great practical interest to notice that the maximum social cost

reductions that can be obtained under user equilibrium and social optimum are still relatively close.

The price of anarchy is a measure of their difference, defined by PoA = S̃C
o
− S̃C

e
and represented in

7Since the results obtained were very similar with different types of distributions (uniform, exponential and log-

normal), we only present here the results obtained with a uniformly distributed cooperation cost.
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Figure 7: Representations as functions of r of (a): the demand and capacity splits under social optimum

(SO) and under the user equilibrium (UE) with the optimal capacity split, (b): the reduction of the

relative social cost obtained as a function of r with the socially optimal demand and capacity splits

and the price of anarchy, (c): the relative individual cost under user equilibrium for independent users

and for the two extreme cooperative users with the smallest and biggest cooperation cost. All figures

are for g = 1.

Fig. 7b. Note that for sufficiently big values of r, the gain is sizeable (∼ 10− 40%) while the price of

anarchy is relatively small (∼ 1%). Thus, the scheduling system proposed could be very efficient even

without tolling.

Finally, the Pareto-improvement property analytically obtained in Proposition 8 is illustrated in

Fig. 7c, which represents the individual costs for some extreme users. It can be seen that the curves

associated to the independent users and to the cooperative user with the maximum cooperation cost

(θ = θ̂) exactly overlap (this characterizes the user equilibrium) and are never strictly greater than 1.

Fig. 7c shows that this scheme is actually extremely beneficial for the users with a low cooperation cost

(θ close to 0) but still brings some (less substantial) benefits to all the other users. These findings, even

obtained with idealized systems with simplified assumptions, highlight the potential of the proposed

policy. It is also clear however that policies should be preceded by proper physical modeling and

optimization of key parameters, in order to be beneficial for most users. Our work is a first step in

this direction.

4.4.1 Impact of automation

Fig. 8 is the analogue of Fig. 6 for the user equilibrium. The social cost under user equilibrium

with a socially optimal capacity split is represented in Fig. 8a, together with the social cost under

social optimum, for different values of the automation factor g. In Fig. 8b this social cost under user

equilibrium is computed again for two values of g but with different distributions for the cooperation
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Figure 8: Comparison of the social cost obtained (a) with a socially optimal capacity split under user

equilibrium and under social optimum with different values of the automation factor g and with a

uniform distribution, (b) with a socially optimal capacity split under user equilibrium for g = 1 and

g = 1.5 but with a uniform, a log-normal and an exponential distribution.

cost. The analysis of these two figures suggests that the trends observed for g = 1 exist also for g > 1

and that overall, bigger values of g amplify the differences (either between user equilibrium and social

optimum or between different distributions).

5 Private operator

This last section investigates the compatibility of the cost-reducing scheduling service introduced above

with profit-maximizing objectives. Given the current global enthusiasm for privatization, it seems in

fact very likely that if such a scheduling service were to be implemented, its operation would be

left to some independent organization, as it is already the case for about one third of highways in

Western Europe (Verhoef, 2007). If this independent operator is not subsidized, it would need to

collect revenue, most likely via a toll. As discussed in Section 4.1 however, there are already fewer

users that are cooperative at the equilibrium than at the social optimum. Thus, it seems a priori

preferable that either the private operator manages the independent route (even though this does not

address the issue of the scheduling service management), or that two tolls should are applied. Based

on these first considerations, the exact impact of profit-maximizing strategies is studied hereafter, first

with only one toll set by a private operator on one of the two routes, and then with two tolls defined

in a Stackelberg setting in which the government is leader and the private operator adjusts its toll in

function of the government’s toll. Stackelberg competition is classically considered in games involving

30



several heterogeneous players, where one player is able to implement its decision first, e.g. in a spatial

market competition (Wang and Ouyang, 2013; Drezner et al., 2015), when building or expanding private

transportation infrastructures (Xiao et al., 2007; van den Berg and Verhoef, 2012) or, in a case more

similar to ours, when a central authority concerned with the social optimum delegates the network

operations to independent organizations with different objectives (Zhang et al., 2011). Stackelberg

competition is believed to be one of the prevailing strategic interactions in many market situations as

it often allows all players to make more benefits than for instance in a Nash competition (Wang et al.,

2014). In the case at hand, the heterogeneity of players and the strong grip of the government on

public infrastructure are strong arguments for a Stackelberg framework. Note that since the amount

tolled is only a transfer of money from some individuals to others, it is not taken into account in the

calculation of the social cost. Therefore, profit-maximization and social cost minimization are two

objectives that are not necessarily in opposition.

