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34CERME9 (2015) – Plenary lectures

Understanding randomness: Challenges 
for research and teaching

Carmen Batanero 

Universidad de Granada, Granada, Spain, batanero@ugr.es

The ubiquity of randomness and the consequent need 
to understand random phenomena in order to make 
adequate decisions led many countries to include proba-
bility throughout the curricula from primary education 
to University level. This need was also recognized by the 
mathematicians who developed the probability theory. 
This is a relatively young field, and is not free of contro-
versies, which are also reflected in the lack of agreement 
on a common definition of randomness. Psychological 
and didactical research, suggest widespread miscon-
ceptions and misperceptions of randomness; however, 
these results have not always been taken into account 
in teaching, where randomness is considered a trans-
parent concept. 

Keywords: Randomness, epistemology, subjective views, 

teaching and learning.

The most decisive conceptual event of twentieth cen­
tury physics has been the discovery that the world is 
not deterministic. Causality, long the bastion of meta­
physics was toppled, or at least tilted... A space was 
cleared for chance (Hacking, 1990, p. 1).

When I was kindly asked to contribute with a plenary 
talk to this conference, I decided to select a topic that 
reflected a part of European research to stochastic 
education. Randomness is a good example, since it 
may be examined from the philosophical, psycholog­
ical, mathematical and didactic perspectives, each of 
which has been dealt with by European researchers, 
and which globally reflect the European perspective 
for didactics. Furthermore, there is an increasing 
tendency to teach probability to very young children. 
However, as we will analyse in my presentation, this 
concept is far from elementary and we still have to 
find adequate ways to introduce it to students at dif­
ferent ages.

With this view in mind, I will first describe some of the 
meanings attributed to the idea of randomness since 
its emergence; secondly, I will summarize the main 
research dealing with the personal meanings that peo­
ple attribute to randomness. I will finish with some 
personal suggestions for teaching and future stochas­
tic education research that may help to increase our 
understanding and managing of random situations.

FROM CHANCE TO RANDOMNESS

From childhood, we are surrounded by uncertainty, 
in our personal lives, our social activities and pro­
fessional work. The omnipresence of randomness 
implies our need to understand random phenomena 
in order to make adequate decisions when confronted 
with uncertainty. Mathematicians developed the field 
of probability as a set of models that can be applied to 
uncertain situations; however, progress in mathemat­
ical methods did not solve the philosophical debate 
around randomness. 

Today, mathematics curricula for compulsory teach­
ing levels increase the study of random phenomena. 
Expressions such as “random experiments”, “random 
digit”, “random variable”, “random variation”, “ran­
dom even”, “random sampling”, “randomly”, “random­
ization”, “random variable” appear in curricular doc­
uments (e.g., CCSSI, 2010; Franklin et al., 2007), as well 
as in the school textbooks. 

However, in these documents, the meaning of ran­
domness is not always clear and unequivocal, because 
these expressions refer to an abstract entity, not en­
tirely defined; thus, increasing potential difficulties 
for students or teachers arise. Randomness is a mul­
tifaceted object, as shown in the various interpreta­
tions received throughout history (Batanero, Green, 
& Serrano, 1998; Batanero, Henry, & Parzysz, 2005; 
Bennett, 1999; Saldanha & Liu, 2014). Even today, we 
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find no simple definition that we can use unambig­
uously to classify a given event or process as being 
random or not. In the following, the reflections about 
the nature of randomness by eminent statisticians, 
philosophers, psychologists and researchers in math­
ematics education are summarised. 

Primitive ideas
Early notions of chance were found in many ancient 
cultures. However, for centuries there was no theo­
retical speculation about the nature of randomness 
or systematic study of frequencies of results of these 
games. Possible reasons for the tardy development of 
probability, such as the connection of chance and divi­
nation to predict the future, were discussed by David 
(1962). Borovcnik and Kapadia (2014a) suggest that 
in Greek mathematics, data about variability was ig­
nored as contrary to their ideal of scientific argument. 
Later, many different conceptions of chance arose, in 
particular (Batanero, Henry, & Parzysz, 2005, p. 27):

Believing in a destiny predetermined by God or 
spirits; Assuming a personal chance factor, un­
equal for different individuals; Accepting natural 
necessity, ineluctably subjected to laws which 
still are partially unknown and which govern 
the world’s origin and evolution; Arguing the in­
extricable complexity of the infinitesimal causes 
generating macroscopic phenomena, which we 
consider fortuitous as the only possible reason­
able interpretation; Assuming the existence of a 
fundamental, chaotic and absolute natural ran­
domness.

Bennet (1999) analysed different historical concep­
tions of chance that was later formalized in the mathe­
matical concept of randomness (Saldanha & Liu, 2014). 
Some of these conceptions still appear in students and 
teachers (Batanero, Arteaga, Serrano, & Ruiz, 2014; 
Engel & Sedlmeier, 2005). Below I give a brief sum­
mary of these developments.

Chance and causality 
We can find a first meaning of randomness in the 
Spanish dictionary by Moliner (2000) where “random” 
is defined as “Uncertain. It is said of what depends 
on luck or chance” (p. 123), and “chance” is defined 
as “the presumed cause of events that are neither ex­
plained by natural necessity nor by a human or divine 
intervention” (p. 320). In this description, random is 

something with unknown causes and chance is the 
assumed cause of random phenomena. 

This meaning was prevalent in a first historical 
phase in the development of randomness according 
to Bennett (1999). According to David (1962), the as­
tralagus was used in games of chance around 3500 B.C. 
Cubic dice were abundant in primitive civilizations 
like the Egyptian or Chinese civilizations, which used 
games of chance in an attempt to predict or control 
fate in decision-making. In spite of this wide use, there 
was no scientific idea of randomness until the Middle 
Ages. Whether it was attributed to supernatural 
forces or not, randomness suppressed the possibili­
ty that human will, intelligence or knowledge would 
influence decisions or destiny (Poincaré, 1909/2011). 

