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In this paper I present an analytic framework for gen-
erality in textbook proving tasks that involve functions. 
The framework is discussed in relation to results ob-
tained when analysing tasks in integral calculus. The 
results show that the frameworks’ categories are easily 
distinguishable if the functions are explicitly described. 
The results are also promising regarding the possibility 
to clarify differences between textbooks. The analysed 
sections exemplify that there is not necessarily a corre-
lation between the number of general proving tasks and 
the opportunities for students to engage in reasoning 
about arbitrary functions. Limitations and possible 
refinements of the framework are also discussed. 
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INTRODUCTION

Research on the teaching and learning of proof often 
involves the distinction between specific and general 
arguments and properties. For instance, students’ ten-
dency to take specific cases as sufficient justification 
of general properties is well documented (Harel & 
Sowder, 2007). The distinction between specific and 
general has also been used to study how mathemat-
ics textbooks support proof-related activities and 
learning (e.g., Stylianides, 2008; Thompson, Senk, & 
Johnson, 2012).

In an ongoing study, we use the analytical framework 
of Thompson and colleagues (2012) to investigate 
Swedish and Finnish upper secondary textbooks. One 
part of the analysis consists of determining whether 
or not textbook tasks provide opportunities for gen-
eral reasoning. When tasks involve functions, this 
distinction is not always obvious. Various combina-
tions of dependent variables, independent variables 
and other parameters mean significant differences in 
the ‘degree of generality’ between tasks. This suggests 

that such a textbook analysis would benefit from a 
more fine-grained classification of generality. In this 
paper I will address this issue by discussing a tenta-
tive generality framework for proving tasks based 
on the ‘size’ of the set of functions that the tasks call 
for a proof about. I will refer to this as the function 
generality framework. By ‘proving task’, I mean a text-
book exercise explicitly asking the student to prove 
or show a mathematical property. 

The function generality framework is an answer 
to the first of three questions stated below, around 
which this paper is focused. By applying it to proving 
tasks in Swedish and Finnish textbooks, some results 
relating to the other two questions will be obtained. 
The questions are: (1) How can ‘degree of generality’ 
in proving tasks involving functions be framed? (2) 
What analytical difficulties arise when proving tasks 
are classified according to function generality? (3) 
What can classification according to function general-
ity reveal about textbooks that a ‘specific-or-general’ 
classification cannot? 

Some initial results concerning the analysed text-
books will also be discussed.

BACKGROUND

One characteristic feature of a mathematical proof 
is that it usually provides a valid justification for a 
general property. However, numerous studies (many 
of which are referred to in Harel and Sowder (2007)) 
show that students on most educational levels, even at 
university (e.g., Hemmi, 2008; Weber, 2001), have lim-
ited understanding of this aspect of proof. Typically, 
students justify general statements with specific ex-
amples, view counter-examples as exceptions, believe 
that counter-examples might exist even if there is a 
general proof etc. In the literature, this has been re-
ferred to as empirical response (Bell, 1976), pragmat-
ic justification (Balacheff, 1988) and empirical proof 
scheme (Harel & Sowder, 1998). Central to all these 
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frameworks is some kind of distinction between the 
general and the specific. 

Even though no curriculum program is self-enacting, 
research has stressed the wide use of textbooks in 
classrooms and how they are crucial links between 
national curricula and teaching practice (e.g., Stein, 
Remillard, & Smith, 2007). In line with this research, 
mathematics textbooks can be seen as potential 
sources for opportunities to learn. Hence, textbooks’ 
treatment of reasoning and proving is an important 
object of study. Historically, such studies are rare 
(Hanna & de Bruyn, 1999), but in the past decade a 
number of studies with this focus have been pub-
lished (Nordström & Löfwall, 2005; Stylianides, 2008; 
Thompson et al., 2012). In an analysis of an American 
reform-based curriculum for middle school, it was 
found that 40% of the textbook tasks were designed to 
engage students in reasoning and proving, but only 
12% of these offered opportunities to provide general 
proofs (Stylianides, 2008). Thompson and colleagues 
(2012) report on an extensive study of US textbooks 
for upper secondary school, concerning opportuni-
ties offered for students to engage in proof-related 
reasoning within the topics of exponents, logarithms 
and polynomials. Their study showed that about 50% 
of the properties stated in narratives were given some 
kind of justification; 30% with a general argument 
(i.e. a proof ) and 20% with a specific case. About 5% 
of all exercises were considered proof-related, half 
of them of a general kind and half a specific kind. 
Approximately 1% of all exercises urged the student 
to develop a general argument.

