N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths, Recurrence-plot-based measures of complexity and their application to heart-rate-variability data, Physical Review E, vol.66, issue.2, p.26702, 2002.
DOI : 10.1103/PhysRevE.66.026702

D. Brodsky and H. Chritsou, Current Concepts in Intrauterine Growth Restriction, Journal of Intensive Care Medicine, vol.19, issue.6, pp.307-319, 2004.
DOI : 10.1177/0885066604269663

M. Ferrario, M. Signorini, and G. Magenes, Complexity analysis of the foetal heart rate variability: early identification of severe intrauterine growth-restricted foetuses, Med. Biol. Eng. Comput, pp.47-911, 2009.

N. A. Gough, Fractal analysis of foetal heart rate variability, Physiological Measurement, vol.14, issue.3, pp.309-315, 1993.
DOI : 10.1088/0967-3334/14/3/009

C. S. Felgueiras, J. P. De-sa, J. Bernardes, and S. Gamma, Classification of foetal heart rate sequences based on fractal features, Medical & Biological Engineering & Computing, vol.4, issue.1, pp.36-197, 1998.
DOI : 10.1007/BF02510743

J. Girault, D. Kouame, and A. Ouahabi, Analytical formulation of the fractal dimension of filtered stochastic signals, Signal Processing, vol.90, issue.9, pp.90-2690, 2010.
DOI : 10.1016/j.sigpro.2010.03.019

URL : https://hal.archives-ouvertes.fr/hal-01076429

A. Kikuchi, N. Unno, T. Horikoshi, T. Shimizu, S. Kozuma et al., Changes in fractal features of foetal heart rate during pregnancy, Early Hum. Dev, pp.81-655, 2005.

J. Wang, X. Ning, Q. Ma, C. Bian, and Y. Xu, multifractality analysis of a 12-lead electrocardiogram, Phys. Rev. E, pp.71-062902, 2005.

R. Sassi, M. Signorini, and S. Cerutti, Multifractality and heart rate variabilty, Chaos, p.28507, 2009.

A. Humeau, B. Buard, G. Mahe, F. Chapeau-blondeau, D. Rousseau et al., Multifractal analaysis of heart rate variability and laser Doppler flowmetry fluctuations: comparison of results from different numerical methods, Physics in Medicine and Biology, pp.55-6279, 2010.

S. Oudjemia, A. Zaylaa, S. Haddab, and J. Girault, Coarse-grained multifractality analysis based on structure function measurements to discriminate healty from distressed foetuses, ID 152828, 2013.

M. Mohebbi, H. Ghassemian, and A. B. , Structures of the Recurrence Plot of Heart Rate Variability Signal as a Tool for Predicting the Onset of Paroxysmal Atrial Fibrillation, J. Med Signals Sens, vol.1, issue.2, pp.113-121, 2011.

S. M. Pincus and R. R. Viscallero, Approximate entropy: a regularity measure for foetal heart rate analysis, Obstet. Gynecol, vol.79, pp.249-255, 1992.

M. Ferrario, M. Signorini, M. Magenes, and S. Cerutti, Comparison of Entropy-Based Regularity Estimators: Application to the Fetal Heart Rate Signal for the Identification of Fetal Distress, IEEE Transactions on Biomedical Engineering, vol.53, issue.1, pp.53-119, 2006.
DOI : 10.1109/TBME.2005.859809

C. Y. Liu, C. C. Liu, P. Shao, L. P. Li, X. Sun et al., Comparison of different threshold values r for approximate entropy: application to investigate the heart rate variability between heart failure and healthy control group, Physiol. Meas, vol.32, issue.2, pp.168-180, 2011.

C. Liu, K. Li, L. Liu, D. Zheng, C. Liu et al., Analysis of heart rate variability using fuzzy measure entropy, Computers in Biology and Medicine, vol.43, issue.2, pp.43-100, 2013.
DOI : 10.1016/j.compbiomed.2012.11.005

J. F. Restrepo, G. Schlotthauer, and M. E. Torres, Maximum approximate entropy and threshold: A new approach for regularity changes detection, Physica A: Statistical Mechanics and its Applications, vol.409, pp.97-109, 2014.
DOI : 10.1016/j.physa.2014.04.041

A. Boskovic, T. Loncar-turukalo, O. Sarenac, N. Japundzic-zigon, and D. Bajic, Unbiased entropy estimates in stress: A parameter study, Computers in Biology and Medicine, vol.42, issue.6, pp.42-667, 2012.
DOI : 10.1016/j.compbiomed.2012.03.003

K. H. Chon, C. Scully, and S. Lu, Approximate entropy for all signals, IEEE Engineering in Medicine and Biology Magazine, vol.28, issue.6, pp.18-23, 2009.
DOI : 10.1109/MEMB.2009.934629

S. Pincus, L. Gladstone, and R. Ehrenkranz, A regularity statistic for medical data analysis, Journal of Clinical Monitoring, vol.24, issue.2, pp.335-345, 1991.
DOI : 10.1007/BF01619355

S. M. Pincus and D. L. Keefe, Quantification of Hormone pulsatility via an approximate entropy algorithm, Amer, J. Physiol. Endocrinol. Metabol, vol.262, pp.741-754, 1992.

S. Lu, X. Chen, J. K. Kanters, I. C. Solomon, and K. H. Chon, Automatic selection of the threshold value r for approximate entropy, IEEE Trans. Biomed. Eng, pp.55-1966, 2008.

M. B. Kennel, R. Brown, and H. D. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction, Physical Review A, vol.45, issue.6, pp.3403-3411, 1992.
DOI : 10.1103/PhysRevA.45.3403

L. Cao, Practical method for determining the minimum embedding dimension of a scalar time series, Physica D: Nonlinear Phenomena, vol.110, issue.1-2, pp.43-50, 1997.
DOI : 10.1016/S0167-2789(97)00118-8

S. M. Pincus and A. L. Goldberger, Physiological time series analysis: what does regularity quantify, Amer, J. Physiol. Heart Circul. Physiol, pp.266-1643, 1994.

I. Voicu, J. Girault, and S. Menigot, Improved estimation of the foetal heart rate using directional Doppler signal and YIN, IRBM, pp.33-262, 2012.

I. Voicu, S. Menigot, D. Kouamé, and J. Girault, New estimators and guidelines for better use of foetal heart rate estimators with Doppler ultrasound devices, Comput. Math. Methods Med, vol.784862, issue.10, 2014.

T. J. Garite, R. Clark, and J. A. Thorp, Intrauterine growth restriction increases morbidity and mortality among premature neonates, American Journal of Obstetrics and Gynecology, vol.191, issue.2, pp.481-487, 2004.
DOI : 10.1016/j.ajog.2004.01.036

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2001.