Throughout this period, some philosophers related 
chance to causality (Bennet, 1999): Democritus sug­
gested that everything is the combined fruit of chance 
and need. Leucippus believed that nothing happens 
at random; everything happens for a reason and out 
of necessity. Aristotle considered that chance results 
from the coincidence of several independent events 
whose interaction results in an unexpected result. 
Implicit in this meaning is to believe that every phe­
nomenon has a cause. Randomness is only the mea­
sure of our ignorance. Random phenomena are, by 
definition, those whose laws are unknown (Poincaré, 
1909/2011).

A deterministic vision of the world was common 
throughout the Renaissance as is visible in Bernoulli 
(1713/1987, p. 14):

All which benefits under the sun from past, pre­
sent or future, being or becoming, enjoys itself an 
objective and total certainty… since if all what is 
future would not arrive with certainty, we cannot 
see how the supreme Creator could preserve the 
whole glory of his omniscience and omnipotence. 

This conception of chance as opposed to cause and 
due to our ignorance remained until the 19th cen­
tury: “Present events are connected with preceding 
ones by a link based upon the evident principle that 
a thing cannot occur without a cause which produces 
it” (Laplace, 1814/1995, p. vi).



Understanding randomness: Challenges for research and teaching (Carmen Batanero)

36

Modern concept of chance
This conception changed at the beginning of the 20th 
century. For example, Poincaré (1912/1987) noticed 
that some processes with unknown laws, such as 
death, are considered deterministic. Moreover, other 
phenomena, such as Brownian motion, are described 
by deterministic laws at a macroscopic level, while the 
behaviour of particles is random. Other situations 
are considered to be random because “A very small 
cause, which escapes us, determines a considerable 
effect that we cannot fail to see, and then we say that 
this effect is due to chance” (Poincaré, 1912/1987, p. 4).

Among the phenomena with unknown laws, Poincaré 
distinguished random phenomena that can be stud­
ied with probability calculus from other phenome­
na where probability is not applicable. Furthermore, 
probability will not lose its validity when we find out 
the rules governing the random phenomena. Thus, 
the director of a life insurance company is ignorant 
of the precise date when each person taking the in­
surance will die. Moreover, the distribution of the 
entire population´s lifetime does not change when 
we add knowledge about the precise death for each 
particular individual. Today, we accept the existence 
of fundamental chance around us and, in addition 
to the theory of probability, other theories, such as 
those of complexity or chaos, may be used to describe 
randomness.

The different philosophical conceptions of chance are 
compatible with the axiomatic mathematical theory of 
probability, which provides a system of concepts and 
procedures that serve to analyse uncertain situations 
(Batanero, Henry, & Parzysz, 2005). Mathematical 
probability does not enter philosophical debates and 
uses the ideas of random experiment and randomness 
as primitive (with no consideration of the nature of 
chance in each particular application). However, even 
today, the interpretations of randomness and proba­
bility continue to be subject of philosophical debates 
and the teacher of probability needs to be aware of 
these interpretations, because they influence stu­
dents’ reasoning when confronted with chance sit­
uations.

CONCEPTUALIZING RANDOMNESS 

According to Hacking (1975), probability was con­
ceptualized from two complementary perspectives 
since its emergence: as a personal degree of belief 

in the likelihood of random events (epistemic view), 
and as method to find objective mathematical rules 
through data and experiments (statistical view). These 
two views unfolded in multiple perspectives that de­
scribed what random events are, and how can we as­
sign probabilities to them.

Randomness as Equiprobability
In the earlier applications of probability, randomness 
was related to equiprobability, which was a reasonable 
assumption in games such as flipping coins or draw­
ing balls from an urn. Consequently, it was assumed 
that a member of a class was random (or was selected 
at random), when there was exactly the same proba­
bility to obtain this object or any other member of the 
same class. Thus, there is exactly the same probability 
to get the number 1 or any other number from 1 to 6, 
when throwing a dice. We can find, for example, this 
interpretation of randomness in the Liber de Ludo 
Aleae by Cardano (1663/1961, p. 189). 

The most fundamental principle of all in gam­
bling is simply equal conditions...of money, of 
situation...and of the dice itself. To the extent to 
which you depart from that equality, if it is in 
your opponent’s favour, you are a fool, and if in 
your own, you are unjust.

Accordingly, in the classical definition of probability 
given by de Moivre (1718/ 1967) and refined by Laplace 
(1814/1995), probability is simply the number of fa­
vourable cases to a particular event divided by the 
number of all cases possible in that experiment, pro­
vided all the possible cases are equiprobable.

Kyburg (1974) criticised this definition of randomness 
since it imposes unnatural restrictions to its applica­
tions. We can only consider that an object is a random 
member of a class if the class is finite. If the class is in­
finite, then the probability for selecting each member 
is zero, and so (apparently) identical, even when the 
selection method is biased. Applying this definition 
in order to discriminate a random from non-random 
member in a given class is difficult, even in games of 
chance. How could we know, for example, that a given 
coin is not slightly biased? 

Randomness as stability of frequencies
By the end of the 18th century, the study of random 
phenomena was extended beyond the world of games 
of chance to natural and social sciences. In these ap­
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plications, for example, to the study of the blood type 
of a newborn, we cannot apply equiprobability. The 
concept of independence was essential to assure ran­
domness in successive trials (Bennet, 1999). In this 
new view, we consider an object as a random member 
of a class if we could select it through a method pro­
viding a given a priori relative frequency in the long 
run to each member of this class. 

