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DEVIATION INEQUALITIES FOR BANACH SPACE VALUED MARTINGALES

DIFFERENCES SEQUENCES AND RANDOM FIELDS

DAVIDE GIRAUDO

Abstract. We establish deviation inequalities for the maxima of partial sums of a martingale

differences sequence, and of an orthomartingale differences random field. These inequalities can

be used to give rates for linear regression and the law of large numbers.

1. Introduction and main results

Deviation inequalities play an important role in the study of properties of partial sums of ran-

dom variables. A particular attention has been given to martingales. In Burkholder’s paper [Bur73],

distribution function inequalities for maximum of martingales are established, and moment inequal-

ities are derived from them. Sharp results has been obtained for martingales with bounded incre-

ments [Hoe63, Azu67]. When the increments of the considered martingale are unbounded but square

integrable, it is possible to control the tail function of the martingale by that of the increments and

of the sum of conditional variances, like in [Bur73, Hae84, dlPn99, FGL12, FGL15]. When the tail of

increments have a polynomial decay, it seems that Nagaev’s inequality [Nag03] gives the most satis-

factory results. It states the following: for any positive q, there exists a constant C(q) such that if

(Sn)n>1 is a martingale defined on a probability space (Ω, F ,P) and Xi := Si − Si−1, then

P {|Sn| > x} 6 C(q)

∫ 1

0

P

{
max

16i6n
|Xi| > xu

}
uq−1du

+ C(q)

∫ 1

0

P

{(
n∑

i=1

E
[
X2

i | Fi−1

]
)

> xu

}
uq−1du. (1.1)

The constant C(q) is of order eeq

. The result (without the absolute valued in the left hand side

of (1.1)) holds for supermartingales. There are three possibilities of improvement of the version of

Nagaev’s result for martingales:

• the result can only be used for square integrable martingales. One can wonder whether a

similar inequality as (1.1) holds when Xi ∈ L
p where 1 < p < 2.

• In [Nag03], the real valued case is considered, and the proof suggests that the extension to

the Banach valued case is challenging.

• Finally, the improvement of the constant C(q) is also of interest.

Let us explain the idea of proof of an extension of (1.1) (see Theorem 1.3) in the real valued case,

with square integrability. Define

f(x) := P {|Sn| > x} and (1.2)

g(x) := P

{
max

16i6n
|Xi| > x

}
+ P

{(
n∑

i=1

E
[
X2

i | Fi−1

]
)

> x

}
, (1.3)
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We prove in Lemma 3.1 that for any positive x.

f (2x) 6 δ2 (1 − δ)−2 f(x) + g (δx) . (1.4)

This is done by using a martingale transform of the original martingale, the former having small

conditional variances. Using monotonicity of the function g, (1.4) can be converted into an integral

inequality.

The paper is organized as follows: in Subsection 1.1, we state a deviation inequality for any Ba-

nach space valued martingale differences sequence, then for stochastically dominated or identically

distributed sequences. In Subsection 1.2, we review orthomartingales, and state a deviation inequality

for orthomartingale differences random fields. Section 2 is devoted to applications to linear regression

and Baum-Katz estimates martingale differences sequence and orthomartingale differences random

fields. All these results are proven in Section 3.

1.1. Martingale differences sequences.

1.1.1. General case.

Definition 1.1. Let (Ω, F ,P) be a probability space and let
(
B, ‖·‖B

)
be a separable Banach space.

For any p > 1, we denote by L
p
B the space of B-valued random variables such that ‖X‖p

L
p
B

= E [‖X‖p]

is finite. Let (Fi)i>1 be an non-decreasing sequence of sub-σ-algebras of F. We say that a sequence of

B-valued random variables (Xi)i>1 is a martingale differences sequence with respect to the filtration

(Fi)i>1 if

(1) for any i > 1, Xi is Fi-measurable and belongs to L
1
B;

(2) for any i > 2, E [Xi | Fi−1] = Xi−1 almost surely.

Definition 1.2. Following [Pis75], we say that a Banach space (B, ‖·‖) is r-smooth (1 < r 6 2) if

there exists an equivalent norm ‖·‖′ such that

sup
t>0

1

tr
sup
{

‖x + ty‖′ + ‖x − ty‖′ − 2 : ‖x‖′ = ‖y‖′ = 1
}

< ∞.

From [Ass75], we know that if B is r-smooth and separable, then there exists a constant D such

that for any sequence of B-valued martingale differences (Xi)i>1,

E

[∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥

r]
6 D

n∑

i=1

E [‖Xi‖r] . (1.5)

Since an r-smooth Banach space is also r′-smooth for any 1 < r′ 6 r, there exists a constant Cr′,B

such that such that for any sequence of B-valued martingale differences (Xi)i>1, and any integer n,

E



∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥

r′

 6 Cr′,B

n∑

i=1

E

[
‖Xi‖r′

]
. (1.6)

Our first main result is an inequality in the spirit of Theorem 1 in [Nag03].

Theorem 1.3. Let (B, ‖·‖) be a separable r-smooth Banach space where 1 < r 6 2. For each

1 < r′
6 r, q > 0 and for any B-valued martingale differences sequence (Xi, Fi)i>1, the following
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inequality holds for each n > 1 and x > 0:

P

{
max

16i6n
‖Si‖ > x

}
6

2q

2q − 1
q2−r′

∫ 1

0

P

{
max

16i6n
‖Xi‖ > 2−1−q/r′

C
−1/r′

r′,B
xu

}
uq−1du

+
2q

2q − 1
q2−r′

∫ 1

0

P





(
n∑

i=1

E

[
‖Xi‖r′ | Fi−1

])1/r′

> 2−1−q/r′

C
−1/r′

r′,B
xu



uq−1du, (1.7)

where Si =
∑n

i=1
Xi and Cr′,B is a constant satisfying (1.6) for any n and any martingale differences

sequence.

Remark 1.4. On one hand, Nagaev’s result [Nag03] applies to real valued supermartingales, while our

result is restricted to martingales. On the other hand, when applied to the latter class of random

variable, our result gives a generalization in two directions. First, we consider Banach space valued

random variables. Second, even when restricted to real-valued random variables, our result can be

used to treat martingales whose increments do not necessarily have a finite moment of order 2.

In the independent setting, the terms E

[
‖Xi‖r′ | Fi−1

]
are constant hence we can state the fol-

lowing Corollary of Theorem 1.3.

Corollary 1.5. Let (B, ‖·‖) be a separable r-smooth Banach space where 1 < r 6 2. For each

1 < r′ 6 r, q > 0 and for any independent centered sequence (Xi)i>1, the following inequality holds

for each n > 1 and x > 0:

P

{
max

16i6n
‖Si‖ > x

}
6

2q

2q − 1
q2−r′

∫ 1

0

P

{
max

16i6n
‖Xi‖ > 2−1−q/r′

C
−1/r′

r′,B
xu

}
uq−1du

+ C
(q−1)/r′

r′,B

2q

2q − 1
2−r′

2q+q2/r′

x−q

(
n∑

i=1

E

[
‖Xi‖r′

])q/r′

, (1.8)

where Si =
∑n

i=1
Xi and Cr′,B is a constant satisfying (1.6) for any n and any martingale differences

sequence.

1.1.2. Stochastically dominated sequences. For a random variable Y with values in the Banach space

(B, ‖·‖), we denote by QY the generalized inverse of the function t 7→ P {‖Y ‖ > t}, that is,

QY (u) := inf {t > 0 | P {‖Y ‖ > t} 6 u} , u ∈ [0, 1]. (1.9)

Definition 1.6. Let (Xi)i>1 be a sequence of random variables with values in a Banach space (B, ‖·‖)

and let X : Ω → R be a real valued random variable. We say that (Xi)i>1 ≺ X if for all u ∈ [0, 1], and

any i > 1, QXi (u) 6 QX (u).

In the case where the random variables Xi, 1 6 i 6 n are stochastically dominated and E

[
‖Xi‖r′ | Fi−1

]

bounded by identically distributed random variables, the result of Theorem 1.3 admits the following

simplification.