5.1 Profit-maximizing toll (one player only)

In this first sub-section, the private operator is the only player and it sets a toll to maximize its profit.

Two cases are considered, depending on the route (with cooperative or independent users) that is

managed by the private operator.

5.1.1 Cooperative service managed by a private operator

Consider that a private operator is given a proportion y of the capacity and manages the cooperative

service. The toll should be set in order to maximize the profit, which is given by:

Π = xNτpc,

where τpc is the toll set by this private operator on the cooperative route (p stands for “private” and c

for “cooperative”). The only user equilibria that bring some profit to the private operator are such that

both networks are used (otherwise, the private operator would have either no customer, or it should

pay them to use its network because the other one would have zero cost at least for some users). Thus:

κθ̂(y) + cec + τpc = cei , (21)

or

κθ̂(y) +
δN

S

x

2gy
+ τpc =

δN

S

1− x
1− y

,

and therefore
δN

S

(
1 + (2g − 1)y

2gy(1− y)

)
x =

δN

S

1

1− y
− κθ̂(y)− τpc. (22)
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Since given a capacity split y, the function θ̂ → δN
S

(
1+(2g−1)y
2gy(1−y)

)
x(θ̂) − δN

S
1

1−y + κθ̂ + τpc is strictly

increasing, there can be only one equilibrium for a given toll but once again, there is no closed-form

expression of this equilibrium demand split.

5.1.1.1 Special case: uniform distribution

With a uniform distribution of the cooperation cost, Eq. (22) is equivalent to

θ̂(y) =

δN
S

1
1−y − τpc

κ+ δN
S

(
1+(2g−1)y
2gy(1−y)

) .

The profit is now given by: Π = Nθ̂(y)τpc, and it is of the form Π = −Aτ2
pc +Bτpc with

A =
N

κ+ δN
S

(
1+(2g−1)y
2gy(1−y)

) ; B =

δN2

S
1

1−y

κ+ δN
S

(
1+(2g−1)y
2gy(1−y)

) .

Thus, the toll which maximizes this 2nd order polynomial is given by:

τpc =
δN

S

1

2(1− y)
. (23)

Interestingly, this toll does not depend on κ and corresponds to the average cost of travel time if all

users had to use the independent route. With such a toll, the profit-maximizing demand is:

Nθ̂pc = N

δN
S

1
1−y −

δN
S

1
2(1−y)

κ+ δN
S

(
1+(2g−1)y
2gy(1−y)

)
= N

rgy

2gy(1− y) + r(1 + (2g − 1)y)
, (24)

which is exactly half the cooperative demand when there is no toll. Note that since there were already

fewer cooperative users in user equilibrium than in social optimum, this profit-maximizing strategy

moves the demand split in the “wrong” direction. Thus, such a strategy where the private operator is

free to choose his optimal price is not recommended for an implementation.

5.1.2 Independent route managed by a private operator

The same approach can be used for this symmetric case, so we just provide the final results here. The

profit-maximizing toll is:

τpi =
(2κgyS + δN)

4gyS
. (25)

The profit-maximizing demand is:

θ̂pi =
2gy(1− y) + r(1 + (4g − 1)y)

2[2gy(1− y) + r(1 + (2g − 1)y)]
.
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Figure 9: Comparison of the social costs obtained under social optimum, user equilibrium, if the

independent-route is privately managed and if the cooperative route is privately managed, as functions

of the capacity split and for cost ratios r equal to 0.5, 1 and 2. g = 1 for all figures.