In his attempt to extend the scope of probability to 
insurance and life-table problems, Jacques Bernoulli 
(1713/1987) gave the first proof of the Law of Large 
Numbers and justified the use of relative frequencies 
to estimate the value of probabilities. In the frequen­
tist approach sustained later by von Mises (1928/1952) 
or Renyi (1966/1992), probability is defined as the 
hypothetical number towards which the relative fre­
quency tends. Such a convergence had been observed 
in many natural phenomena so that the frequentist 
approach extended the range of applications enor­
mously. A practical drawback of this conception is 
that we never get the exact value of probability; its es­
timation varies from one repetition of the experiment 
(called sample) to another. Moreover, this approach 
is not appropriate when it is impossible to repeat 
the experiment under exactly the same conditions. 
Another theoretical problem is that the number of ex­
periments that provides sufficient evidence to prove 
the random nature of the object is undefined.

Subjective view of randomness
In the classical and in the frequentist approaches, ran­
domness is an objective property of an event or an 
element of a class. Kyburg (1974) criticized this view 
and proposed a subjective interpretation of random­
ness composed of the following four elements:

―― The object that is supposed to be a random mem­
ber of a class;

―― The set of which the object is a random member 
(population or collective);

―― The property with respect to which the object is 
a random number of the given class;

―― The knowledge of the person giving the judge­
ment of randomness.

In this interpretation, randomness depends on the 
person’s knowledge. Consequently, what is random 

for one person might be non-random for another; ran­
domness is no longer a physical objective property, 
but a subjective judgement. We recognize here the 
parallelism with the subjective conception of proba­
bility, in which all probabilities are conditioned by 
information, and this is adequate in situations where 
some information may affect our judgement of ran­
domness.

This view was reinforced by the Bayes’s theorem, pub­
lished in 1763, that proved that the probability for a hy­
pothetical event could be revised in light of new avail­
able data. Following this new interpretation, some 
mathematicians like Keynes (1921), Ramsey (1931), 
or de Finetti (1937/1974) considered probability as a 
personal degree of belief that depends on a person’s 
knowledge or experience. Via the Bayes’ theorem, an 
initial (prior) distribution about an unknown proba­
bility changes by relative frequencies into a posterior 
distribution. However, the subjective character of the 
prior distribution in this approach was criticized; 
even if the impact of the prior diminishes by objective 
data and de Finetti (1934/1974) proposed a system of 
axioms to justify this view.

Axiomatization and formal mathematical views
Despite the fierce discussion on the foundations, the 
application of probability in all sciences and sectors 
of life was enormous. Throughout the 20th century, 
different mathematicians tried to formalize the math­
ematical theory of probability. Following Borel’s work 
on set and measure theory, Kolmogorov (1933/1950) 
proposed an axiomatic theory that was accepted by 
the different probability schools because the dif­
ferent view of probability (no matter the classical, 
frequentist or subjectivist view) may be encoded by 
Kolmogorov’s axioms. However, the particular inter­
pretation of probability and the method used to assign 
probabilities to events differ according to the school 
one adheres to. 

The development of statistical inference and the im­
portance of assuring random sampling to apply in­
ferential methods led to the practical interest to find 
procedures to produce sequences of “pseudo-random” 
digits. This need induced new discussion about theo­
retical models of randomness (Zabell, 1992). The need 
to distinguish two components in randomness was 
clear: the generation process (random experiment) 
and the pattern of the random sequences produced. 
We can generate random sequences with two different 
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methods: one is using physical devices, such as coins 
or dice. Another is using deterministic algorithms; 
therefore, we can separate the generating process 
from the result (random sequence). More correctly, 
these results are called pseudo-random, because the 
generating process is a deterministic algorithm, al­
though the sequence can pass some statistical tests 
for randomness. Most computer packages and calcu­
lators incorporate these algorithms, and thus we can 
easily obtain pseudo-random sequences of a given 
length with particular characteristics.

Different approaches served to describe the prop­
erties of a random sequence (Fine, 1971). Von Mises 
(1928/1952) defined a collective (population) as a mass 
phenomenon, a repetitive event or a long series of ob­
servations, for which we could accept the hypothesis 
of stabilization or the relative frequency towards a 
fixed limit. Starting from this idea, he defined a se­
quence of events to be random if, in any infinitely 
long series of outcomes, the relative frequencies of 
the various events have limiting values, and these 
values do not change in an infinite subsequence ar­
bitrarily selected. Thus, contrary to the belief held 
by many players, there is no algorithm (at least theo­
retically) that serves to predict the behaviour of ran­
dom sequences. However, since no statistical test can 
consider all potential pattern generators—because 
there are infinitely many—the possibility that a given 
sequence, in spite of having passed all our tests must 
always remain, and it should have some unnoticed 
pattern and so not really be random. Another prob­
lem is that we only produce finite sequences, so inev­
itably some tests will fail. In this sense, randomness 
is a theoretical concept and can only be applied to a 
process producing infinite sequences.

Kolmogorov (1965) defined the randomness of a se­
quence using the idea of computational complexity, 
taken from automata and computability theory. The 
complexity of a sequence is the difficulty in describ­
ing the sequence with a code that we can use later to 
reconstruct the sequence (or to store in a computer). 
The minimal number of signs needed to codify a se­
quence provides a scale of complexity. For example, 
0101010101 can easily be coded with just a few symbols: 
5{01}; while 0100110001 defies finding a shorter code, 
and then the first sequence is more complex than the 
second. In this approach, a sequence would be random 
if any coded description of the same is as long as the 
sequence itself. Therefore, a sequence would be ran­

dom if the simplest way in which we could describe 
it is by listing all its components. Chaitin (1975) sug­
gested that this definition establishes a hierarchy in 
the degree of randomness for different sequences and 
that perfect randomness is only theoretical.