The frameworks used by Stylianides (2008) and 
Thompson and colleagues (2012) are similar to (or 
inspired by) those used by Bell (1976), Balacheff (1988) 
and Harel and Sowder (1998). Hence, they also distin-
guish between specific and general aspects of textbook 
content. In an ongoing study, we have used the frame-
work of Thompson and colleagues (2012) to analyse 
Swedish and Finnish textbooks. Traditionally, deduc-
tive reasoning has primarily been studied in geome-
try courses, but more recently it has been suggested 
that reasoning and proof are important in all content 
areas (e.g. NCTM, 2000). Therefore, Thompson and 
colleagues (2012) choose to focus on algebraic top-
ics instead of geometry. For the same reason, and to 
further complement their study, we have focused on 
calculus. In this broader study we analyse all parts of 
textbooks: expository sections, worked examples, ex-

ercise sets, review exercises etc. It is during this work 
that I have encountered differences in generality that I 
have found difficult to capture with the earlier frame-
works, and which I therefore address in this paper.

When functions are involved in mathematical tasks, 
there are dependent as well as independent variables. 
A task like “Prove that Dx2 = 2x” is general in the sense 
that the student is asked to prove something for all x, 
but specific in the sense that it only concerns one 
particular function. The inclusion of more or less 
arbitrary functions, parameter families of functions 
and other parameters also means (potential) differ-
ences in the ‘degree of generality’. Tasks like “Prove 
that Dekx = kekx” and “Prove that Df(kx) = kf'(x)” are both 
general in the sense that the identities hold for all x 
and all k, but the second one is obviously more general 
than the first since it also holds for any differentiable 
function f. This difference in generality also implies 
different content focus; while the first focuses on 
properties of a certain function, the second focuses 
on a fundamental property of differentiation itself. 
These examples show a need for a more fine-grained 
framing of generality based on properties of the func-
tions involved in the tasks. 

I have also found several tasks formulated as “Show 
that …” but that were not general in any sense and only 
required a routine calculation. Sometimes it was the 
other way around: theoretically and cognitively de-
manding tasks that from a mathematical point of view 
concerned proving but were formulated in words like 

“Why is it …” or “Motivate why …”. This relates to find-
ings regarding proofs being “invisible” in textbooks 
(Nordström & Löfwall, 2005). While other studies (e.g., 
Stylianides, 2008; Thompson et al., 2012) look for op-
portunities to engage in reasoning and proving in 
a broad sense, it is therefore important to also look 
specifically at proving tasks. 

METHODOLOGY

Topic, context and textbooks
For the pilot study reported here, I have restricted 
the analysis to proving tasks in integral calculus. Like 
differential calculus, this topic is central in upper sec-
ondary school as well as in introductory courses at 
universities. However, the theory of integrals is more 
complicated and proofs are often omitted. There is 
a tendency that the underlying theory is not treat-
ed in detail in introductory courses at universities 
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but rather postponed to intermediate courses, due 
to students’ difficulties with a theoretical approach 
(Hemmi, 2006). Thus, it is a real challenge for upper 
secondary textbook authors to incorporate elements 
of reasoning and proving within this topic, and it is of 
research interest to study how this is done. 