5.1.3 Numerical applications

The social costs obtained with the profit-maximizing strategies studied in Sections 5.1.1 and 5.1.2 are

represented in Fig. 9, together with the social costs associated to the user equilibrium with no toll

(studied in Section 4.1.1) and to the social optimum. It can be noticed that when the private operator

manages the independent route and has only a small percentage of the total capacity (y ' 0.9), the

profit-maximizing strategy can slightly improve the user equilibrium, especially if r is small (e.g. for

r = 0.5 and g = 1). Intuitively, the private operator forces a few users to become cooperative (which is

overall beneficial for the society, as shown by Corollary 3) but not too many as it does not have control

over a large part of the capacity and thus cannot force the users to pay extreme costs. However, this

situation is not desirable since it leads to a social cost that is higher than the reference social cost. For

more reasonable values of r (in the range of 0.5 − 1), the social optimum is obtained for a capacity

split that is quite balanced (y ' 0.3) and for this range of balanced capacity splits, the two profit-

maximizing strategies studied always lead to poor social costs. Thus, it seems that profit-maximizing

strategies are not compatible with the objective of minimizing the social cost if there is only one toll

applied by the private operator. The same numerical applications were repeated with different values

of g ranging between 1 and 2 but the results obtained (not shown here) were extremely similar. Note

however that different governmental regulations (like taxing or price-caps) could guide such a system

to better situations for the social good.
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5.1.3.1 Relationship between capacity and profit

Let us now consider that the private operator has to pay a given amount c for each capacity unit that

it rents from the government. Assuming that the private operator manages the cooperative route and

that it always sets the toll to maximize its profit, the profit depends on the capacity split with the

following function:

Π = Nθ̂pcτpc − cyS.

Obviously, if the demand is not price-elastic and if all the capacity is given to the private operator, the

users would be captive and the optimal toll would be infinite. However, for y small enough (y → 0),

Π =
(
δN2

2S2 − c
)
yS + o(yS). Thus, depending on the value of c, operating only a small part of the

network might not be profitable. However, when the capacity that is privately operated gets closer

to the full capacity, the situation becomes similar to a monopoly and profits dramatically increase.

The situation is very similar if we consider that the private operator manages the independent route.

Alternatively, one could consider that the government sets the capacity split y (or equivalently, the

value of c) as a function of the toll proposed by the private operator. If the private operator manages

the independent route and proposes a toll that is small enough (considering the population’s cost ratio

r), then the government could allocate to the private operator a capacity split that is such that the

toll proposed is optimal.

5.2 Stackelberg equilibria

We now study the impact of a profit-maximizing strategy within a Stackelberg competition, where the

government and a private company both impose a toll on one route. While the government aims at

minimizing the social cost (i.e. the sum of the schedule delays, congestion and cooperation costs), the

private company aims at maximizing its profit. Since the government has a dominant position, we will

consider that the government sets its toll first, knowing how the private company will react (we will

see however that the Stackelberg equilibria obtained are also Nash equilibria).

The fact that the leader is maximizing welfare should intuitively lead to a higher welfare in the

society than in cases where all actors are profit-maximizing. In addition, the lack of flexibility of toll

is indeed more credible for the public than for the private sector, although this does not prevent to

consider some compensation for the potential profit loss of the private sector. Observe, however, that

it is not necessarily the case that when the leader is maximizing the welfare, the welfare is higher in the

society than when all actors are maximizing profit (this was shown, for example, by Anderson et al.

(1997) in the context of mixed oligopoly with Logit demand function). Here, with congestion effect,

the situation is substantially more complex. This question needs more study before the government

should propose regulations.
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Here, it is assumed that the capacity split is given. One could have considered another type

of Stackelberg equilibrium in which there is only one toll set by a private operator and where the

government sets the capacity split. However, the graphical representation of the social costs as functions

of the capacity splits in Fig. 9 suggested that the gains that could be obtained with such a framework

would be extremely small. The next two subsections investigate the cases where the cooperative and

independent routes are managed by the government and the private operator and vice versa.