Epistemic meanings of randomness
To sum up, we can use some ideas from the onto-se­
miotic approach to mathematics education. In this 
framework, mathematical knowledge has a socio-epis­
temic dimension, since it is linked to the activity in 
which the subject is involved and depends on the 
institutional and social context in which it is embed­
ded. Mathematical activity is described in terms of 
practices or sequences of actions, regulated by insti­
tutionally established rules, oriented towards solving 
a problem (Drijvers, Godino, Font, & Trouche, 2013). 
In this framework, the meaning of mathematical ob­
jects is linked to the mathematical practices carried 
out by somebody (a person or an institution) to solve 
specific mathematical problems. Around the mathe­
matical practices linked to these specific problems, 
different rules (concepts, propositions, procedures) 
emerge (Godino, Batanero, & Font, 2007); these rules 
are supported by mathematics language (terms and 
expressions, symbols, graphs, etc.), which, in turn is 
regulated by the rules. All these objects are linked to 
arguments that serve to communicate the problem 
solution properties and procedures, and to validate 
and generalize them to other contexts and problems. 

An epistemic configuration (either institutional or 
personal) is the system of objects involved in the 
mathematical practices carried out to solve a specific 
problem (Figure 1). Each different epistemic meaning 
of randomness is linked to a specific type of problem 
whose solution involves particular mathematical 
objects, part of which are summarised in Table 1. 
Consequently, there is a specific onto-semiotic con­
figuration linked to each of these meanings, which 
differ from each other not only in the philosophical 
aspects debated in the previous sections, but in the 
mathematical objects that characterize them. As a 
result, reducing the teaching of randomness to only 
one or a few of these views implies a reduction of the 
overall meaning of the concept.
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SUBJECTIVE CONCEPTUALIZATION 
OF RANDOMNESS

Research dealing with people’s conceptualization of 
randomness has a long history, and different research 
paradigms are visible in this research.

Levels of acquisition of the 
concept of randomness
The pioneer work in probabilistic reasoning was due 
to Piaget and Inhelder (1951) who described levels (or 
stages) in children’s understanding of chance and 

probability. These authors assumed that random­
ness is produced by the interference of independent 
causes, and then, children first have to understand de­
terministic cause-and-effect phenomena before they 
can grasp the nature of random events. Another pre­
requisite for understanding randomness, according 
to these authors is combinatorial reasoning, which is 
needed to describe the set of possibilities in random 
phenomena, and to accept that each isolated outcome 
is unpredictable. 

Piaget and Inhelder (1951) investigated the under­
standing of patterns in random distributions by chil­
dren.1 They designed an experiment simulating the 
fall of raindrops on the tiles of a pavement. After situ­
ating a few counters (raindrops) on the pavement, they 
asked the children where the next raindrop would fall. 
In a first stage (6–9 year-old), the children assumed 
that the raindrops would approximately fall in equal 
numbers on each square of the pavement. When there 
was one drop in every square of the pavement, ex­
cept for one empty square, the children invariably 
located the next drop in the empty square, so that a 
uniform distribution was achieved. With increasing 

1	 Piaget and Inhelder based their research on the classical view 

of probability.

Meaning of 
randomness

Problem Concepts/Properties Procedures

Intuitive Divination
Attempt to control chance

Luck, fate
Opinion, belief

Physical devices (dice, coins...)

Classical Establishing the fair betting 
in a game of chance

Equiprobability
Proportionality
Favourable/possible cases
Expectation

Enumeration
Combinatorial analysis
Laplace’s rule 
A priori analysis of the experiment

Frequentist Estimating the tendency in 
the long run

Repeatable experiment 
Frequency
Convergence

Collecting data
Estimation
Limit in the long run

Subjective Updating a degree of belief Subjective character
Depends on information
Non repeatable
Conditional probability
Prior distribution
Posterior distribution
Likelihood, risk

Bayes’ theorem
Decision theory and methods

Formal Describing mathematical 
properties of randomness

Random experiment
Sample space
Events algebra
Measure
Complexity
Random sequence

Abstract mathematics (e.g., set theory)
Randomness tests
Simulation
Algorithms that produce pseudo-random 
sequences

Table 1: Example of mathematical objects linked to different epistemic meanings of randomness

Figure 1: Onto-semiotics configurations involved in mathematical 

practices (Drijvers, Godino, Font, & Trouche, 2013, p. 28)
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age, Piaget and Inhelder assumed that the irregularity 
of the distribution would be accepted and that adoles­
cents would understand randomness.

Later research, however, contradicted this assump­
tion: Green (1989) investigated the probabilistic rea­
soning of 2 930 children in the United Kingdom and 
used some tasks related to perception of randomness 
at age 11–16; his findings suggest that the percentage of 
students recognizing random distributions does not 
improve with age (stagnation of children’s perception 
of randomness during this period). Similar results 
were found by Green (1991) and Engel and Sedlmeier 
(2005) with different tasks (to students at age 10–15). 

Intuitions and personal beliefs 
While Inhelder and Piaget focused on the formal un­
derstanding of randomness, other authors tried to 
describe personal beliefs and intuitive understand­
ing of this concept. This research suggests that the 
paradoxes and controversies about the meaning of 
randomness are reproduced in the intuitions people 
build when they face random situations; these in­
tuitions often contradict the mathematical rules of 
probability (Borovcnik & Kapadia, 2014a). 