To get a reasonably rich set of data, four different 
textbook sources were chosen (see Table 1 below): two 
Swedish upper secondary textbook series (referred to 
as SW1 & SW2), one Swedish undergraduate textbook 
(SWU), and one Finnish textbook for upper secondary 
school (FI1). Publishers are unwilling to reveal their 
market share, but it is well-known that SW1 and its 
predecessors have long dominated the Swedish mar-
ket. In 2011, more than 80% of those entering engineer-
ing programs at Örebro University reported having 
used these textbooks. The main reason for choosing 
SW2 was that, while SW1 is a traditional Swedish text-
book, SW2 is a newer one with more reform-oriented 
intentions and a stated focus on reasoning. FI1 is the 
only Finnish textbook series available in Swedish 
for use in the Swedish-speaking parts of Finland. Its 
Finnish original is probably the most widely used text-
book in Finland. Finally, for the sake of curiosity, and 
to get an indication of the usefulness of the function 
generality framework on introductory calculus texts 
for the university level, SWU was included; this is a 
Swedish single-variable calculus textbook that has 
been around for several decades.

Swedish upper secondary school is course-based. 
There are five mathematics courses, of which the first 
four are often a prerequisite for university studies in 
science and technology. Integral calculus is treated in 
Courses 3 and 4. The first three courses exist in dif-
ferent versions, depending on whether they are part 

of a vocational program (Track a), a program in the 
social sciences (Track b) or a program in science and 
technology (Track c). For this study, only textbooks 
for Track c were chosen. In Finland there is a short 
mathematics course serving as preparation for uni-
versity studies in, for example, the humanities, and 
a long course serving as preparation for university 
education involving higher mathematics. The long 
course is divided into 13 parts, the first ten of which 
are mandatory. Part 10 is devoted to integral calculus 
only (but this topic is further developed in Parts 12 
and 13). This study only includes Part 10.

Method
First, all textbook sections specifically dealing with in-
tegral calculus were identified. All exercises in these 
sections were included in the analysis, as were the 
review exercises on integral calculus (which were typ-
ically placed at the end of the book). The only excep-
tion was exercises on continuous distributions, which 
were all omitted since only one of the textbooks treat-
ed probability theory within the sections on integrals. 
Concerning the unit of analysis, whenever an exercise 
was divided into an enumerated list of subtasks, each 
subtask was regarded as one task. This resulted in a 
total number of 1,739 textbook tasks to be analysed 
(see Table 1). Since the function generality framework 
is meant to be a tool for analysing the opportunities 
offered to students to associate ‘proving’ with general 
justifications, I next looked for tasks explicitly asking 
the student to ‘show’ or ‘prove’ something. Such tasks 
are referred to as proving tasks. In total there were 80 
proving tasks, all of which could be interpreted as 
concerning functions. 

In SW1, SW2 and SWU all proving tasks were for-
mulated as “Show that …”; i.e., the word ‘prove’ was 

Table 1: Textbooks, tasks and proving tasks within sections on integral calculus

Publisher Series Book Total no. of

tasks proving tasks

SW1 Liber Matematik 5000 3c & 4 371 21 (6%)

SW2 Sanoma utbildning Origo 3c & 4 450 13 (3%)

FI1 Schildts Ellips 10 529 30 (6%)

SWU Matematik-centrum, 
Lund

Analys i en vari-
abel

Exercises 379 16 (4%)

1,739 80 (5%)



On a generality framework for proving tasks (Andreas Bergwall)

89

never used. In FI1 ‘prove’ was used as often as ‘show’. 
On three occasions, all in SW1, ‘show’ was used in 
a non-mathematical way, as in “Show in detail how 
you calculate the integral …” (SW1, Book 3c, p. 185, ex. 
3412a). I chose to include them in the analysis since 
they play a role in forming what students will associ-
ate with the word ‘show’.

For every proving task, a detailed account was made 
of the function(s) it concerned. This included informa-
tion on whether the task concerned specific functions, 
parameter families of functions (including the num-
ber of parameters) or more general non-parametric 
classes of functions. Notes were taken about the kind 
of elementary functions involved (polynomial, trig-
onometric function, exponential etc.) or, in the more 
general cases, what classes of functions were involved 
(continuous, periodic, odd etc.). It was also noted if a 
task contained additional parameters (not connected 
to the functions), or if it could be seen as general in 
some other sense.