5.2.1 Cooperative service managed by a private company, independent route by the

government

By including an additional toll set by the government τgi on the independent route in Eq. (21), the

equilibrium equation becomes:

κθ̂(y) + cec + τpc = cei + τgi.

In the Stackelberg framework, the leader takes his decision first and then does not react to the

decision of the follower. Thus τgi is seen as a constant by the private operator and the calculations

done with only one player (Eqs. (21) to (22)) remain valid after replacing τpc by (τpc− τgi). Assuming

a uniform distribution for the cooperation cost, the equilibrium demand split is:

θ̂(y) =

δN
S

1
1−y − (τpc − τgi)

κ+ δN
S

(
1+(2g−1)y
2gy(1−y)

) . (26)

Proposition 9. Assuming that the government is leader, for any capacity split y there exists a unique

Stackelberg equilibrium and it is characterized by

τgi =
κr

1− y
r(1 + (2g − 1)y) + 3gy(1− y)

r(1 + (2g − 1)y) + gy(1− y)
. (27)

This equilibrium is also the social optimum and a Nash equilibrium.

In the Stackelberg equilibrium studied, the government first sets its toll and the private operator

reacts. As the demand is assumed inelastic, the equilibrium demand split is uniquely determined

by the difference in the two tolls, independently of the level of these tolls. Thus, the objective of

the government is to set its toll in such a way that the profit maximizing toll for the private operator

minimizes the social cost, given this capacity split. We can actually demonstrate that by simply varying

its own toll, the government can make any demand split profit-maximizing for the private operator and

can therefore lead the system to the social optimum. Intuitively, when the private operator already has

n customers, attracting the next one to its route implies reducing its toll by the sum of (i) a constant

term resulting from the additional congestion cost imposed by one additional user (equal to δ
2S ) and

(ii) the difference in cooperation cost between the previous critical user and the new one. This amount
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is independent of the current level of the toll. As it is profitable to attract this user if and only if

the new amount of the toll is bigger than n times the toll reduction, the government can obtain the

demand split desired simply by setting the level of toll. Note however that this mechanism can involve

considerable financial transfers from the users to the private operator and the government.

In terms of comparative statics, Eq. (27) can be differentiated to show that the relative toll S
δN τgi

increases with the capacity split y, with the automation factor g and decreases with the cost ratio r.

Intuitively, if the private operator manages a greater proportion of the network, it is more powerful

and can impose higher tolls. Similarly, if users have a lower cost ratio r, their cooperation cost is

greater relatively to the congestion cost, so they are ready to pay higher tolls.

5.2.2 Cooperative service managed by the government, independent route by a private

company

Again, this problem is symmetrical to the previous one so the details of the calculations are left to the

reader. Similarly to the previous case, it is possible to obtain a social optimum if the government sets

the toll to:

τgc = κ

(
1 + r

r(1 + (2g − 1)y)− gy((1 + 4g)y − 1)

2gy[r(1 + (2g − 1)y + gy(1− y))]

)
. (28)

The relative toll S
δN τgc decreases with the capacity split y and the cost ratio r.

5.2.3 Numerical applications

In order to limit the number of independent variables, note that all the optimal tolls obtained in the

Eqs. (23), (25), (30), (27) and (28) can be expressed as κ times an expression that depends only on r,

g and y. Thus, the relative toll, defined as the toll divided by the individual cost with no cooperation

δN
S , depends only on r, g and y.

The optimal relative tolls obtained in the Sections 5.2.1 and 5.2.2 are plotted in Fig. 10, together

with the profit-maximizing tolls obtained in Sections 5.1.1 and 5.1.2. Note that as r increases, the

tolls imposed by the government and by the private operator in Stackelberg equilibria become almost

identical, which is natural since the user equilibrium coincides with the social optimum for κ = 0,

i.e. r → ∞ (cf. Proposition 2). In addition, one can see that the toll set on the independent route

is always slightly higher than the toll on the cooperative route. This was predictable since previous

results showed that there are fewer cooperative users under user equilibrium (when both tolls are the

same) than in social optimum. Thus, the government should always deter some users from using the

independent route. Note also that as the private operator always sets its own toll relatively to the

government’s toll, the absolute value of the private toll is significantly greater in Stackelberg equilibrium

than when the government does not set any toll.