Children use qualitative expressions (probable, un­
likely, feasible, etc.) to express their degrees of belief 
in the occurrence of random events; however, their 
ideas are too imprecise and have difficulty in dif­
ferentiating random and deterministic phenomena 
(Fischbein & Gazit, 1984). Young children may not 
see stable properties in random generators such as 
dice or marbles in urns and believe that such gener­
ators have a mind of their own or can be controlled by 
them (Fischbein, Nello, & Marino, 1991; Truran, 1994). 
Although older children may accept the need to assign 
numbers (probabilities) to events to compare their 
likelihood, a correct probabilistic reasoning rarely 
develops spontaneously without a specific instruction 
(Fischbein, 1975); for this reason, adults often have 
wrong intuitions about probability. 

Fischbein’s assumption has been confirmed by re­
search in the field of decision making under uncer­
tainty, where erroneous judgements in out-of-school 
settings are pervasive. The widely known studies by 
Kahneman and his collaborators (e.g., Kahneman, 
Slovic, & Tversky, 1982) support the idea that people 
violate probabilistic rules and use specific heuris-

tics2 to simplify uncertain decisions. According to 
these authors, heuristics such as representativeness 
or availaibility reduce the complexity of probabili­
ty tasks and may be useful in many situations; how­
ever, under specific circumstances these heuristics 
cause systematic biases with serious consequences. 
Furthermore, some people do not understand the 
purpose of probabilistic methods, which allow us to 
predict the behaviour of a distribution, but are invalid 
to predict each specific outcome (Konold, 1989). A de­
tailed survey of students’ intuitions, strategies and 
learning at different ages may be found in Chernoff 
and Sriraman (2014), Jones (2005), Jones, Langrall, and 
Mooney (2007), and Shaughnessy (1992). 

Generating and recognizing randomness
There is a wide research into adults’ subjective percep­
tion of randomness (e.g., Bar-Hillel & Wagenaar, 1991; 
Batanero & Serrano, 1999; Chernoff, 2009; 2011; Engel 
& Sedlmeier, 2005; Falk, 1981; Kahneman & Tversky, 
1972; Wagenaar, 1972), Two types of tasks have com­
monly been used: (a) In generation tasks subjects fol­
low standard instructions to invent a series of out­
comes from a typical random process, such as tossing 
a coin; (b) In comparative likelihood tasks (Chernoff, 
2011), people are asked to select the most or least likely 
of several sequences of results that have been pro­
duced by a random device or to decide whether some 
given sequences were produced by a random mech­
anism. Related tasks have also been proposed using 
two-dimensional random distributions of points on 
a squared grill (e.g., Batanero & Serrano, 1999; Green, 
1991; Engel & Sedlmeier, 2005; Toohey, 1995).

Generation tasks: Producing random distributions 
In a longitudinal study on randomness with 7 to 11 
year-old children, Green (1991) asked them to invent 
random sequences of heads and tails representing the 
results of flipping 50 times a fair coin. He first anal­
ysed whether the children produced approximately 
the same number of heads and tails in their sequences 
and found that they were very exact in reproducing 
equiprobability (the average number of heads was 
close to 25); furthermore, the children produced se­
quences with very consistent first and second parts 
(about 12 heads in each part). Green concluded that 
children were too consistent to reflect the random 

2	 The specific meaning of word heuristics in this research is 

a cognitive process that helps to solve a problem by reducing 

part of the data.
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variability. Moreover, these children did not perceive 
the independence, as they produced sequences with 
too short runs (of heads or of tails), as compared to 
the length we expect in a random sequence. As sug­
gested by Bryant and Nunes (2012), the independence 
of random events is hard to grasp and many adults 
believe that a head is more likely to appear on the sixth 
flipping of a coin after a run of five tails. 

Comparative likelihood tasks: Properties 
attributed to randomness 
Results from research asking people to distinguish 
random from non-random sequences of events sug­
gest that our judgements about what random se­
quences are, is subjected to biases (e.g., Batanero & 
Serrano, 1999; Chernoff, 2009, 2011; Green, 1983, 1991; 
Kahneman & Tversky, 1972; Konold, Pollatsek, Well, 
Lohmeier, & Lipson, 1993; Shaughnessy, 1977). 

An example of this research is Green’s (1983) study 
with 11–16 year-old children. In his questionnaire, he 
asked the children to discriminate between a random 
and a non-random sequence (both sequences consisted 
of results of flipping a coin 150 times). Most partici­
pants in the study chose the non-random sequence, 
regardless of their age. Some of them provided in­
correct reasons to justify their choice; for example, 
they argued that the pattern of the sequence was too 
irregular (and then they did not accept the variability 
of the random sequence). Other participants expected 
exactly 50% of heads and tails in a random sequence 
or rejected the possibility of long runs. Very similar 
results were found in another study (Green, 1991) 
where the author asked the children to discriminate 
random and non-random sequences of heads and tails, 
as well as random and non-random bi-dimensional 
distribution of points.

Toohey (1995) used part of Green’s tasks in a study 
with 75 12–16 year olds in Melbourne. He suggested 
that the understanding of randomness involves ac­
cepting the ideas of equal/unequal likelihood, multi­
ple possibilities, model, causality and unpredictability. 
He also identified two different possibilities (local and 
global) in attributions of randomness. The local per­
spective of randomness is based on isolated results, 
while global perspective is reliant on the frequency 
distribution of the different outcomes.

Batanero and Serrano (1999) proposed some items 
taken from Green (1991) to 277 students aged 14 and 

18 and analysed the reasons they gave to decide that a 
sequence or a distribution was random. The students’ 
arguments were related to the observed frequencies 
of events (close or different from the expected value), 
the overall pattern of the distribution (uniform distri­
bution or variability), the length of the runs (too short 
or too long runs), the existence of multiple possibili­
ties and the unpredictability of results. Even when the 
authors found some widespread misconceptions, they 
also noticed that the students were able to perceive the 
characteristics of the random sequences presented to 
them and that this recognition improved by age. They 
also identified some partly correct conceptions that 
reproduced the conceptions of randomness described 
in the first sections of this paper, which were consid­
ered correct in different historical periods. Consistent 
results were reported by Engel and Sedlmeier (2005) 
in a cross sectional study that examined German stu­
dents’ understanding of variability in empirical data 
and by Batanero, Gómez, Gea, and Contreras (2014) 
in a study with Spanish prospective primary school 
teachers3.