Theorem 1.7. Let (B, ‖·‖) be an r-smooth separable Banach space. For each 1 < r′ 6 r and each

q > r′, for any martingale differences sequence (Xi, Fi)i>0 with values in B such that there exists real

valued random variables X and Vi, i > 1 for which (Xi)i>1 ≺ X, E

[
‖Xi‖r′ | Fi−1

]
6 Vi a.s. and
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(Vi)i>1 is identically distributed, then the following inequality hold for any n > 1 and x > 0:

P

{
max

16i6n
‖Si‖ > xn1/r′

}
6

2q

2q − 1
q2−r′

n

∫ 1

0

P

{
X > 2−1−q/r′

C
−1/r′

r′,B
xun1/r′

}
uq−1du

+
2q

2q − 1

q2−r′

q − r′

∫ +∞

0

P

{
V1 > 2−2−q/r′

C
−1/r′

r′,B
xr′

w
}

min
{

w
q−r′

r′ , 1
}

dw. (1.10)

If the sequence (‖Xi‖)i>1 is identically distributed, then for any n > 1 and x > 0:

P

{
max

16i6n
‖Si‖ > xn1/r′

}
6

2q+1

2q − 1

q2−r′

q − r′

∫ +∞

0

P {‖X1‖ > xu} min
{

uq−1, ur′−1
}

du, (1.11)

where Si =
∑i

j=1
Xj .

1.2. Orthomartingale differences random fields. The results of the previous section can be ex-

tended in some sense to random fields, that is, processes indexed by N
d or Z

d where d > 1 be an

integer. In order to state them, we have to give a precise definition of martingales in this setting.

We use the following notations:

(1) for i = (iq)d
q=1 and j = (jq)d

q=1 we write i 4 j if and only if iq 6 jq for all q ∈ {1, . . . , d};

(2) if k and l ∈ Z
d the coordinatewise minimum is defined by min {k, l} = (min {ki, li})d

i=1.

(3) The addition is defined coordinatewise.

(4) If n = (nq)d
q=1 is an element of Nd, then |n| denotes

∏d

q=1
nq.

(5) For j ∈ {1, . . . , d}, ej denotes the element of Zd whose j-th coordinate is 1 and all the others

are zero. Moreover, 1 is the element of Zd whose all coordinates are 1.

Definition 1.8. The family (Fi)i∈Zd of sub-σ-algebras of F is a filtration if Fi ⊂ Fj whenever i 4 j.

Definition 1.9. Let (Fi)i∈Zd be a filtration. If for each i, j ∈ Z
d and each integrable random variable

Y ,

E [E [Y | Fi] | Fj] = E [E [Y | Fj] | Fi] = E
[
Y | Fmin{i,j}

]
almost surely, (1.12)

the filtration (Fi)i∈Zd is said to be commuting.

Definition 1.10. The collection of random variables
{

Mn, n ∈ Z
d
}

is said to be an orthomartingale

random field with respect to the commuting filtration (Fi)i∈Zd if for each n ∈ N
d, Mn is Fn-measurable,

integrable and for each i, j ∈ Z
d such that i 4 j,

E [Mj | Fi] = Mi. (1.13)

Definition 1.11. The collection of random variables (Xi)i∈Zd is said to be an orthomartingale diffrences

random field with respect to the commuting filtration (Fi)i∈Zd if the random field (Sn)
n∈Zd defined by

Sn :=

{∑
14i4n

Xi if n < 1,

0 otherwise,
(1.14)

is an orthomartingale random field with respect to the filtration (Fi)i∈Zd .

In all this subsection, we shall make the following assumption on the random field (Xi)i∈Zd , namely:

for all n < 1, l ∈ Z
d,

∥∥∥∥∥
∑

14i4n

Xi

∥∥∥∥∥ and

∥∥∥∥∥
∑

14i4n

Xi+l

∥∥∥∥∥ have the same distribution. (1.15)

Orthomartingale random fields have good properties with respect to marginal filtrations F(d)
q :=

σ
(
Fk, kq 6 j, k ∈ Z

d
)
, q ∈ {1, . . . , d}. Furthermore, when a coordinate is fixed, we still have an or-

thomartingale random field with respect to a commuting filtration (see [Kho02], p.37, Theorem 3.5.1).
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Lemma 1.12. Let (Xi)i∈Zd be an orthomartingale difference random field with respect to the commut-

ing filtration (Fi)i∈Zd , with values in a separable Banach space (X, ‖·‖). Then the following properties

hold.

(P.1) For any n = (n1, . . . , nd−1) ∈ N
d−1, the sequence

(
S(n,j)

)
j>0

is a martingale with respect to

the filtration
(

F(d)
j

)
j>0

.

(P.2) For any n = (n1, . . . , nd−1) ∈ N
d−1, the sequence

(
maxi∈[1,n]

∥∥S(i,j)

∥∥)
j>0

is a non-negative

submartingale with respect to the filtration
(

F(d)
j

)
j>0

.

(P.3) For any j ∈ N, the random field
(
S(n,j)

)
n<1

is an orthomartingale with respect to the com-

muting filtration (F ′
i )

i∈Zd−1 , where F ′
0 is the σ-algebra generated by

⋃
l∈Z

Fled
.

We now state the analogue of Theorem 1.7 for strictly stationary orthomartingale differences random

fields.

Theorem 1.13. Let (B, ‖·‖) be an r-smooth separable Banach space. For each 1 < r′
6 r, q > r′

and positive integer d, there exist a constant C depending only on r′, q, d and B such that for any

strictly stationary orthomartingale differences random field (Xi, Fi)i∈Zd with values in B, the following

inequality holds for any n ∈ N
d and x > 0:

P

{
max

14i4n
‖Si‖ > x |n|1/r′

}
6 C

∫ +∞

0

P {‖X1‖ > xu} min
{

uq−1, ur′−1
}

(1 + |log u|)d−1 du. (1.16)

Remark 1.14. One can integrate the previously obtained inequalities to get moment inequalities. For

example, it is possible to recover a multidimensional Burkholder-like inequality in the stationary case,

like in [Faz05]. Like in the one dimensional case, it is also possible to establish inequalities in weak L
p

spaces like in [JS88], Remark 6.

2. Applications

2.1. Linear regression. We consider the stochastic linear regression model given by

Xk = θφk + εk, 1 6 k 6 n, (2.1)

where

• (Xk)16k6n are the observations,

• (φk)16k6n are the regression variables and

• (εk)16k6n the driven noises.

We shall make the following assumptions:

(A.1) the sequence (φk)16k6n is independent;

(A.2) the σ-algebra generated by φk, 1 6 k 6 n is independent of the σ-algebra generated by εk,

1 6 k 6 n;

(A.3) For each k ∈ {2, . . . , n}, E [εk | σ (εi, 1 6 i 6 k − 1)] = 0 and E [ε1] = 0.

Let θn be the least square estimator defined by

θn :=

∑n

k=1
φkXk∑n

i=1
φ2

i

. (2.2)

Theorem 2.1. Suppose that the assumptions (A.1), (A.2) and (A.3) hold. Suppose that there exists

constant C1 and C2 such that for any i ∈ {1, . . . , n},

E [|εi|p] 6 C1 and E
[
ε2

i | σ (εj , 1 6 j 6 i − 1)
]
6 C2 a.s. (2.3)
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Then for any p > 2, q > p and any x > 0,

P



|θn − θ|

√√√√
n∑

i=1

φ2
i > x



 6 C1

2q−2

2q − 1

q

q − p
2p+pq/2x−p +

2q−2

2q − 1
q2q+q2/2x−qC

q/2
2 . (2.4)

Let us compare Theorem 2.1 with the results in [FGL17]. When x is large, Theorem 2.1 and

Theorems 3.3 and 3.4 in [FGL17] give an upper bound of order x−p.

(1) In Theorem 3.3 of [FGL17], it is assumed that supi ‖E [|εi|p | σ {εk, 1 6 k 6 i − 1}]‖∞ < +∞,

which is more restrictive than the assumption in Theorem 2.1.

