Split and Match: Example-based Adaptive Patch Sampling for Unsupervised Style Transfer

Abstract : This paper presents a novel unsupervised method to transfer the style of an example image to a source image. The complex notion of image style is here considered as a local texture transfer, eventually coupled with a global color transfer. For the local texture transfer, we propose a new patch-based method based on an adaptive partition that captures the style of the example image and preserves the structure of the source image. More precisely, this example-based partition predicts how well a source patch matches an example patch. Results on various images show that out method outperforms the most recent techniques.
Type de document :
Communication dans un congrès
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2016, Las Vegas, United States. 2016, <http://cvpr2016.thecvf.com/>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01280818
Contributeur : Oriel Frigo <>
Soumis le : vendredi 24 juin 2016 - 15:47:35
Dernière modification le : mardi 11 octobre 2016 - 14:59:38
Document(s) archivé(s) le : dimanche 25 septembre 2016 - 12:44:37

Fichier

frigo_cvpr2016_cameraready_ack...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01280818, version 2

Collections

Citation

Oriel Frigo, Neus Sabater, Julie Delon, Pierre Hellier. Split and Match: Example-based Adaptive Patch Sampling for Unsupervised Style Transfer. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2016, Las Vegas, United States. 2016, <http://cvpr2016.thecvf.com/>. <hal-01280818v2>

Partager

Métriques

Consultations de
la notice

255

Téléchargements du document

1161