Facing the subjects with their own misconceptions: 
statistical analysis of their own data
As analysed in the previous sections, the perception 
of randomness is deduced with either generation or 
recognition tasks. Batanero and colleagues (2014) 
combined both tasks in a study with 208 Spanish pro­
spective primary school teachers, using a formative 
activity with two parts. In the first part (a classroom 
session), the prospective teachers carried out an 
experiment to decide whether the group had good 
intuitions on randomness or not. The experiment 
consisted of trying to write down apparent random 
results of flipping a fair coin 20 times (without really 
throwing the coin, just inventing the results) in such 
a way that other people would think the coin was 
flipped at random (invented sequence). Participants 
recorded the invented sequences on a recording sheet 
(this is a typical generation tasks). These sequences 
were analysed by the researchers and were consistent 
with previous research reported on generation tasks.

Batanero and colleagues also asked the prospective 
teachers to analyse some variables deduced from 

3	 Prospective primary school teachers do not follow a specific 

course of probability. They study elementary probability in their 

first year of studies and along secondary school (as a part of 

mathematics).



Understanding randomness: Challenges for research and teaching (Carmen Batanero)

42

their invented sequences (number of heads, number 
of runs, and length of the longer run) and compare 
them with the same variables in real coin-flipping 
sequences as a result of flipping a fair coin 20 times. 
The prospective teachers were asked to carry out the 
statistical analysis of differences between the same 
variables in the real coin-flipping and invented se­
quences for the whole group. They were also asked 
to prepare a report with their conclusions about how 
good their perception of randomness based on the 
statistical analysis, was. Each prospective teacher an­
alysed the results in his or her group (30–40 students 
per group) using elementary graphs and statistics; 
they had freedom to use any method they wished. This 
second part of the activity is a sophisticated version 
of a comparative likelihood task, because the partici­
pants were not only asked to discriminate the random 
(real flipping) from non-random (invented) sequenc­
es. They were only asked to perform (intuitively) the 
type of analysis that researchers use to study people’s 
perception of randomness. This activity was highly 
motivating for the prospective teachers and served 
to simultaneously increase their statistical and didac­
tical knowledge.

Results from this second part firstly showed that these 
prospective teachers were able to use their statistical 
knowledge to solve a real world problem (deciding 
if the perception of randomness in the group was 
good). They secondly completed a modelling cycle: 
they started from a real problem (studying the intu­
itions on randomness), simplified the problem, and 
decided which aspects were relevant. They thirdly 
built some mathematical models to study the problem, 
worked with the models, and finally interpreted the 
results to answer the real world question. As regards 
their perception of randomness, many of the primi­
tive conceptions described in Batanero and Serrano 
(1999) appeared and part of them were identified by 
the prospective teachers’ themselves. Participants 
also recognised that the classroom showed a good per­
ception of the expected value and a poor conception of 
both independence and variation. Some new results 
emerged; for example, some prospective teachers 
believed that it is not possible to apply mathemati­
cal methods (statistics) to study random phenomena, 
because of their unpredictability. A few participants 
also believed they could predict or control the out­
comes in a random process (illusion of control de­
scribed by Langer, 1975).

Other research paradigms
A different approach to evaluate people’s percep­
tion was taken by Konold, Lohmeier, Pollatsek, and 
Well (1991) who concentrated on the random process 
(instead of concentrating on the random sequence). 
They asked the subjects in their study to decide wheth­
er different types of situations (processes) were or 
were not random and justify their responses. They 
used processes with equiprobable and non-equiprob­
able outcomes. While they found no differences in the 
subjects’ categorization of the situations as random, 
novices tended to feel that the non-equiprobable sit­
uations were not random. The analysis of students’ 
arguments served to describe the following concep­
tions of randomness:

―― Randomness as equiprobability: Subjects that only 
consider randomness where all the possible re­
sults are equally probable.

―― Randomness as opposed to causality, or as a special 
type of cause.

―― Randomness as uncertainty; existence of multiple 
possibilities in the same conditions.

―― Randomness as a model to represent some phe­
nomenon, depending on our information about it.

Randomization is an important statistical procedure 
that assures the proper application of statistical meth­
ods, such as statistical tests. Pratt (2000) and Pratt and 
Noss (2002) investigated children’s understanding of 
randomization when playing chance games and found 
10-year olds that understood the connection between 
randomness and fairness, and the role of randomiza­
tion in ensuring fairness (see also Johnston-Wilder 
& Pratt, 2007; Paparistodemou, Noss, & Pratt, 2008). 
Pratt (2000) suggests that children reason with two 
different meanings for randomness (very close to 
the description by Toohey, 1995): a local perception 
is related to the impossibility to predict the process 
behaviour in each trial, while a global perception in­
volves the children´s understanding of patterns in the 
long run and in the distributions. 

As it is apparent in our survey, research into people’s 
perception of randomness has been faced with differ­
ent paradigms that provided complementary results. 
Yet new questions remain open; in particular, it is not 
clear what model of randomness is better suited for 
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children at different ages, or how we can help stu­
dents acquire progressively more complete models 
of randomness as they become adult. We now analyse 
the way the topic has been taken into account in the 
curricula.

TEACHING AND LEARNING 

Randomness in school curricula
The different views of probability have been reflect­
ed on the teaching of probability in schools, and on 
the way, randomness has been conceptualized in the 
curricula in Spain and other European countries; the 
concept itself is often only introduced via examples of 
random and non-random situations, or with indirect 
reference to isolated properties (e.g., unpredictabili­
ty) (Azcárate, Cardeñoso, & Serradó, 2005), but is not 
formally defined. 