(2) In Theorem 3.4 of [FGL17], supi

∥∥E
[
|εi|2 | σ {εk, 1 6 k 6 i − 1}

]∥∥
∞

< +∞ and that there

exists a positive δ and C1 such that for all i > 1, E
[
|εi|p+δ

]
6 C1, which is more restrictive

than our result, since only boundedness of the sequence of moments of order p is required.

2.2. Baum-Katz estimates for martingale differences sequences and orthomartingale dif-

ferences random fields.

2.2.1. Martingale differences sequences. For p > 1, we denote by L
p,∞ (respectively L

p,∞
0 ) the set of

random variables X such that supt>0 tp
P {‖X‖ > t} < +∞ (respectively limt→+∞ tp

P {‖X‖ > t} = 0).

We also write L
p logq

L (with q > 0) the set of random variables X such that E
[
‖X‖p

(
log+ ‖X‖

)q]

is finite, where log+ (x) := max {0, log ‖x‖}.

Theorem 2.2. Let B be an r-smooth Banach space for 1 < r 6 2. Let (Xi)i>1 be a martingale

differences sequence with values in B. Assume that one of the following conditions is satisfied:

(C.1) there exists a real valued random variable X in L
r such that (Xi)i>1 ≺ X and there exists

an identically distributed sequence (Vi)i>1 such that for all i, E [‖Xi‖r | Fi−1] 6 Vi a.s. and

Vi ∈ L logL.

(C.2) The sequence (‖Xi‖)i>1 is identically distributed and X1 ∈ L
r logL.

Then for each α ∈ (1/r, 1] and each positive x, the series
∑+∞

n=1
nrα−2

P {max16i6n ‖Si‖ > nαx} con-

verges.

Let us compare this result with a previous one. In [DM07], convergence of the series

+∞∑

n=1

npα−2
P

{
max

16i6n
‖Si‖ > nαx

}

have been established for sequences satisfying (Xi)i>1 ≺ X and X ∈ L
p for 1 < p < r and

1 6 α 6 p. Our result deal with a more restrictive class of martingale differences but covers the case

p = r.

When a moment of order greater than two is finite, we can formulate precise results in terms of

integrability of the increments and of the conditional variance term.

Theorem 2.3. Let p > 2, 1/2 < α 6 1 and let B be a separable 2-smooth Banach space. There exists

a constant C (p, B) such that the following holds: for each B-valued martingale differences sequence

(Xi, Fi) such that (Xi) ≺ X and such that there exists an identically distributed sequence (Vi)i>1 for

which E
[
X2

i | Fi−1

]
6 Vi,

(1) if X ∈ L
p/2+1,∞ and Vi ∈ L

p/2,∞, then for each x > 0,

sup
n>1

np(α−1/2)
P

{
max

16i6n
‖Si‖ > nαx

}

6 C (p, B)

(
sup
t>0

tp/2+1
P {‖X1‖ > t} x−p/2−1 + sup

t>0

tp/2
P {V1 > t} x−p

)
; (2.5)
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(2) if X1 ∈ L
p/2+1,∞
0 and V1 ∈ L

p/2,∞, then for each x > 0,

lim
n→+∞

np(α−1/2)
P

{
max

16i6n
‖Si‖ > nαx

}
= 0; (2.6)

(3) if X1 ∈ L
p/2+1 and V1 ∈ L

p/2, then

+∞∑

n=1

np(α−1/2)−1
P

{
max

16i6n
‖Si‖ > nαx

}
6 C (p, B) x−p

(
‖X1‖p

p + ‖V1‖p/2

p/2

)
. (2.7)

We can formulate an analogous result for "norm-identically" distributed sequences.

Theorem 2.4. Let p > 2, 1/2 < α 6 1 and let B be a separable 2-smooth Banach space. There exists

a constant C (p, B) such that the following holds: for each B-valued martingale differences sequence

(Xi, Fi) such that (‖Xi‖)i>1 is identically distributed,

(1) if X1 ∈ L
p,∞ then for each x > 0,

sup
n>1

np(α−1/2)
P

{
max

16i6n
‖Si‖ > nαx

}
6 C (p, B) sup

t>0

tp
P {‖X1‖ > t} x−p/2−1; (2.8)

(2) if X1 ∈ L
p,∞
0 then for each x > 0,

lim
n→+∞

np(α−1/2)
P

{
max

16i6n
‖Si‖ > nαx

}
= 0; (2.9)

(3) if X1 ∈ L
p then

+∞∑

n=1

np(α−1/2)−1
P

{
max

16i6n
‖Si‖ > nαx

}
6 C (p, B) x−p ‖X1‖p

p . (2.10)

For condition (C.2) to be satisfied, we require X1 ∈ L
2 logL rather than in L

2. One may wonder

whether that stronger condition is really needed. Its "necessity" for stationary martingale differences

sequences is proved below. It also show that the result of Theorems 2.3 and 2.4 do not hold for p = 2.

Recall that (X, Σ,P, θ) is a dynamical system if (X, Σ, P) is a probability space and θ : X → X is

a measurable map such that P
(
θ−1A

)
= P (A) for all A ∈ Σ. If f : Ω → R is measurable, then the

sequence
(
f ◦ θi

)
i>1

is strictly stationary.

We start with the following lemma.

Lemma 2.5. Let γ > 1. There exist a dynamical system (X, Σ,P, θ) and a non-negative measurable

function f > 0 on X such that, for every 0 < ε 6 1,
∫

X
f
(
log+ (f)

)1−ε
dP < ∞ and

∑

n>0

2n(γ−1)
P

{
2n−1∑

i=0

f ◦ θi > 2nγ

}
= +∞. (2.11)

Proposition 2.6. Let α > 1/2. There exists a stationary (and ergodic) sequence of martingale

differences (Xi)i>1 such that for every 0 < ε 6 1, E

[
X2

1

(
log+ |X1|

)1−ε
]

< ∞ and the series

∑
n>1

2n(2α−1)
P

{∣∣∣
∑2n

i=1
Xi

∣∣∣ > 2nα
}

diverges.

In [HL14], Baum-Katz type estimates have been formulated for martingales differences arrays,

extending the results in [Als90]. It has been extended to the Banach space valued setting in [Hao13].

However, it seems that our results cannot be compared with those of [HL14] because these ones require

a control in of the L
p-norm of n−1

∑n

i=1
E [|Xi|γ | Fi−1].
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Remark 2.7. A similar statement holds when np(α−1/2)−1
P {max16i6n ‖Si‖ > nαx} is replaced by

2n(p(α−1/2))
P {max16i62n ‖Si‖ > 2nαx} in item (3) of Theorems 2.2 and 2.4 In view of Theorem 3.7

in [LV01] when α = 1, the weight 2np/2 is optimal for stationary ergodic martingale differences

sequences in the following sense: if (Rn)n>1 is a sequence of real numbers with goes to infinity and

p > 2, then there exists a stationary martingale differences sequence (Xi)i>0 such that X1 belongs to

L
p but the sequence

(
2np/2RnP {max16i62n |Si| > 2n}

)
n>1

does not converge to 0.

2.2.2. Orthomartingale differences random fields. Let (Xi)i∈Zd be an i.i.d. real-valued random field.

Theorem 4.1 in [Gut78] gives the equivalence between the following two assertions for α > 1/2 and

p > max {1/α, 1}:

(1) X1 belongs to L
p logd−1

L;

(2) for each positive ε,

∑

n∈Nd

|n|pα−2
P

{
max

14i4n
‖Si‖ > ε |n|α

}
< +∞. (2.12)

Deviation inequalities has been used in [KL11, Lag16] for the question of complete convergence of

orthomartingale differences random fields.

Similar results as in Subsubsection 2.2.1 can be proved for some orthomartingale differences random

fields.

Theorem 2.8. Let B be a separable r-smooth Banach space. For each B-valued orthomartingale

differences random field (Xi)i∈Zd satisfying (1.15) and such that X1 ∈ L
r logd

L, for each positive ε

and each α ∈ (1/r, 1],

∑

n∈Nd

|n|rα−2
P

{
max

14i4n
‖Si‖ > ε |n|α

}
< +∞. (2.13)

Remark 2.9. One could also formulate the corresponding result where r is replaced in (2.13) by

1 < p < r. But this could be established in a more general context than ours, namely, that of

stochastically dominated orthomartingale differences random fields, by using truncation arguments

like in [DM07].