36



0 0.2 0.4 0.6 0.8 1
Capacity split y

0

1

2

3

4

5

6

R
el
a
ti
v
e
to
ll

r =0.5

0 0.2 0.4 0.6 0.8 1
Capacity split y

0

1

2

3

4

5

6

R
el
a
ti
v
e
to
ll

r =1

0 0.2 0.4 0.6 0.8 1
Capacity split y

0

1

2

3

4

5

6

R
el
a
ti
v
e
to
ll

r =2

τpc

τgi

τpc if τgi = 0

τpi

τgc

τpi if τgc = 0

Figure 10: Comparison of the tolls set by the government and by the private operator when the private

operator manages the cooperative route (τpc and τgi), or when it manages the independent route (τpi

and τgc), with and without a toll set by the government (τgi = 0 or τgc = 0). g = 1 for all figures.

Finally, it is of practical interest to notice that the relative tolls applied under Stackelberg equi-

librium are systematically greater than 0.5, and often much higher8. In comparison, an optimal

time-varying toll applied on the entire capacity as described by Vickrey (1969) allows to reach the

social optimum with a maximum relative toll of exactly 0.5. Thus, a Stackelberg equilibrium with

cooperation requires more money transfers and leads to a greater social cost (because of cooperation

costs) than a fine toll, which makes it less acceptable and less effective. Thus, a privatization of the

proposed service should be followed by governmental regulations that would lead the system close to

social optimum conditions without imposing very high tolls. In this case, the private operator will still

obtain significant benefits, but restricting competition would result in much better conditions for the

system. Again, different values of the automation factor g between 1 and 2 were tested but they led

to very similar results (not included).

6 Conclusion and future work

This paper introduces a new approach of cooperation for Vickrey’s bottleneck problem that can already

be implemented with conventional vehicles but that could emerge naturally as the trends toward car-

sharing and autonomous vehicles converge. This approach is based on a scheduling service that only

manages a part of the capacity of a bottleneck. The choice of the sub-route was assumed to be a

long-term decision, based on the congestion on the two sub-routes and on a new individual-specific

8The assumption of an inelastic demand becomes clearly unrealistic in these cases. In practice, the tolls would be

limited to more reasonable levels, but would deter some users from traveling.
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cooperation cost associated to using the scheduling service.

It was found that with a well-chosen capacity split, such a scheme allows for a reduction of the

social cost, not only with a socially optimal demand split but also under user equilibrium. In addition,

it was shown that under user equilibrium, all users are better-off (compared to the reference scenario

with no cooperation). The social optimum can be obtained with a relatively small flat toll but in this

case, users are not all better-off before redistributing the revenue of the toll. Finally, the possibility

of delegating the management of a sub-route to a private operator was investigated but it was shown

that if tolls are not restricted and if the private operator controls a significant proportion of the total

capacity, this would lead to a dramatic increase in social cost. The social optimum can still be obtained

if the government imposes another toll on the other sub-route but at the price of extremely high tolls.

Thus, while the scheduling service described in this work has a great potential to reduce the cost of

congestion, Section 5 showed that it is hardly compatible with profit-maximizing strategies and the

design of suitable toll regulations should be one of the priority topics.

The cooperation cost was introduced in this work with classic simplifying assumptions and the

relaxation of some of these assumptions should be investigated. In particular, different distributions

of the desired arrival time should be considered to model longer peak hours. The assumption of a

single long-term decision concerning the choice of the group could also be relaxed to allow for an

easier implementation with privately-owned cooperative vehicles. Finally, more complex expressions

of the cooperation cost might have to be considered with different time slot allocation mechanisms.