According to Henry (2010), the classical view of prob­
ability based on combinatorial calculus dominated 
the French school curricula until the 80s, and this 
was also the case in Spain and other European coun­
tries. Since combinatorial reasoning is difficult, the 
teaching of probability was postponed until grades 8 
or 9 (14 year-olds), an age where wrong intuitions diffi­
cult to eradicate are already acquired. Throughout the 

“modern mathematics” era, probability was used to 
illustrate set theory; there was little interest in model­
ling random phenomena from the real world. In these 
two approaches, the applications were restricted to 
games of chance; consequently, many school teach­
ers considered probability as a part of recreational 
mathematics, with not much value for the education 
of children and tended to reduce its teaching.

Today, due to the technology available, we use the 
frequentist view to introduce probability as the limit 
of relative frequencies in a long series of trials. This 
change also involves a shift from a formula-based 
approach to an emphasis on providing probabilistic 
experience. Even very young children are encouraged 
to perform random experiments or simulations, for­
mulate questions or predictions about the tendency 
of outcomes in a series of these experiments, collect 
and analyse data to test their conjectures, and justi­
fy their conclusions based on these data. This view 
also connects to the current interest for modelling in 
school mathematics (Henry, 2010), since simulation 
can also help students distinguish between model (the 

theoretical probability) and reality (frequencies of ex­
perimental results) (Girard, 1997; Engel & Vogel, 2004). 

Randomness receives prominence today at high 
school level in relation to the introduction of inference 
(or “informal inference”). For example, in the CCSSI 
(2010) for grade 7 we find “use random sampling to 
draw inferences about a population” and “understand 
and evaluate random processes underlying statisti­
cal experiments”. For high school (grades 9–12), this 
curriculum specifies “define a random variable for a 
quantity of interest by assigning a numerical value”, 

“use random number generators”, and “collect data 
from a random sample of a population”. Many other 
curricula in Europe, as well as in the Australia, New 
Zealand and the United States approach probability 
and inference in a frequentist way, using simulation 
and resampling to estimate the probabilities of inter­
est (e.g., Frischemeier & Biehler, 2013). The subjective 
view, that takes into account one-off decisions, which 
are frequent in everyday life, and where we cannot 
apply the frequentist view, is hardly considered in 
the curriculum. Moreover, the experiments we often 
simulate are atypical examples of random situations, 
in the sense that in few real-life applications of prob­
ability can we repeat a process many times in exactly 
the same conditions (Borovcnik & Kapadia, 2014a).

A didactic approach to randomness
The many perspectives and properties of random­
ness described in the previous sections suggest that 
a complete understanding of randomness is only 
achieved gradually. Moreover, probability models do 
not exactly fit reality and therefore should be viewed 
more as scenarios to explore reality than as images of 
this reality (Borovcnik, 2006). Since feedback in prob­
ability is only indirect (after a long series of trials), 
understanding of probability is not easy.

Throughout primary school, we can encourage chil­
dren to discriminate certain, possible and impossible 
events in different context, and use the language of 
chance. Starting with specific materials with symmet­
rical properties, such as dice or coins, the children can 
compare their predictions from the a-priori analysis 
of the structure with frequency from data collected 
from repeated experiments to estimate probability.

In a second stage, we can progressively move to the 
study of materials lacking symmetry properties – 
spinners with unequal areas, thumbtacks, etc.  –, 
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where we only can estimate probability from frequen­
cies. Once this phase is successful, we can turn to real 
life (e.g., sports, demographic, or social phenomena), 
using data available from the daily press, Internet, 
or other sources. Subjective situations (e.g., should 
the teacher ask me next time?) where only personal 
probabilities can be applied, can complete the field of 
application of probability. 

By the end of primary school or in early middle school 
(10–11 year olds) children can start simulating simple 
situations using devices such as the box model simu­
lator in the National Library of Virtual Manipulatives 
(http://nlvm.usu.edu/). Today, there are plenty of tech­
nological resources, including software specially de­
signed to explore probability (see also Lee & Lee, 2009). 
With simulation, we introduce a modelling approach 
where the essential features of the situation are mod­
elled by the simulator and irrelevant properties are 
disregarded. As shown by Pratt (2000), simulation 
of familiar objects like dice, can help 10–11 year-old 
children express their previous beliefs and articulate 
a more complete meaning for randomness in the light 
of their experiences with the simulator. 

Towards the end of secondary school (15–16 year olds) 
a deeper analysis of the properties of the random 
numbers generated through a calculator or computer 
may be introduced. The experiments, recording and 
analysis of the sequences produced in these simula­
tion activities will help to integrate study of proba­
bility and statistics. Eichler and Vogel (2014) propose 
a modelling approach for each of the main views of 
probability (classical, frequentist and subjective) and 
discuss the role of simulation in supporting students’ 
understanding in each of these perspectives. The con­
text of decision making, such as for example, taking 
insurance, is useful to introduce subjective views. 
When facing the uncertainty of a single decision, this 
decision could be made more transparent if we ask 
the students to weigh up the different possibilities, 
and compute the expected values of costs or prizes 
(Borovcnik, 2006).

The gradual introduction of concepts and notation 
will serve to mathematically explain the regularities 
observed in the data. Exploration of microworlds (e.g, 
Cerulli, Chioccariello, & Lemut, 2006) may serve to 
confront children´s intuitions to mathematical ideas. 
Johnston-Wilder and Pratt (2007) suggest that these 
tools help children see randomness as a dynamic pro­

cess, since a printout of a random sequence loses the 
essence of what random is to be.