Theorem 2.10. Let B be a separable 2-smooth Banach space and p > 2. For each B-valued or-

thomartingale differences random field (Xi)i∈Zd satisfying (1.15) and such that X1 ∈ L
p logd−1

L, for

each positive ε and each α ∈ (1/2, 1],

∑

n∈Nd

|n|p(α−1/2)−1
P

{
max

14i4n
‖Si‖ > ε |n|α

}
< +∞. (2.14)

Remark 2.11. One hand the results in [Lag16], we do not require boundedness of the conditional

moments. On the other hand, their result do not require that (|Xi|)i∈Zd is identically distributed

hence the results are not directly comparable.

3. Proofs

3.1. Proofs of Theorems 1.3 and 1.7.

Proof of Theorem 1.3. We first start by a distribution function inequality, which was first established

in the real valued case and r′ = 2 in [Bur73] (see also [Pis75], p. 24 for a proof).
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Lemma 3.1. Let (B, ‖·‖) be an r-smooth Banach space for some 1 < r 6 2 and let 1 < r′
6 r.

Then for any δ ∈ (0, 1) and any B-valued martingale differences sequence (Xi)i>1 with respect to the

filtration (Fi)i>1, the following inequality holds for any n > 1 and x > 0:

P

{
max

16i6n
‖Si‖ > 2x

}
6 Cr′,B

(
δ

1 − δ

)r′

P

{
max

16i6n
‖Si‖ > x

}

+ P

{
max

16i6n
‖Xi‖ > δx

}
+ P





(
n∑

i=1

E

[
‖Xi‖r′ | Fi−1

])1/r′

> δx



 , (3.1)

where Cr′,B is defined by (1.6) and Sn =
∑n

i=1
Xi.

Proof. We assume that n > 2 since for n = 1, the result is obvious. We define A1 = B1 = C1 = ∅ and

for 2 6 i 6 n,

Ai :=

{
max

16u6i−1
‖Su‖ ∈ (x, 2x)

}
, (3.2)

Bi :=

{
max

16u6i−1
‖Xu‖ 6 δx

}
, (3.3)

Ci :=

{
i∑

u=1

E

[
‖Xi‖r′ | Fu−1

]
6 (δx)r′

}
. (3.4)

We then introduce

Yi := 1Ai 1Bi1Ci Xi, 1 6 i 6 n. (3.5)

We show that the following inclusion holds:

{
max

16i6n
‖Si‖ > 2x

}
∩
{

max
16i6n

‖Xi‖ 6 δx

}
∩





(
n∑

i=1

E

[
‖Xi‖r′ | Fi−1

])1/r′

6 δx





⊂
{∥∥∥∥∥

n∑

i=1

Yi

∥∥∥∥∥ > (1 − δ) x

}
. (3.6)

Indeed, let ω be an element of the left hand side of (3.6). Then for any i ∈ {2, . . . , n}, ω belongs

to Bi ∩ Ci. Consequently,
∑n

i=1
Yi (ω) =

∑n

i=2
1Ai Xi (ω). Let I := {i ∈ {2, . . . , n} : ω ∈ Ai}. Let

Mi := max16u6i ‖Si‖. Note that ‖S1 (ω)‖ = ‖X1 (ω)‖ 6 δx < x, since 0 < δ < 1 hence M1 < x and

Mn > 2x. Since for any i ∈ {1, . . . , n − 1} we have ‖Xi (ω)‖ 6 δx, it follows that 0 6 Mi+1 −Mi 6 δx.

Consequently, I is of the form {i, i0 6 i 6 j0} for some integers i0 > 2 and j0 6 n. Therefore,
∥∥∥∥∥

n∑

i=1

Yi (ω)

∥∥∥∥∥ =

∥∥∥∥∥

j0∑

i=i0

Xi (ω)

∥∥∥∥∥ >

∥∥∥∥∥

j0∑

i=1

Xi (ω)

∥∥∥∥∥−
∥∥∥∥∥

i0−1∑

i=1

Xi (ω)

∥∥∥∥∥− ‖Xi0 (ω)‖ . (3.7)

Now, (3.6) holds in view of the inequalities
∥∥∑j0

i=1
Xi (ω)

∥∥ > 2x,
∥∥∑i0−1

i=1
Xi (ω)

∥∥ 6 x (since ω ∈ Ii0 )

and ‖Xi0 (ω)‖ 6 δx.

Taking the probabilities on both sides in (3.6), one gets

P



{

max
16i6n

‖Si‖ > 2x

}
∩
{

max
16i6n

‖Xi‖ 6 δx

}
∩





(
n∑

i=1

E

[
‖Xi‖r′ | Fi−1

])1/r′

6 δx








6 P





∥∥∥∥∥

n∑

i=1

Yi

∥∥∥∥∥

r′

> ((1 − δ) x)r′



 6 ((1 − δ) x)r′

E



∥∥∥∥∥

n∑

i=1

Yi

∥∥∥∥∥

r′

 . (3.8)
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Observe that Ai, Bi and Ci belong to Fi−1, hence (Yi)i>1 is a martingale differences sequence. The

combination of (3.8) with (1.6) yields

P



{

max
16i6n

‖Si‖ > 2x

}
∩
{

max
16i6n

‖Xi‖ 6 δx

}
∩





(
n∑

i=1

E

[
‖Xi‖r′ | Fi−1

])1/r′

6 δx








6 ((1 − δ) x)−r′

Cr′,B

n∑

i=1

E

[
‖Yi‖r′

]
. (3.9)

Since for i > 2,

E

[
‖Yi‖r′

]
= E

[
E

[
‖Yi‖r′

]
| Fi−1

]
= E

[
1Ai1Bi 1CiE

[
‖Xi‖r′ | Fi−1

]]
, (3.10)

we derive that

E

[
‖Yi‖r′

]
6 E

[
1

{
max

16i6n
‖Si‖ > x

}
1CiE

[
‖Xi‖r′ | Fi−1

]]
. (3.11)

Observe that
n∑

i=2

1CiE

[
‖Xi‖r′ | Fi−1

]
6 (δx)r′

. (3.12)

Indeed, if Zi are non-negative random variables, Z′
i :=

∑i

u=1
Zu and Ei = {Z′

u 6 t}, we have

n∑

i=2

Zi1Ei =

n∑

i=2

(
Z′

i − Z′
i−1

)
1Ei

=

n∑

j=2

Z′
j1Ej −

n−1∑

j=1

Z′
j1Ej+1

= Z′
n1En +

n−1∑

j=2

Z′
j

(
1Ej − 1Ej+1

)
− Z′

11E2 ,

since Ej+1 ⊂ Ej , the second term is smaller than
∑n−1

j=2
t
(
1Ej − 1Ej+1

)
= t1E2 − t1En and conse-

quently,
n∑

i=2

Zi1Ei 6
(
Z′

n − t
)

1En + t1E2 − Z′
11E2 6 t. (3.13)

Combining (3.9), (3.11) and (3.12), we get (3.1). This ends the proof of Lemma 3.1. �

Let us define the functions

f : x 7→ P

{
max

16i6n
‖Si‖ > x

}
and (3.14)

g : x 7→ P

{
max

16i6n
‖Xi‖ > x

}
+ P





(
n∑

i=1

E

[
‖Xi‖r′ | Fi−1

])1/r′

> x



 . (3.15)

We established in Lemma 3.1 that for any x > 0 and any δ ∈ (0, 1),

f (2x) 6 Cr′,B

(
δ

1 − δ

)r′

f (x) + g (δx) . (3.16)

Let q > 0 be fixed and η := Cr′,B

(
δ

1−δ

)r′

. Let t > 0 be fixed, an := f (2nt), bn := η−nan and

cn := g (2ntδ). Then

bn+1 = η−n−1an+1 6 η−n−1 (ηan + cn) = bn + η−n−1cn. (3.17)
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Consequently,

bN = b0 +

N−1∑

n=0

bn+1 − bn 6 a0 +

N−1∑

n=0

η−n−1cn, (3.18)

which gives

aN 6 a0ηN +

N−1∑

n=0

ηN−n−1cn, (3.19)

and with the change of index j = N − n, we derive that for any positive t and any integer N ,

f
(
2N t
)
6 f (t) ηN +

N∑

j=1

ηj−1g
(
δ2N−jt

)
. (3.20)