For instance, if there is a variability in the allocated departure times, the cooperation cost might

depend on the magnitude of this variability and therefore on the ratio of the demand to capacity. The

potential implementation of such policies should be a priority as they are aimed at addressing the

policy limitations of classical demand- and supply-oriented schemes.
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A Proofs

Proof of Lemma 1. Since
¯
θ ≤ 0, G(

¯
θ) =

¯
θ − b < 0. Besides, limθ̂→θ̄ G(θ̂) = θ̄ + a − b. Thus, if

θ̄+a− b > 0, the intermediate value theorem ensures the existence of a solution and since G is strictly

increasing, this solution is unique. Else, G(θ̂) < 0 for all θ̂ < θ̄ so there can be no interior solution.

Let us now see G as a function of θ̂, a and b. G is simply affine with a and b so if f is continuous,

G is continuously differentiable with: ∂G
∂θ̂

= 1 + af
(
θ̂
)

, ∂G∂a = F (θ̂) and ∂G
∂b = −1. As θ̂ is interior, all

the previously mentioned derivatives are invertible so the implicit function theorem implies that θ̂sol

is locally continuous and differentiable with:

∂θ̂sol

∂a
(a, b) = − F (θ̂sol)

1 + af(θ̂sol)
< 0 and

∂θ̂sol

∂b
(a, b) =

1

1 + af(θ̂sol)
> 0.

Proof of Lemma 2. S̃C is trivially continuous on ]
¯
θ, θ̄[. Let us now show that S̃C is continuous on the

closed interval [
¯
θ, θ̄]. By combining Eq. (5) and Eq. (6) and after some manipulations, we obtain:

∀θ̂ ∈]
¯
θ, θ̄[,

S̃C
(
θ̂
)

=
1

r

θ̄∫
¯
θ

uf(u)du+
x2

2g x√
2g(1−x)+x

+
(1− x)2

1− x√
2g(1−x)+x

=
1

r

θ̄∫
¯
θ

uf(u)du+
1

2

(√
2g(1− x) + x

)[x
g

+
2(1− x)2

√
2g(1− x)

]

=
1

r

θ̄∫
¯
θ

uf(u)du+
1

2g

(√
2g(1− x) + x

)2

.

We can now evaluate this expression at the boundaries of its domain:

lim
θ̂→

¯
θ

(
S̃C

(
θ̂
))

=
1

2g

(√
2g
)2

= 1 = S̃C (
¯
θ) ,

lim
θ̂→θ̄

(
S̃C

(
θ̂
))

= Nκ

θ̄∫
¯
θ

uf(u)du+
1

2g

(√
2g(1− 1) + 1

)2

=
1

r

θ̄∫
¯
θ

uf(u)du+
1

2g
= S̃C

(
θ̄
)

.

Therefore, S̃C is continuous on [
¯
θ, θ̄].

Proof of Proposition 4. Since the expression of S̃C obtained in Eq. (13) is valid on [
¯
θ, θ̄], we will now
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use it to avoid handling different cases. This function is continuous, differentiable and we have:

dS̃C

dθ̂
(θ̂) =

1

r
θ̂f
(
θ̂
)
− 1

2g

[
2
(√

2g −
(√

2g − 1
)
x
(
θ̂
))

(
√

2g − 1)f
(
θ̂
)]

=
1

r
f
(
θ̂
)
H(θ̂),

where H(θ̂) , θ̂ + r
g

((√
2g − 1

)2
x
(
θ̂
)
−
(
2g −

√
2g
))

.

Lemma 1 can be applied on function H with θ̄ + a − b = θ̄ + r
g

(
1 + 2g − 2

√
2g − 2g +

√
2g
)

=

θ̄ − r
√

2g−1
g . Thus, given g and θ̄, the existence of an interior solution depends on the cost ratio r.

If r < θ̄ g√
2g−1

, then θ̄ > r
√

2g−1
g , so according to Lemma 1 there exists a unique θ̂o such that

H(θ̂o) = 0. Since dS̃C
dθ̂

is negative on [
¯
θ, θ̂o[, positive on ]θ̂o, θ̄] and equal to zero at θ̂o, θ̂o is the unique

global minimum of S̃C. Although the comparative statics of lemma 1 do not apply directly here, the

implicit function theorem can be used in a very similar fashion to demonstrate that θ̂o increases with

r and g. Since the demand split is an increasing function of θ̂o and the capacity split an increasing

function of the demand split, both splits increase with r and g.