Analytical framework
One way to determine whether a proving task offers 
opportunities for general reasoning is to determine 
whether the property to prove itself is general or spe-
cific. Therefore, all proving tasks were categorized as 
case-specific or case-general following the framework 
of Thompson and colleagues (2012). As mentioned 
earlier, the distinction between specific and gener-
al is sometimes difficult to make for tasks involving 
functions. The general principle used in this paper 
is that if one can think of a more specific case than 
what is stated in the task, without substituting the 
independent variable with a specific number, then the 
task is considered case-general. This means that the 
presence of an independent variable  is not enough 
for a property concerning functions to be deemed 
case-general – either there need to be other parame-
ters involved, or the property must concern a class of 
functions. Thus, for example, a proving task about e2x  
is usually considered case-specific (unless other pa-
rameters are involved), whereas a proving task about 
ax or ekx is considered case-general (see the Results 
section for further examples). I believe this is in line 
with how Thompson and colleagues (2012) would have 
distinguished between specific and general cases. To 
further clarify this notion, consider the following 
properties, which were all found (explicitly or implic-
itly) among the analysed proving tasks:

a ) 	 ∫ 41 √xdx =  14
3   

(SW1, Book 3c, p. 197, ex. 12a)

b ) 	 ∫a1 1
x2 dx never exceeds π  

(SW2, Book 4, p. 158, ex. 4371c)

c)	 F(x) =  a
x

ln a  is a primitive to f(x) = ax  
(SW2, Book 3c, p. 159 ex. 5124)  

d ) 	 ∫ a−a f(x)dx = 2 ∫a0 f(x)dx if f(x) is even  
(FI1, p. 156, ex. F1)

Here (a) is case-specific, while (b)–(d) are all case-gen-
eral due to the parameter . But, like the examples given 
in the Background section, there are differences in the 
‘degree of generality’ between (b), (c) and (d). While (b) 
concerns one specific function, (c) holds for a one-pa-
rameter family of functions and (d) holds for all even 
functions, a class too large to be represented by use 
of a finite number of parameters. In order to capture 
these differences, I introduce the function generality 
framework with three subcategories: statements about 
a finite number of specific functions, like (b), will be 
called non-general; statements about parameter fami-
lies of functions, like (c), will be called finitely general 
and measured by the number of parameters, as long as 
the number of parameters is finite; statements about 
more general sets of functions, like (d), which are too 
large to be represented by use of a finite number of 
parameters, will be called infinitely general.

From the student perspective, the difference between 
non-general and finitely general proving tasks is that 
in the latter case the student needs to distinguish the 
independent variable from other variables, and to be 
able to handle parameters when manipulating func-
tion expressions. But in both cases there are expres-
sions available for algebraic manipulation. In the case 
of infinite generality, though, the student needs to 
find suitable ways to represent and use the relevant 
property (like the property ‘being even’ in (d)). Thus, 
I believe the three categories of function generality 
to be of educational relevance, even though it is some-
times easier to prove an infinitely general statement 
than a non-general one.

The classification of tasks according to function gen-
erality can be done independently of the classification 
of tasks as case-specific or case-general. But since all 
case-specific tasks will be non-general, nothing is 
gained by applying the function generality frame-
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work to case-specific tasks. I therefore only apply this 
framework to case-general tasks; i.e. I see function 
generality as a way to divide case-general tasks into 
subcategories. 

During the analysis I soon discovered that proving 
tasks often express a relation between different class-
es of functions. In such cases, the task was classified 
according to the ‘largest’ of these classes. Examples 
are given in the Results section.

In our broader study, mentioned earlier, a second 
Finnish textbook series is included and parts of the 
analysis have been done independently by two re-
searchers. During this work we have discussed and 
compared our coding and resolved all differences.