Now, we choose δ := 2−1−q/r′

C
−1/r′

r′,B
, which is smaller than 1, as Cr′,B is bigger than 1. Applying

(3.20) with x = 2N t and letting N going to infinity (accounting f
(
2−N x

)
6 1 and 0 < η < 1), we get

f (x) 6

+∞∑

j=1

ηj−1g
(
δ2−jx

)
. (3.21)

Since the function g is non-increasing, we have
∫ 2−j+1

2−j

g (uxδ) uq−1du > g
(
2−jxδ

)∫ 2−j+1

2−j

uq−1du = g
(
2−jxδ

) 2q − 1

q
2−jq (3.22)

hence

f (x) 6
q

2q − 1

+∞∑

j=1

ηj−12jq

∫ 2−j+1

2−j

g (uxδ) uq−1du. (3.23)

Notice that

η 6 Cr′,B2r′

2−r′−qC−1
r′,B 6 2−q , (3.24)

hence

f (x) 6
q

2q − 1
η−1

∫ 1

0

g (uxδ) uq−1du. (3.25)

Since

η−1 =
(

1 − δ

δ

)r′

C−1
r′,B 6

(
1

δ

)r′

C−1
r′,B 6 2q−r′

, (3.26)

we get (1.7). This ends the proof of Theorem 1.3. �

Proof of Theorem 1.7. We shall need the following lemma.

Lemma 3.2. Assume that X and Y are two non-negative random variables such that for each positive

x, we have

xP {X > x} 6 E [Y 1 {X > x}] . (3.27)

Then for each t, the following inequality holds:

P {X > 2t} 6

∫ +∞

1

P {Y > st} ds. (3.28)

Proof of Lemma 3.2. Rewriting the expectation as

E [Y 1 {X > 2t}] =

∫ +∞

0

P {Y 1 {X > 2t} > u} du 6 tP {X > 2t} +

∫ +∞

t

P {Y > u} du, (3.29)

we derive by the assumption the bound

2tP {X > 2t} 6 tP {X > 2t} +

∫ +∞

t

P {Y > u} du. (3.30)
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We conclude using the substitution ts := u. �

We apply Theorem 1.3. The first term of (1.7) is controlled in the following way, using the fact

that if U has uniform distribution on [0, 1], then Q‖Xi‖ (U) has the same distribution as ‖Xi‖:

∫ 1

0

P

{
max

16i6n
‖Xi‖ > xun1/r′

}
uq−1du 6

n∑

i=1

∫ 1

0

P

{
‖Xi‖ > xun1/r′

}
uq−1du (3.31)

=

n∑

i=1

∫ 1

0

λ
{

t ∈ [0, 1], Q‖Xi‖(t) > xun1/r′
}

uq−1du

6

n∑

i=1

∫ 1

0

λ
{

t ∈ [0, 1], QX(t) > Br′,qxun1/r′
}

uq−1du

= n

∫ 1

0

P

{
X > xun1/r′

}
uq−1du, (3.32)

where λ denotes the Lebesgue measure.

In order to control the second term of (1.7), we first bound
∑n

i=1
E

[
‖Xi‖r′ | Fi−1

]
by
∑n

i=1
Vi

and we notice that for any convex function φ : R → R,

E

[
φ

(
1

n

n∑

i=1

Vi

)]
6

1

n

n∑

i=1

E [φ (Vi)] = E [φ (V1)] . (3.33)

By Theorem 6 in [Rue81], there exists a probability space (Ω′, A′,P′) and random variables Z′
n and

Z′ such that V ′
n has the same distribution as 1

n

∑n

i=1
Vi, Z′ has the same distribution as V1 and such

that Z′
n = E [Z′ | Z′

n].

Therefore, inequality (3.29) holds with X := Z′
n and Y = Z′, hence by Lemma 3.2 the estimate

P

{
1

n

n∑

i=1

E

[
‖Xi‖r′ | Fi−1

]
> 2ur′

xr′

}
6

∫ +∞

1

P

{
V1 > ur′

xr′

s
}

ds (3.34)

is valid for any n. We can deduce from inequalities (1.7) and (3.34) that (1.10) is satisfied after having

used the elementary identity

∫ 1

0

∫ +∞

1

h
(

ur′

v
)

dvuq−1du =
1

q − r′

∫ +∞

0

h (w) min
{

w
q−r′

r′ , 1
}

dw (3.35)

with h (t) := P

{
V1 > xr′

t/2
}

.

In order to prove (1.11), we bound the two terms of the right hand side of (1.7) independently of

n. Let us start by the first term, which can be written as

n−q/r′

∫ n1/r′

0

P

{
max

16i6n
‖Xi‖ > 2−1−q/r′

C
−1/r′

r′,B
xv

}
vq−1dv. (3.36)

If v 6 1, we use the bound n1−q/r′

vq−1
6 vq−1 (since q > r′). If 1 < v 6 n1/r′

, then n1−q/r′

vq−1
6

vr′−1. We thus have

∫ 1

0

P

{
max

16i6n
‖Xi‖ > 2−1−q/r′

C
−1/r′

r′,B
n1/r′

xu

}
uq−1du

6

∫ +∞

0

P

{
‖X1‖ > 2−1−q/r′

C
−1/r′

r′,B xv
}

min
{

vq−1, vr′−1
}

dv. (3.37)
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Let us treat the second term. For any convex function φ : R → R,

E

[
φ

(
1

n

n∑

i=1

E

[
‖Xi‖r′ | Fi−1

])]
6

1

n

n∑

i=1

E

[
φ
(
E

[
‖Xi‖r′ | Fi−1

])]

6
1

n

n∑

i=1

E

[
E

[
φ
(

‖Xi‖r′
)

| Fi−1

]]
= E

[
φ
(

‖X1‖r′
)]

.

Using again Theorem 6 in [Rue81], we derive that

∫ 1

0

P





(
n∑

i=1

E

[
‖Xi‖r′ | Fi−1

])1/r′

> 2−1−q/r′

C
−1/r′

r′,B
xu



uq−1du

6

∫ 1

0

∫ +∞

1

P

{
‖X1‖ > 2−1−q/r′

C
−1/r′

r′,B
xu
}

uq−1du. (3.38)

Combining (3.37) and (3.38), we get (1.11). This ends the proof of Theorem 1.7. �

3.2. Proof of Theorem 1.13. Let us prove (1.16). Let B be a separable r-smooth Banach space

and let r′ ∈ (1, 2], q > r′ be fixed.

Lemma 3.3. Let (fd)d>1 be a sequence of functions from (0, +∞) to ifself such that:

(1) for any martingale differences sequence (Xi)i>1 with values in B such that (‖Xi‖)i>1 is iden-

tically distributed and E

[
‖X1‖r′

]
< +∞, any n > 1 and any positive x,

P

{
max

16i6n
‖Si‖ > n1/r′

x

}
6

∫ +∞

0

P {‖X1‖ > xv} f1 (v) dv, (3.39)

where Sn =
∑n

i=1
Xi;

(2) for any d > 2 and any positive w,

fd (w) >

∫ +∞

0

∫ +∞

0

fd−1 (u) f1

(
u′
) 1

uu′
1
{

uu′
6 w

}
dudu′. (3.40)

Then for any integer d > 1, any orthomartingale differences random field (Xi)i∈Zd satisfying (1.15),

E

[
‖X1‖r′

]
< +∞, any n < 1 and any positive x,

P

{
max

14i4n
‖Si‖ > 2d−1x |n|1/r′

}
6

∫ +∞

0

P {‖X1‖ > xv} fd (v) dv, (3.41)

where Si is defined by (1.14).

