
HAL Id: hal-01281254
https://hal.science/hal-01281254

Preprint submitted on 1 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

A Simple Proof of P versus NP
Frank Vega

To cite this version:

Frank Vega. A Simple Proof of P versus NP. 2016. �hal-01281254�

https://hal.science/hal-01281254
https://hal.archives-ouvertes.fr

A Simple Proof of P versus NP

Frank Vega

Apartamento 14 Edificio 6, La Portada, Cotorro, Havana, Cuba

Abstract

P versus NP is one of the most important and unsolved problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? Another major
complexity class is coNP. Whether NP is equal to coNP is another fundamental question that it is
as important as it is unresolved. We shall show there is a problem in coNP that is not in P. Since
P = NP implies P = coNP, then we prove that P is not equal to NP.

Keywords: P, NP, coNP, maximum, succinct

1. Introduction

P versus NP is a major unsolved problem in computer science. This problem was introduced
in 1971 by Stephen Cook [1]. It is considered by many to be the most important open problem in
the field [2]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics
Institute to carry a US$1,000,000 prize for the first correct solution [2].

In 1936, Turing developed his theoretical computational model [3]. The deterministic and
nondeterministic Turing machine have become in some of the most important definitions related
to this theoretical model for computation. A deterministic Turing machine has only one next
action for each step defined in its program or transition function [4]. A nondeterministic Turing
machine could contain more than one action defined for each step of its program, where this one
is no longer a function, but a relation [4].

Another huge advance in the last century was the definition of a complexity class. A language
over an alphabet is any set of strings made up of symbols from that alphabet [5]. A complexity
class is a set of problems, which are represented as a language, grouped by measures such as the
running time, memory, etc [5].

In computational complexity theory, the class P contains those languages that can be de-
cided in polynomial-time by a deterministic Turing machine [6]. The class NP consists in those
languages that can be decided in polynomial-time by a nondeterministic Turing machine [6].

The biggest open question in theoretical computer science concerns the relationship between
these two classes:

Is P equal to NP?
In a 2002 poll of 100 researchers, 61 believed the answer to be no, 9 believed the answer is

yes, and 22 were unsure; 8 believed the question may be independent of the currently accepted
axioms and so impossible to prove or disprove [7].

Email address: vega.frank@gmail.com (Frank Vega)
Preprint submitted to Elsevier February 29, 2016

If NP is the class of problems that have succinct certificates, then the complexity class coNP
contains those problems that have succinct disqualifications [4]. That is, a “no” instance of
a problem in coNP possesses a short proof of its being a “no” instance [4]. We discuss one
problem that is not in P. At the same time, we show this language is also in coNP. But, we
already know if P = NP, then P = NP = coNP [4]. In conclusion, we demonstrate the existence
of a coNP language that is not in P, and therefore, P , NP [4].

2. Results

Definition 2.1. Given a set S of n (distinct) positive integers and an integer x, MAXIMUM is the
problem of deciding whether x is the maximum number in S .

How many comparisons are necessary to determine when some integer is the maximum in a
set of n elements? We can easily obtain a upper bound of n comparisons: examine each element
of the set in turn and keep track of the largest element seen so far, and finally, compare the final
result with x [5]. Is this the best we can do? Yes, since we can obtain a lower bound of n − 1
comparisons for the problem of determining the maximum in a set of integers [5]. And one final
comparison for the verification of whether this maximum is equal to x. Hence, n comparisons
are necessary to determine whether an element x is the maximum in S . This naive algorithm for
MAXIMUM is optimal with respect to the number of comparisons performed [5].

On the other hand, a Boolean circuit may be viewed as the computation on the binary input
sequence proceeds by a sequence of Boolean operations (called gates) from the set {∧,∨,¬}
(logical AND, OR and NEGATION) to compute the output(s). While an algorithm can handle
inputs of any length, a circuit can only handle one input length (the number of input gates it has).
The efficiency of a circuit is measured by its size.

Definition 2.2. A succinct representation of a set of (distinct) b-bits positive integers is a Boolean
circuit C with b input gates [4]. The set represented by C, denoted S C , is defined as follows:
Every possible integer of S C should be between 0 and 2b − 1. And j is an element of S C if
and only if C accepts the binary representations of the b-bits integer j as input. The problem
SUCCINCT MAXIMUM is now this: Given the succinct representation C of a set S C and a
b-bits integer x, where C is a Boolean circuit with b input gates, is x the maximum in S C?

Let’s state our principal Theorem.