Finally, even though Examples (a)–(d) are from inte-
gral calculus, the ambition is for the framing of gen-
erality described here to be applicable to any topic 
involving functions. Aspects of generality that might 
be unique to integral calculus will be touched upon 
in the discussion.

RESULTS

In this section I will present a representative sample of 
the analysed proving tasks belonging to the different 
framework categories, as well as tasks that highlight 
the strengths and weaknesses of the framework as an 
analytical tool. A summary of the number of proving 
tasks, by textbook series and generality, is shown in 
Table 2. For example, SW2 had 13 proving tasks: three 
case-specific and ten case-general. When these ten 
were analysed according to function generality, three 
were found to be non-general, six finitely general, and 
one infinitely general.

In SW1 and SW2 (but not in FI1 or SWU) I found 
proving tasks that were case-general, even though 
they were non-general in the sense that they only 

concerned specific functions. This was always due 
to additional parameters, typically as limits of inte-
gration, as in Example (b) in the framework section. 

Proving tasks of finite generality mostly concerned 
one- or two-parameter families of functions. SW2 also 
contained two tasks with three-parameter families. In 
FI1, six out of 13 finitely general tasks had the constant 
of integration as its only parameter, as in “Prove the 
integration formula ∫ sin x dx = −cos x + C” (FI1, p. 29, 
ex. 259a). 

In SW1 there was no proving task of infinite generality, 
while in SW2 there was one: “Show that if f(x) is contin-
uous in a ≤ x ≤ b then ∫ ba f(x)dx = −∫ab f(x)dx” (SW2, Book 4, 
p. 146, ex. 4340).  About a third of the proving tasks in 
FI1 were infinitely general. Half of these were similar 
to “Prove the integration formula ∫ f'(x)ef(x) dx = ef(x) + C” 
(FI1, p. 35, ex. 271b); i.e., they were essentially related 
to the chain rule.

During the classification according to function gen-
erality, only three tasks proved somewhat difficult to 
categorize, all of them in FI1. The first reads as follows: 

“Show that all primitive functions to  g(x) = x2(5 + 4x3)2 
are strictly increasing” (FI1, p. 25, ex. 250). In this task 
only one specific function is explicitly given, but the 
statement concerns the one-parametric class of its 
primitive functions. Therefore, I classified this task 
as finitely general. However, the proof need not take 
into account any parameters, since it mainly rests on 
the fact that g(x) > 0. 

A similar difficulty concerns ex. 460, p. 112 in FI1, 
where the student is asked to prove a general formu-
la for the area bounded by a parabola and a straight 
line. No explicit formulas are given for the two curves. 
However, since lines and parabolas are graphs of first- 
and second-degree polynomials, i.e. two- and three-pa-
rameter families of functions, I classified this task as 
finitely general.

Table 2: Numbers of proving tasks of different case and function generality

Proving tasks Case-specific Case-general

Total Non- 
general

Finitely 
general

Infinitely 
general

SW1 21 15 6 1 5 0

SW2 13 3 10 3 6 1

FI1 30 8 22 0 13 9

SWU 16 13 3 0 1 2
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The third example connects to the uniqueness of 
primitive functions, but is actually a result of differ-
ential calculus, often referred to as Rolle’s theorem: 

“If f'(x) = 0 everywhere then f is constant” (FI1, p. 156, 
ex. F3). The conclusion of this theorem means that the 
class of functions the theorem concerns is one-para-
metric. But in the proof, f must be handled as an arbi-
trary function with the property f’(x) = 0. I therefore 
considered this proving task to be infinitely general.

DISCUSSION

In the introduction I posed three questions. The first 
was how the ‘degree of generality’ in proving tasks 
involving functions could be framed. To answer this 
question, I have described a framework based on the 

‘size’ of the class of functions under consideration. 
Applying this to proving tasks in integral calculus in 
four sets of textbooks has made it clear that proving 
tasks of all three kinds (non-general, finitely general 
and infinitely general) exist, and that the classifica-
tion is straightforward as long as the proving tasks 
are explicit regarding which functions they concern. 
This indicates that for a generality analysis of upper 
secondary textbook proving tasks, the categories of 
the function generality framework are relevant and 
well-defined.