For p > 0 and k ∈ N, let

ap,k :=

∫ 1

0

tp−1 (1 + |log t|)k dt. (3.42)

Lemma 3.4. Let (cd)d>1 be the sequence of real numbers such that

c1 =
2q+1

2q − 1

q2−r′

q − r′
and (3.43)

cd = cd−1

(
1 + aq−r′,d−2 + 2d−1aq−r′,d−2

)
. (3.44)

Then the sequence of functions (fd)d>1 defined by

fd : u 7→ cd min
{

uq−1, ur′−1
}

(1 + |log u|)d−1 , u > 0 (3.45)

satisfies the conditions of Lemma 3.3.
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Inequality (1.16) is a direct consequence of Lemmas 3.3 and 3.4.

Proof of Lemma 3.3. The proof is done by induction on d. The case d = 1 is contained in the

assumptions. Assume that inequality (3.41) holds for some d > 1 for any orthomartingale differences

random field (Xi)i∈Zd satisfying (1.15), E
[
‖X1‖r′

]
< +∞, any n < 1 and any positive x.

Let (Xi)i∈Zd+1 be an orthomartingale differences random field with respect to the commutatitve

filtration (Fi)i∈Zd+1 satisfying (1.15). Using property (P.2) in Lemma 1.12 and Lemma 3.2 applied to

X = max
16ik6nk
16k6d+1

‖Si‖ and Y = max
16ik6nk

16k6d

∥∥Si,nd+1

∥∥ , (3.46)

we get

P

{
max

14i4n
‖Si‖ > 2dx |n|1/r′

}
6

∫ +∞

1

P



 max

16ik6nk
16k6d

∥∥Si,nd+1

∥∥ > 2d−1x |n|1/r′

v



dv. (3.47)

We now apply the induction hypothesis to X̃i :=
∑nd+1

k=1
Xi,k, F̃i := Fi,nd+1

and x̃ := xn
1/r′

d+1 to get

P

{
max

14i4n
‖Si‖ > 2dx |n|1/r′

}
6

∫ +∞

1

∫ +∞

0

P

{∥∥∥∥∥

nd+1∑

k=1

X1,k

∥∥∥∥∥ > xn
1/r′

d+1 vu

}
fd−1 (u) dudv. (3.48)

After having appylied the one dimensional case, we derive that

P

{
max

14i4n
‖Si‖ > 2dx |n|1/r′

}
6

∫

(0,+∞)3

P

{
‖X1‖ > xvuu′

}
fd−1 (u) f1

(
u′
)

1 {v > 1} dvdudu′.

and the substitution w := vuu′ for fixed u and u′ combined with (3.40) end the proof of Lemma 3.3. �

Proof of Lemma 3.4. Item 1 follows from Theorem 1.7 after a substitution in the integral of the right

hand side of (1.11).

Let us show item 2. Let d > 2 be fixed. Observe that
∫ +∞

0

f1

(
u′
) 1

u′
1
{

uu′
6 w

}
du′ = c1

∫ w/u

0

1

v
min

{
vq−1, vr′−1

}
dv

6 c1 min

{∫ w/u

0

vq−2dv,

∫ w/u

0

vr′−2dv

}

6
c1

r′ − 1
min

{(
w

u

)q−1

,
(

w

u

)r′−1
}

,

hence
∫ +∞

0

∫ +∞

0

fd−1 (u) f1

(
u′
) 1

uu′
1
{

uu′
6 w

}
dudu′

6
c1

r′ − 1

∫ +∞

0

fd−1 (u) min

{(
w

u

)q−1

,
(

w

u

)r′−1
}

du. (3.49)

Let g : u 7→ fd−1 (u) u−1 min
{(

w
u

)q−1
,
(

w
u

)r′−1
}

and I (w) :=
∫ +∞

0
g (u) du. Assume that w 6 1.

Spliting the integral into three parts (from 0 to w, from w to 1 and from 1 to infinity), we get

I (w) = cd−1

∫ w

0

uq−1 (1 + |log u|)d−2 u−1
(

w

u

)r′−1

du+cd−1

∫ 1

w

uq−1 (1 + |log u|)d−2 u−1
(

w

u

)q−1

du

+ cd−1

∫ +∞

1

ur′−1 (1 + |log u|)d−2 u−1
(

w

u

)q−1

du =: cd−1 (I1 (w) + I2 (w) + I3 (w)) . (3.50)
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Let us bound these integrals. We have

I1 (w) = wr′−1

∫ w

0

uq−r′−1 (1 + |log u|)d−2 du

and the substitution x = u/w gives

I1 (w) = wq−1

∫ 1

0

xq−r′−1 (1 + |log x| + |log w|)d−2 dx 6 wq−12d−1aq−r′,d−2 (1 + |log w|)d−2 . (3.51)

Observe that for u ∈ (w, 1),

uq−1 (1 + |log u|)d−2 u−1
(

w

u

)q−1

= wq−1 (1 + |log u|)d−2 u−1
6 wq−1 (1 + |log w|)d−2 u−1 (3.52)

hence

I2 (w) 6 wq−1 (1 + |log w|)d−1 . (3.53)

Finally,

I3 (w) = wq−1

∫ +∞

1

1

uq−r′+1
(1 + |log u|)d−2 = aq−r′,d−2wq−1 (3.54)

hence

I (w) 6 cd−1wq−1 (1 + |log w|)d−1
(
1 + aq−r′,d−2 + 2d−1aq−r′,d−2

)
. (3.55)

Now, if w > 1, a similar result by spliting the integral into three parts (from 0 to 1w, from 1 to w and

from 1 to infinity) yields for w > 1:

I (w) 6 cd−1wr′−1 (1 + |log w|)d−1
(
1 + aq−r′,d−2 + 2d−1aq−r′,d−2

)
. (3.56)

This concludes the proof of Lemma 3.4. �

3.3. Proof of the results of Section 2.

Proof of Theorem 2.1. A computation gives that

θn − θ =

∑n

i=1
φiεi∑n

j=1
φ2

j

. (3.57)

We define

ξi :=
φiεi∑n

j=1
φ2

j

(3.58)

Fi := σ (εu, 1 6 u 6 i, φj , 1 6 j 6 n) , i > 1, F0 = σ (φj , 1 6 j 6 n) , (3.59)

and Gi := σ (εu, 1 6 u 6 i) for i > 1 and G0 = {∅, Ω}. In this way, for i > 2,

E [ξi | Fi−1] =
φi∑n

j=1
φ2

j

E [εi | Fi−1] . (3.60)

Since σ (φj , 1 6 j 6 n) is independent of σ (εu, 1 6 u 6 i), equality

E [εi | Fi−1] = E [εi | σ (εu, 1 6 u 6 i)] (3.61)

holds and the right hand side was assumed to be equal to zero. Moreover, by independence, E [ξ1 | F0] =

0 hence (ξi, Fi)i>1 is a martingale differences sequence. Since (θn − θ)
√∑n

i=1
φ2

i =
∑n

i=1
ξi, an ap-

plication of Theorem 1.3 with B = R and r′ = 2 yields

P



|θn − θ|

√√√√
n∑

i=1

φ2
i > x



 6 A1 + A2, (3.62)

where

A1 =
2q−2

2q − 1
q

∫ 1

0

P

{
max

16i6n
|ξi| > 2−1−q/2xu

}
uq−1du, (3.63)
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A2 =
2q−2

2q − 1
q

∫ 1

0

P





(
n∑

i=1

E
[
ξ2

i | Fi−1

]
)1/2

> 2−1−q/2xu



uq−1du. (3.64)

We bound A1 using Markov’s inequality:

A1 6
2q−2

2q − 1
q

n∑

i=1

∫ 1

0

P

{
|ξi| > 2−1−q/2xu

}
uq−1du (3.65)

6
2q−2

2q − 1

q

q − p

n∑

i=1

E [|ξi|p] 2p+pq/2x−p. (3.66)

Using independence and the convexity inequality
∑n

i=1
|φi|p 6

(∑n

i=1
φ2

i

)p/2
valid for p > 2, we get

that E [|ξi|p] 6 C1 hence

A1 6 C1
2q−2

2q − 1

q

q − p
2p+pq/2x−p. (3.67)

Now, in order to bound A2, we notice that

E
[
ξ2

i | Fi−1

]
=

φ2
i∑n

j=1
φ2

j

E
[
ε2

i | Fi−1

]
, (3.68)

and since ε2
i is independent of (φj , 1 6 j 6 n), we derive that

E
[
ξ2

i | Fi−1

]
=

φ2
i∑n

j=1
φ2

j

E
[
ε2

i | Gi−1

]
6 C2

φ2
i∑n

j=1
φ2

j

. (3.69)

Consequently, (
n∑

i=1

E
[
ξ2

i | Fi−1

]
)1/2

6
√

C2, (3.70)

and

A2 6
2q−2

2q − 1
q2q+q2/2x−qC

q/2
2 . (3.71)

Theorem 2.1 follows from the combination of (3.62), (3.67) and (3.71).