If r ≥ θ̄ g√
2g−1

, then ∀θ̂ ∈ [
¯
θ, θ̄[, dS̃C

dθ̂
< 0 and dS̃C

dθ̂
(θ̄) ≤ 0. Thus, there is a unique global minimum

and it is reached for θ̂ = θ̄ (and x = 1). From a practical point of view, this means that if the

cooperation cost is small enough for all the population, the social optimum is an entirely controlled

infrastructure.

Proof of Lemma 3. First, it is trivial that x(0) = 0 and x(1) = 1 as users have no choice in these

conditions. Second, one can verify that that if ye < 1, then x = ye is a user equilibrium. Indeed, if

the critical user is of type θ̂ = (1− 1
2g )r, the total individual cost for the critical user is (following (2))

κθ̂+ δNx
2gSy = δN

S (1− 1
2g ) + δN

2gS = δN
S . As the demand split x is equal to the capacity split y, this is also

the individual cost for independent users, so this is a user equilibrium. Corollary 2 ensures uniqueness

so x = ye is the only user equilibrium for the capacity split y = ye.

Now, let y ∈]0,min(1, ye)[. The reasoning above shows that x = y is not a user equilibrium because

the critical cooperation cost would be smaller than (1− 1
2g )r, i.e. it would be in the interest of some

independent users to become cooperative. Hence, as the individual costs for a given capacity split are

monotonous functions of the demand split, the user equilibrium necessarily verifies x > y.

Conversely, if ye < 1 and y ∈]min(1, ye), 1], x = y is not a user equilibrium either because it would

be in the interest of some cooperative users to become independent. Thus, the equilibrium verifies

x < y.

Proof of Proposition 7. By applying Lemma 3:

y ∈]0,min(1, ye)]⇔


x(y) ≥ y

y > 0

if y = 1, then ye ≥ 1.

(29)
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Then, in order to obtain a Pareto-improvement, three conditions should be verified: (i) the inde-

pendent users are not worse-off, (ii) the user with the critical cooperation cost is not worse-off on the

cooperative sub-route, and (iii) at least one user is better-off.

Let us first show that y ∈]0,min(1, ye)] implies that there is a Pareto-improvement. Based on the

equation of the individual cost for independent users (1), condition (i) is equivalent to x ≥ y, i.e. the

proportion of the demand that is cooperative should not be smaller than the proportion of the capacity

they are allocated. Note then that if condition (i) is verified and y < 1, Condition (ii) must be verified

as well since the critical user is indifferent at equilibrium. If y = 1, users have no choice, so we cannot

use the indifference argument. However, as highlighted by Eq. (29), then we must have ye ≥ 1, so

the cooperative user with the biggest cost is still not worse-off. In addition, if condition (ii) is verified

and x > 0 (which is guaranteed by Condition 1 as long as y > 0), then there are some users with

a cooperation cost strictly smaller than the critical one who are better-off. Thus, y ∈]0,min(1, ye)]

implies that there is a Pareto-improvement.

Conversely, y = 0 corresponds to the reference scenario, which violates condition (iii). If y >

min(1, ye), then Lemma 3 implies that either x(y) < y or y = 1 and ye < 1. The first case clearly

violates condition (i) while the second violates condition (ii). Indeed, in this last situation x(y) = y

so the congestion cost for cooperative users is equal to δN
2gS . The cooperation cost that makes a user

indifferent between the reference scenario and cooperation in this scenario is reached for x(ye) = ye.

As y > ye, there are more cooperative users for y = 1 and these additional cooperative users are all

worse-off.

Proof of Proposition 8. By applying Corollary 2, the demand split is a continuous function of the

capacity split for y ∈ [0, 1]. Thus, the social cost under user equilibrium is also a continuous function

of the capacity split on [0, 1] and the extreme value theorem guarantees the existence of a capacity

split minimizing the social cost.