Through these activities, students will progressive­
ly acquire understanding of the following essential 
characteristics of random phenomena:

―― In a random situation there is uncertainty; more 
than one result is possible. 

―― The actual result, which will occur, is unpredict­
able (local variability of random processes).

―― We can analyse either the process (random gen­
erator) or the sequence of random results: these 
two aspects can be separated.

―― In a few situations (e.g., games of chance) we can 
analyse the process before the experiment; this 
analysis will inform us of the likelihood of pos­
sible results

―― Commonly, there is the possibility—at least in 
the imagination—of repeating the experiment 
(or observation) many times in (almost) similar 
conditions. 

―― In this case, the sequence of results obtained 
through repetition lacks a pattern; we cannot 
control or predict each result (local variability).

―― In this apparent disorder, a multitude of global 
regularities can be discovered, the most obvious 
being the stabilization of the relative frequencies 
of each possible result. This global regularity is 
the basis that allows us to study random phenom­
ena using the theory of probability.

―― In one-off uncertain situations we still can apply 
probability if our initial degrees of beliefs are 
consistent (have reasonable properties).

―― To conclude, randomness is a model we apply to 
some situations, because this model is useful to 
predict or control the situations. 

As argued by Konold and colleagues (1991), it is prefer­
able to consider randomness as a label with which we 
associate many concepts, such as experiment, event, 
sample space, probability, etc. In this sense, the word 
randomness refers to a collection of mathematical 
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concepts and procedures, which we can apply to un­
certain situations. We need to think about the orienta­
tion we take towards the phenomenon that we qualify 
as “random” rather than think of randomness as an 
objective quality of the phenomenon itself. We apply 
a mathematical model to the situation, because it is 
useful to describe it and to understand it; but we do 
not believe that the situation is identical to the model. 
Deciding when a probability model is more appropri­
ate for the situation than other mathematical models 
is a part of the competence we want the students to 
develop.

FINAL REFLECTIONS

The complexity of the idea of randomness explains 
the counterintuitive results that abound even in ba­
sic probabilistic concepts (Székely, 1986; Borovcnik 
& Peard, 1996). This complexity is also reflected at 
higher levels in probability theorems (e.g., the Central 
Limit theorem) that are expressed in terms of prob­
ability. According to Borovcnik and Kapadia (2014b), 
our poor intuitions in this field may be explained by 
our desire for deterministic explanations, but they 
might also be attributed to an inadequate education.

In spite of this complexity, “Probability is the only reli­
able means we have to predict and plan for the future; 
it plays a huge role in our lives, so we cannot ignore 
it, and we must teach it to all future citizens” (Devlin, 
2014, p. ix). It is then important to reinforce proba­
bility in the school curricula and to find appropriate 
conceptualizations of randomness for different ages.

One goal of probability education is to take advantage 
of children’s intuitions from elementary school as 
a basis for the acquisition of probability reasoning. 
One important insight into this line of research is 
the power of representation formats, such as natural 
frequencies (Gigerenzer & Hoffrage, 1995) or “tinker 
cubes” and other manipulatives (Martignon, Laskey, 
& Kurz-Milcke, 2007). Experimental interaction with 
mathematical modelling in a co-operative setting can 
likewise help children develop secondary intuitions 
(Nilson, 2003). Besides, as suggested by Andrà and 
Stanja (2013) it is important to pay attention to the in­
terpretation and use of signs, which is not self-evident 
in probability, and may be interfered with experience 
with the same signs in other mathematical domains.

It is also important to confront the students with their 
own misconceptions and erroneous beliefs. As dis­
cussed by Borovcnik and Kapadia (2014b), progress in 
the development of mathematical concepts is usually 
accompanied by ruptures and conflicts, but there is 
an opportunity for learning when one tries to solve 
the conflict and understand paradoxical results. 

Eichler and Vogel (2014) analyse the role of simula­
tion to explore a model that already exists, develop 
an unknown model approximately, and represent 
data generation. However, though simulation is vital 
to improve students’ probabilistic intuitions and to 
materialize probabilistic problems, a genuine knowl­
edge of probability can only be achieved through the 
study of some formal probability theory. Of course, 
the acquisition of such formal knowledge by students 
should be gradual and supported by experience with 
random experiments. 

We should also complement the objective and subjec­
tive views of probability. Even when many people be­
lieve that events have a unique probability rather than 
considering probability as a measure of our knowl­
edge (Devlin, 2014), the idea of updating previous in­
formation in the light of new data is very intuitive as 
it reflects the way how people think. 

It is also important to empower teachers with a 
specific preparation to teach probability because 
teachers’ beliefs influence their instructional plan­
ning, their classroom practices, and have an impact 
on their students’ learning (Eichler, 2011). Even if 
prospective teachers have a major in mathematics, 
they may be unfamiliar with different meanings of 
randomness and probability, or with their students’ 
most common misconceptions. Teachers should also 
be conscious that teaching principles valid for other 
areas of mathematics, are not always appropriate 
in the field of probability (Batanero & Díaz, 2012). 
As described in a teaching experiment reported 
by Brousseau, Brousseau, and Warfield (2002), the 
teacher may fail to produce a specific random result 
when needed (even if he/she manages to assure a good 
probability of happening for the given result). Thus, 
even a reasonable knowledge of probability would 
not suffice for the teacher to be able to reproduce the 
didactic situation exactly as he/she prefers, and this 
could be a source of challenge for the teacher.
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The preparation of teachers requires the design of ac­
tivities where teachers are first confronted with their 
previous ideas and then perform and discuss experi­
ments (e.g., Batanero, Biehler, Engel, Maxara, & Vogel, 
2005; Batanero et al., 2014) in order to simultaneously 
increase teachers’ probabilistic and didactic knowledge. 
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