�

Proof of Theorem 2.2. We use inequality (1.11) with r′ = r and q = 2r to get that for some constants

C and c depending only on r and B,

P

{
max

16i6n
‖Si‖ > nα−1/rn1/rx

}
6 Cn

∫ 1

0

P {X > cnαxu} u2r−1du

+ C

∫ +∞

0

P

{
V

1/r
1 > cnα−1/rxu

}
min

{
u2r−1, ur−1

}
du. (3.72)

Observe that
+∞∑

n=1

nrα−1
P {X > cnαxu} =

+∞∑

n=1

nrα−1

+∞∑

k=n

P {X ∈ (kαxu, (k + 1)α xu]}

=

+∞∑

k=1

k∑

n=1

nrα−1
P {X ∈ (kαxu, (k + 1)α xu]}

6

+∞∑

k=1

krα
P {X ∈ (kαxu, (k + 1)α xu]}

6 (xu)−r
E [Xr]
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hence

C

+∞∑

n=1

nrα−2n

∫ 1

0

P {X > cnαxu} u2r−1du 6 Cc−rx−r

∫ 1

0

ur−1du. (3.73)

Since for any non-negative random variable Y ,
∑+∞

n=1
nrα−2

P
{

Y > nα−1/r
}

6 E [Y 1 {Y > 1}], we

have
+∞∑

n=1

nrα−2
P

{
V

1/r
1 > cnα−1/rxu

}
6 (cux)−r

E

[
V11

{
V

1/r
1 > cxu

}]
, (3.74)

which implies

+∞∑

n=1

nrα−2C

∫ +∞

0

P

{
V

1/r
1 > cnα−1/rxu

}
min

{
u2r−1, ur−1

}
du

6 C (cx)−r

∫ +∞

0

E

[
V11

{
V

1/r
1 > cxu

}]
min

{
ur−1, u−1

}
du. (3.75)

Now for any non-negative real number y, let h (y) :=
∫ y

0
min

{
ur−1, u−1

}
du. If y 6 1, then h (y) =

yr/r and if y > 1, then

h (y) =

∫ 1

0

ur−1du +

∫ y

1

u−1du =
1

r
+ log y. (3.76)

Since
∫ +∞

0

E

[
V11

{
V

1/r
1 > cxu

}]
min

{
ur−1, u−1

}
du = E

[
V1h

(
V

1/r
1

cx

)]
6

1

r
E [V1] +

1

r
E
[
V1 log+ (V1)

]
,

we get the convergence of the series
∑+∞

n=1
nrα−2

P {max16i6n ‖Si‖ > nαx}.

�

Proof of Theorem 2.3. We use inequality (1.10) with x̃ := x2n(α−1/2), r′ = 2 and q = 2p. We get

np(α−1/2)
P

{
max

16i6n
‖Si‖ > nαx

}
6 Cnp(α−1/2)+1

∫ 1

0

P {X > cxunα} u2p−1du

+ Cnp(α−1/2)

∫ +∞

0

P
{

V1 > x2u2n2α−1
}

min
{

u2p−1, u
}

du. (3.77)

(1) Assume that X1 belongs to L
p/2+1,∞ and V1 ∈ L

p/2,∞. One bounds the first term of the right

hand side of (3.77) by

Cnp(α−1/2)+1 sup
t>0

tp/2+1
P {X > t}

∫ 1

0

(cxunα)−(p/2+1) u2p−1du

= n( p
2

−1)(α−1)C sup
t>0

tp/2+1
P {X > t} (cx)−(p/2+1)

∫ 1

0

u3p/2−2du (3.78)

and use
(

p
2

− 1
)

(α − 1) 6 0. One bounds the second term of the right hand side of (3.77) by

Cnp(α−1/2) sup
t>0

tp/2
P {V1 > t}

∫ +∞

0

(
cx2u2n2α−1

)−p/2
min

{
u2p−1, u

}
du

= C (cx)−p sup
t>0

tp/2
P {V1 > t}

∫ +∞

0

min
{

up−1, u1−p
}

du, (3.79)

and since p > 2, the latter integral is finite.
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(2) Assume that X1 ∈ L
p/2+1,∞
0 and V1 ∈ L

p/2,∞. Plugging the bounds

P {X > cxunα} 6 (cxunα)−p/2−1 sup
t>cxu2n

tp/2+1
P {X > t} and (3.80)

P
{

V1 > cx2u2n2α−1
}
6
(
cx2u2n2α−1

)−p/2
sup

t>cx2u2n2α−1

tp/2
P {V1 > t} . (3.81)

into (3.77), we get

np(α−1/2)
P

{
max

16i6n
‖Si‖ > nαx

}
6 C (cx)−p/2−1

∫ 1

0

sup
t>cxunα

tp/2+1
P {X > t} u3s/2−2du

+ C
(
cx2
)−p/2

∫ +∞

0

sup
t>cx2u2nα

tp/2
P {V1 > t} max

{
up−1, u1−p

}
du, (3.82)

and the right hand side goes to zero by monotone convergence.

(3) Assume that X ∈ L
p/2+1 and V1 ∈ L

p/2. In view of (3.77), we have

+∞∑

n=1

np(α−1/2)
P

{
max

16i6n
‖Si (m)‖ > nαx

}
6 C

+∞∑

n=1

np(α−1/2)+1

∫ 1

0

P {X > cxunα} u2p−1du

+ C

+∞∑

n=1

np(α−1/2)

∫ +∞

0

P

{
V1 > cx2u2nα−1/2

}
min

{
u2p−1, u

}
du. (3.83)

Since for any non-negative random variable Y and any q > 2,
∑+∞

n=1
nq−1

P {Y > n} 6 E [Y q],

we get the conclusion of item 3 of Theorem 2.3.

�

The proof of Theorem 2.4 is completely analogous hence omitted.

Proof of Lemma 2.5. We use the skyscrapers construction of Kakutani as in [BK65].

Let (ℓn)n>1 be a non-increasing sequence of non-negative real numbers such that
∑

n>1
ℓn = 1. For

every integer n > 1, set Xn := [0, ℓn] × {n} ([0, ℓn] equipped with the Lebesgue measure). Define then

X := ∪n>1Xn. Let τ be an ergodic transformation of [0, ℓ0]. Define an ergodic transformation θ on

X by θ(x, n) = (x, n + 1) if (x, n + 1) ∈ X and by θ(x, n) = (τ (x), 0) otherwise.

Let n > 0. For every 2n
6 k 6 2n+1 − 1, let ℓk = κ

2n(γ−1)(n+1)2(k+1−2n)
, where κ is such that∑

n>1
ℓn = 1.

For every n > 0 and every (x, k) ∈ X, with 2n 6 k 6 2n+1 − 1, set f(x) = D(k + 1 − 2n)γ−1.

Let 0 < ε 6 1. We have

∫

X

f(log+(f))1−εdP 6 CD
∑

n>0

2n(1−γ)(n + 1)−1−ε

2n+1−1∑

k=2n

(k + 1 − 2n)γ−2
6 C̃D

∑

n>0

(n + 1)−1−ε < ∞ .

Taking D, large enough, we see that for every n > 2,
∑2n−1−1

k=2n−2 D
(
k + 1 − 2n−2

)γ−1
> 2nγ . Hence,

for that choice of D, we infer that f + . . . + f ◦ θ2n−1 > 2nγ on the set ∪2n−1

k=1 [0, ℓk+2n−1−1] × {k}.