If ye ≥ 1, all capacity splits y > 0 are Pareto-improving so the result is trivial. Let us now assume

that ye < 1. Let Y > ye and X be a capacity split and its associated demand split at user equilibrium.

We demonstrate hereafter that the social cost at user equilibrium for y = Y is bigger than for y = ye.

First, although the pair (x = X, y = X) is not an equilibrium, we can show that SC(X,Y ) >

SC(X,X). Indeed, note that the number of cooperative users is identical so the cooperation cost is

exactly the same and we just have to compare the costs of congestion. We consider here the demand

split as given so the total congestion cost is simply a function of the capacity split: g(y) = X2

2gy + (1−X)2

1−y .

Differentiating this expression leads to g′(y) = − X2

2gy2 + (1−X)2

(1−y)2 , which is positive for all y > X. Thus,

SC(X,Y ) > SC(X,X).

Second, since the demand split is a strictly increasing function of the capacity split, X > x(ye) = ye.
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We can then show that SC(X,X) > SC(ye, ye). In fact, the individual costs are the same in these two

scenarios for all users that do not change their decision (i.e. those that are independent or cooperative

in both scenarios). In addition, x = y = ye is an equilibrium so all users that are independent in

these conditions would be worse-off if they were forced to be cooperative with the same congestion

conditions, which is exactly what happens in the situation (x = X, y = X).

Thus, SC(X,Y ) > SC(X,X) > SC(ye, ye) so the socially optimal capacity split verifies y ≤ ye. To

conclude, note that y = 0 is clearly not socially optimal as it is Pareto-dominated by any y ∈]0, ye].

Proof of Proposition 9. The profit is now given by Π = Nθ̂(y)τpc, or

Π = −Aτ2
pc +B′′τpc,

where A has the same expression as in Section 5.1.1.1 but

B′′ =
2δN2gy + 2NgyS(1− y)τgi

2κgyS(1− y) + δN(1 + (2g − 1)y)
.

Thus, the maximum profit is obtained for

τpc =
B′′

2A
=
δN2gy +NgyS(1− y)τgi

2NgyS(1− y)
,

i.e

τpc =
τgi
2

+
δN

S

1

2(1− y)
. (30)

This is simply the arithmetic mean of the government toll and of the average congestion cost (schedule

penalty and travel time cost) if all users had to use the independent route. By combining equations

(26) and (30):

θ̂pc =
2δNgy + 2gyS(1− y)τgi

2κgyS(1− y) + δN(1 + (2g − 1)y)
− 2gyS(1− y)

2κgyS(1− y) + δN(1 + (2g − 1)y)

δN + (1− y)Sτgi
2S(1− y)

=
κrgy + gy(1− y)τgi

2κgy(1− y) + κr(1 + (2g − 1)y)
. (31)

The only decision variable is now τgi and the government should set its value such that it minimizes

the social cost. Although it is a priori not necessarily feasible, if the government can set a toll such

that the demand found in Eq. (31) is equal to the demand found in Eq. (12), then this toll is optimal.

Mathematically, this requires that θ̂o = θ̂pc, so

2rgy

gy(1− y) + r(1 + (2g − 1)y)
=

κrgy + gy(1− y)τgi
2κgy(1− y) + κr(1 + (2g − 1)y)

,

or

2r[2gy(1− y) + r(1 + (2g − 1)y)] =
[
r + (1− y)

τgi
κ

]
[gy(1− y) + r(1 + (2g − 1)y)],

or

r(1 + (2g − 1)y)
[
r − (1− y)

τgi
κ

]
= gy(1− y)

[
(1− y)

τgi
κ
− 3r

]
,
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or

(1− y)
τgi
κ

[r(1 + (2g − 1)y) + gy(1− y)] = r[3gy(1− y) + r(1 + (2g − 1)y)],

which is equivalent to Eq. (27).

Thus, the social optimum can be obtained even when a private operator manages the cooperative

service. Finally, note that since the government can impose the minimum social cost, in this case

Stackelberg’s equilibrium is also an equilibrium in the sense of Nash.
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