The second question concerned analytical difficulties. 
The three concluding examples in the Results section 
indicate that my framing of generality is less suitable 
when the functions under consideration are not ex-
plicitly given. In such tasks, the first step in providing 
a proof is often to find a suitable representation of 
the functions involved. One might therefore expect 
students to experience them as more general than our 
classification shows. This dimension of generality is 
not captured by my framework. The third example 
shows the difficulty in measuring generality in terms 
of the size of the class of functions when the statement 
itself is about this size. It is reasonable to believe that 
such difficulties arise more often when theoretically 
oriented textbooks are analysed, regardless of wheth-
er or not the topic is integral calculus. 

The third question concerned the usefulness of the 
framework. Let us first look at the differences be-
tween the textbooks, shown in Table 2. A larger part 
of the proving tasks are case-general in SW2 than in 
SW1, and the same holds if we focus on function gen-
erality. But if we compare SW2 and FI1, the function 

generality framework reveals differences that can-
not be seen simply by checking case generality. The 
proportion of case-specific to case-general proving 
tasks is approximately the same (1:3) for these text-
books. But while a third of the case-general proving 
tasks in SW2 turn out to be non-general when it comes 
to function generality, FI1 has no such non-general 
tasks. In addition, nine out of 30 proving tasks in FI1 
are infinitely general (concerns ‘any’ function), while 
there is only one such proving task in SW2. The fact 
that SW1 has no infinitely general proving tasks and 
SW2 has only one also means that they provide few (if 
any) opportunities to associate the imperative ‘prove’ 
with the providing of a general argument valid for 

‘any’ function. Since proving tasks concerning specific 
functions or parameter families of functions turn the 
attention to features specific to these functions and 
not to properties of integration in itself, the absence of 
proving tasks of infinite generality also means fewer 
opportunities for reification (Sfard, 1991) of the inte-
gral concept. Such information about textbooks may 
be of importance to teachers in planning and choos-
ing complementary materials so they will be able to 
offer students sufficient opportunities to learn the 
generality aspects of reasoning and proof.

Since the analysis presented here only includes sec-
tions on integral calculus, we cannot draw any general 
conclusions about the analysed textbooks. What is 
said above only applies to the exercise sets in the in-
tegral sections. But the point here is that the results 
show that the function generality framework has the 
potential to reveal textbook properties of educational 
importance that a categorization of proving tasks as 
case-specific or case-general cannot. It is reasonable 
to believe that this holds true for other mathematical 
topics as well. As a first step, we plan to widen the 
analysis to differential calculus and to include tasks 
that are proof-related in a broader sense. 

There are of course other aspects of proving that are 
not captured with this framework, and situations in 
which this framing of generality may be misleading. 
One topic-specific aspect concerns the constant of in-
tegration. As mentioned in the Results section, half 
of the finitely general proving tasks in FI1 had this 
constant as their only parameter. In such tasks, this 
parameter is seldom an essential part of the proof. 
Hence, the number of finitely general proving tasks 
can be misleading without further analysis of the pa-
rameters of the tasks. Another aspect relates to find-
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ings in the university textbook SWU. I was surprised 
to find so few general proving tasks in this book. On 
the other hand, my impression was that while proving 
tasks in the upper secondary textbooks often required 
only routine calculation (direct use of standard for-
mulas for differentiation and integration), the prov-
ing tasks in SWU were more non-routine. They often 
concerned inequalities, and the proofs required that 
functions be estimated. One way to put it is that au-
thors of upper secondary textbooks seem to want to 
acquaint students with the word ‘show’ by using it 
when one could just as well have asked them to cal-
culate. This tendency is not evident in the university 
text. The extent to which proving tasks actually re-
quire reasoning and not simply standard symbolic 
manipulation is not covered by my framework, but 
would certainly be an important element of textbook 
proving tasks to investigate further.
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