Hence,

∑

n>0

2n(γ−1)
P

{
f + . . . + f ◦ θ2n−1 > 2nγ

}
>
∑

n>0

2n(γ−1)

2n−1∑

k=1

ℓk+2n−1−1 > c
∑

n>0

1

n + 1
= +∞ ,

which finishes the proof. �
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Proof of Proposition 2.6. Let γ = 2α. Let X be the probability space constructed in the proof of

Lemma 2.5. Let Ω1 be probability space rich enough to support a sequence (εn)n>1 of i.i.d. N (0, 1)

random variables. Let Ω := X × Ω1 with the product measure. Let f be the function satisfying the

conclusion of Lemma 2.5. For every n > 1, set Xn := εnf1/2 ◦ θn. Notice that (εn)n>1 is independent

from (f ◦ θn)n>1 so that (Xn)n>1 is a stationary sequence of martingale differences (and ergodic). Set

for every n > 1, sn :=
(∑n

i=1
f ◦ θi

)1/2
. We have, using independence,

∑

n>0

2n(α−1)
P

{∣∣∣∣∣

2n∑

i=1

Xi

∣∣∣∣∣ > 2nα

}
=

2√
2π

∑

n>0

2n(2α−1)
E

[∫ +∞

2nα/s2n

e−x2/2 dx

]

=
2√
2π

∫ +∞

0

(
∑

n>0

2n(2α−1)
P
{

s2
2n > 22nα/x2

}
)

e−x2/2 dx

>
2√
2π

(∫ 1

0

e−x2/2 dx

)∑

n>0

2n(2α−1)
P
{

s2
2n > 22nα

}
= +∞ .

�

Proof of Theorem 2.8. We apply Theorem1.13 with r′ = r, q = 2r and x := ε |n|α−1/r in order to get

P

{
max

14i4n
‖Si‖ > ε |n|α

}

6 C

∫ +∞

0

P
{

‖X1‖ > ε |n|α−1/r u
}

min
{

u2r−1, ur−1
}

(1 + |log u|)d−1 du. (3.84)

Multiplying by |n|rα−2, summing over n ∈ N
d and noticing that for any fixed N , the number of

elements k ∈ N
d such that

∑d

i=1
ki = N is cd

(
Nd−1 + 1

)
for some constant cd depending only on d,

we get

∑

n∈Nd

|n|rα−2
P

{
max

14i4n
‖Si‖ > ε |n|α

}

6 C′

∫ +∞

0

∑

k∈Nd

2
(rα−1)

∑d

i=1
ki
P

{
‖X1‖ > ε2

(α−1/r)
∑d

i=1
kiu

}
min

{
u2r−1, ur−1

}
(1 + |log u|)d−1 du

6 C′′

∫ +∞

0

+∞∑

N=1

2N(rα−1)Nd−1
P
{

‖X1‖ > ε2(α−1/r)N u
}

min
{

u2r−1, ur−1
}

(1 + |log u|)d−1 du

and using the fact that for any real valued random variable Y ,

+∞∑

N=1

2N(rα−1)Nd−1
P
{

Y > 2(α−1/r)N
}
6 Kp,α,r,dE

[
Y r (log (Y ))d−1

1 {Y > 1}
]

, (3.85)

we are reduced to prove finiteness of

E

[∫ ‖X1‖

ε

0

(
‖X1‖

uε

)r(
log

(
‖X1‖

uε

))d−1

min
{

u2r−1, ur−1
}

(1 + |log u|)d−1 du

]
. (3.86)

Let

Y :=

∫ ‖X1‖
ε

0

(
‖X1‖

uε

)r (
log

(
‖X1‖

uε

))d−1

min
{

u2r−1, ur−1
}

(1 + |log u|)d−1 du. (3.87)
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Assume that ‖X1‖ 6 ε. Then

Y =

∫ ‖X1‖
ε

0

(
‖X1‖

uε

)r (
log

(
‖X1‖

uε

))d−1

u2r−1 (1 + |log u|)d−1 du (3.88)

and the substitution v = u/ ‖X1‖ shows that

Y 6 C ‖X1‖2r (1 − log (‖X1‖))d−1 . (3.89)

Now if we assume that ‖X1‖ > ε, then

Y =

∫ 1

0

(
‖X1‖

uε

)r(
log

(
‖X1‖

uε

))d−1

u2r−1 (1 + |log u|)d−1 du

+

∫ ‖X1‖
ε

1

(
‖X1‖

uε

)r (
log

(
‖X1‖

uε

))d−1

ur−1 (1 + |log u|)d−1 du (3.90)

and the first term of the right-hand-side can be controlled by C ‖X1‖r (1 + |log ‖X1‖|)d−1, while for the

second, the substitution t := log u and an integration by parts yield Y 6 C ‖X1‖r (1 + |log ‖X1‖|)d.

We thus got the estimate

Y 6 C ‖X1‖r (1 + |log ‖X1‖|)d (3.91)

where C depends only on ε, d and r. Since X1 belongs to L
r logd

L, we proved (2.13) and the proof of

Theorem 2.10 is finished. �

Proof of Theorem 2.10. We apply Theorem1.13 with r′ = 2, q = 2p and x := ε |n|α−1/2 in order to

get

P

{
max

14i4n
‖Si‖ > ε |n|α

}

6 C

∫ +∞

0

P

{
‖X1‖ > ε |n|α−1/2 u

}
min

{
u2p−1, u

}
(1 + |log u|)d−1 du. (3.92)

Multiplying by |n|p(α−1/2)−1, summing over n ∈ N
d and noticing that for any fixed N , the number of

elements k ∈ N
d such that

∑d

i=1
ki = N is cd

(
Nd−1 + 1

)
for some constant cd depending only on d,

we get

∑

n∈Nd

|n|p(α−1/2)−1
P

{
max

14i4n
‖Si‖ > ε |n|α

}

6 C′

∫ +∞

0

∑

k∈Nd

2
(p(α−1/2)−1)

∑
d

i=1
ki
P

{
‖X1‖ > ε2

(α−1/2)
∑

d

i=1
ki u

}
min

{
u2p−1, u

}
(1 + |log u|)d−1 du

6 C′′

∫ +∞

0

+∞∑

N=1

2Np(α−1/2)Nd−1
P
{

‖X1‖ > ε2(α−1/p)N u
}

min
{

u2p−1, u
}

(1 + |log u|)d−1 du

and using the fact that for any real valued random variable Y ,

+∞∑

N=1

2Np(α−1/2)Nd−1
P
{

Y > 2(α−1/2)N
}
6 Kp,α,r,dE

[
Y p (log (Y ))d−1

1 {Y > 1}
]

, (3.93)

we are reduced to prove finiteness of

E

[∫ ‖X1‖

ε

0

(
‖X1‖

uε

)p(
log

(
‖X1‖

uε

))d−1

min
{

u2p−1, u
}

(1 + |log u|)d−1 du

]
. (3.94)
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Let

Y :=

∫ ‖X1‖

ε

0

(
‖X1‖

uε

)p(
log

(
‖X1‖

uε

))d−1

min
{

u2p−1, u
}

(1 + |log u|)d−1 du. (3.95)

If ‖X1‖ /ε 6 1, then

Y =

∫ ‖X1‖
ε

0

(
‖X1‖

uε

)p(
log

(
‖X1‖

uε

))d−1

u2p−1 (1 + |log u|)d−1 du

6 C ‖X1‖2p (1 + |log ‖X1‖|)d−1 . (3.96)

If ‖X1‖ /ε > 1, then

Y =

∫ 1

0

(
‖X1‖

uε

)p(
log

(
‖X1‖

uε

))d−1

u2p−1 (1 + |log u|)d−1 du

+

∫ ‖X1‖

1

(
‖X1‖

uε

)p(
log

(
‖X1‖

uε

))d−1

u (1 + |log u|)d−1 du. (3.97)

The first term can be bounded by C ‖X1‖p (1 + |log ‖X1‖|)d−1 and for the second one, the substitution

t := log u shows that a similar upper bound can be given. This ends the proof of Theorem 2.10. �
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