Theorem 2.3. SUCCINCT MAXIMUM < P.

Proof. As we mentioned before, we should need n comparisons to know whether x is the max-
imum in a set of n (distinct) positive integers when the set S is arbitrary. And this number
of comparisons will be optimal [5]. This would mean we cannot always accept every instance
〈C; x〉 of SUCCINCT MAXIMUM in polynomial-time, because we must use at least n = |S C |

comparisons for infinite amount of cases, where |S C | is the cardinality of S C . However, n could
be exponentially more large than the size of 〈C; x〉.

Now, let’s define a new problem.

Definition 2.4. Problem SUPREME:
INSTANCE: The succinct representation C of a set S C and a b-bits integer x, where C is a

Boolean circuit with b input gates.
QUESTION: Does every element y of S C comply with x ≥ y?

2

This previous language is very similar to SUCCINCT MAXIMUM, but the set S C might not
contain the b-bits integer x.

Lemma 2.5. SUPREME ∈ coNP.

Proof. Let’s state the complement language of SUPREME.

Definition 2.6. Problem coSUPREME:
INSTANCE: The instances of SUPREME.
QUESTION: Is there some element y of S C such that x < y?

Every “yes” instance 〈C; x〉 of coSUPREME could be verified in polynomial-time with a
given certificate. Indeed, we can prove in polynomial-time whether x is an integer of a bit-length
equal to b, where b is the number of input gates in C. Moreover, given a b-bits integer y, we
can check whether C accepts the binary representation of y (which means that y is an element
of S C) and x < y in polynomial-time, since the comparison of two b-bits integers can be done
in polynomial-time and the efficiency of the acceptance of y by C only depends in the size of
the circuit. Since the bit-length of the certificate y is more short than the size of 〈C; x〉, then the
language coSUPREME will be in NP. Consequently, SUPREME would be in coNP.

We say that a language L1 is polynomial-time reducible to a language L2 if there exists a
polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f (x) ∈ L2.

Theorem 2.7. SUCCINCT MAXIMUM ∈ coNP.

Proof. Given an instance 〈C; x〉 of SUCCINCT MAXIMUM and over the assumption that x is
in S C , we can state that 〈C; x〉 would belong to SUCCINCT MAXIMUM if and only if 〈C; x〉 is
in SUPREME. In addition, we could decide whether x is in S C in polynomial-time just verifying
whether C accepts the binary representation of x, because the efficiency of the acceptance of x
by C will only depend in the size of the circuit. Hence, it will exist an identity polynomial-time
reduction from SUCCINCT MAXIMUM to SUPREME, such that this will first check whether x
is in S C . We say that a complexity class G is closed under reductions if, whenever L1 is reducible
to L2 and L2 ∈ G, then also L1 ∈ G [4]. Since coNP is closed under reductions, then we obtain
that SUCCINCT MAXIMUM is in coNP [4].

Theorem 2.8. P , NP.

Proof. The existence of a problem in coNP and not in P is sufficient to show that P , NP,
because if P would be equal to NP, then P = coNP [4].

3. Conclusions

This proof explains why after decades of studying the NP problems no one has been able
to find a polynomial-time algorithm for any of more than 300 important known NP–complete
problems [8]. Indeed, it shows in a formal way that many currently mathematically problems
cannot be solved efficiently, so that the attention of researchers can be focused on partial solutions
or solutions to other problems.

3

Although this demonstration removes the practical computational benefits of a proof that
P = NP, it would represent a very significant advance in computational complexity theory and
provide guidance for future research. In addition, it proves that could be safe most of the existing
cryptosystems such as the public-key cryptography. On the other hand, we will not be able to
find a formal proof for every theorem which has a proof of a reasonable length by a feasible
algorithm.

References

[1] S. A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the 3rd IEEE Symp. on the Founda-
tions of Computer Science, 1971, pp. 151–158.

[2] L. Fortnow, The Status of the P versus NP Problem, Communications of the ACM 52 (9) (2009) 78–86.
doi:10.1145/1562164.1562186.

[3] A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem, Proceedings of the
London Mathematical Society 42 (1936) 230–265.

[4] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 2nd Edition, MIT Press, 2001.
[6] O. Goldreich, P, Np, and Np-Completeness, Cambridge: Cambridge University Press, 2010.
[7] W. I. Gasarch, The P=?NP poll, SIGACT News 33 (2) (2002) 34–47.
[8] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition,

San Francisco: W. H. Freeman and Company, 1979.

4

