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Abstract

To characterize natural selection, various analytical methods for detecting candidate genomic regions have been devel-
oped. We propose to perform genome-wide scans of natural selection using principal component analysis (PCA). We
show that the common FST index of genetic differentiation between populations can be viewed as the proportion of
variance explained by the principal components. Considering the correlations between genetic variants and each prin-
cipal component provides a conceptual framework to detect genetic variants involved in local adaptation without any
prior definition of populations. To validate the PCA-based approach, we consider the 1000 Genomes data (phase 1)
considering 850 individuals coming from Africa, Asia, and Europe. The number of genetic variants is of the order of 36
millions obtained with a low-coverage sequencing depth (3�). The correlations between genetic variation and each
principal component provide well-known targets for positive selection (EDAR, SLC24A5, SLC45A2, DARC), and also new
candidate genes (APPBPP2, TP1A1, RTTN, KCNMA, MYO5C) and noncoding RNAs. In addition to identifying genes
involved in biological adaptation, we identify two biological pathways involved in polygenic adaptation that are related
to the innate immune system (beta defensins) and to lipid metabolism (fatty acid omega oxidation). An additional
analysis of European data shows that a genome scan based on PCA retrieves classical examples of local adaptation even
when there are no well-defined populations. PCA-based statistics, implemented in the PCAdapt R package and the
PCAdapt fast open-source software, retrieve well-known signals of human adaptation, which is encouraging for future
whole-genome sequencing project, especially when defining populations is difficult.

Key words: FST, principal component analysis, population structure, population genomics, landscape genetics, selection
scan, local adaptation, 1000 genomes.

Significance Statement
Positive natural selection or local adaptation is the driving
force behind the adaption of individuals to their environment.
To identify genomic regions responsible for local adaptation,
we propose to consider the genetic markers that are the most
related with population structure. To uncover genetic struc-
ture, we consider principal component analysis that identifies
the primary axes of variation in the data. Our approach gen-
eralizes common approaches for genome scan based on mea-
sures of population differentiation. To validate our approach,
we consider the human 1000 Genomes data and find well-
known targets for positive selection as well as new candidate
regions. We also find evidence of polygenic adaptation for
two biological pathways related to the innate immune system
and to lipid metabolism.

Introduction
Because of the flood of genomic data, the ability to under-
stand the genetic architecture of natural selection has dra-
matically increased. Of particular interest is the study of local
positive selection which explains why individuals are adapted
to their local environment. In humans, the availability of ge-
nomic data fostered the identification of loci involved in pos-
itive selection (Sabeti et al. 2007; Barreiro et al. 2008; Pickrell
et al. 2009; Grossman et al. 2013). Local positive selection
tends to increase genetic differentiation, which can be mea-
sured by difference of allele frequencies between populations
(Nielsen 2005; Sabeti et al. 2006; Colonna et al. 2014). For
instance, a mutation in the DARC gene that confers resistance
to malaria is fixed in sub-Saharan African populations
whereas it is absent elsewhere (Hamblin et al. 2002). In
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addition to the variants that confer resistance to pathogens,
genome scans also identify other genetic variants, and many
of these are involved in human metabolic phenotypes and
morphological traits (Barreiro et al. 2008; Hancock et al. 2010).

In order to provide a list of variants potentially involved in
natural selection, genome scans compute measures of genetic
differentiation between populations and consider that ex-
treme values correspond to candidate regions (Luikart et al.
2003). The most widely used index of genetic differentiation is
the FST index which measures the amount of genetic variation
that is explained by variation between populations (Excoffier
et al. 1992). However the FST statistic requires to group indi-
viduals into populations which can be problematic when as-
certainment of population structure does not show well-
separated clusters of individuals (e.g., Novembre et al. 2008).
Other statistics related to FST have been derived to reduce the
false discovery rate (FDR) obtained with FST but they also
work at the scale of populations (Bonhomme et al. 2010;
Fariello et al. 2013; G€unther and Coop 2013). Grouping indi-
viduals into populations can be subjective, and important
signals of selection may be missed with an inadequate
choice of populations (Yang et al. 2012). We have previously
developed an individual-based approach for selection scan
based on a Bayesian factor model but the Markov chain
Monte Carlo (MCMC) algorithm required for model fitting
does not scale well to large data sets containing a million of
variants or more (Duforet-Frebourg et al. 2014).

We propose to detect candidates for natural selection
using principal component analysis (PCA). PCA is a technique
of multivariate analysis used to ascertain population structure
(Patterson et al. 2006). PCA decomposes the total genetic
variation into K axes of genetic variation called principal com-
ponents. In population genomics, the principal components
can correspond to evolutionary processes such as evolution-
ary divergence between populations (McVean 2009). Using
simulations of an island model and of a model of population
fission followed by isolation, we show that the common FST

statistic corresponds to the proportion of variation explained
by the first K principal components when K has been properly
chosen. With this point of view, the FST of a given variant is
obtained by summing the squared correlations of the first K
principal components opening the door to new statistics for
genome scans. At a genome-wide level, it is known that there
is a relationship between FST and PCA (McVean 2009), and
our simulations show that the relationship also applies at the
level of a single variant.

The advantages of performing a genome scan based on
PCA are multiple: it does not require to group individuals into
populations, the computational burden is considerably re-
duced compared with genome scan approaches based on
MCMC algorithms (Foll and Gaggiotti 2008; Riebler et al.
2008; G€unther and Coop 2013; Duforet-Frebourg et al.
2014), and candidate single nucleotide polymorphisms
(SNPs) can be related to different evolutionary events that
correspond to the different principal components. Using sim-
ulations and the 1000 Genomes data, we show that PCA can
provide useful insights for genome scans. Looking at the cor-
relations between SNPs and principal components provides a

novel conceptual framework to detect genomic regions that
are candidates for local adaptation.

New Method

New Statistics for Genome Scan

We denote by Y the ðn� pÞ centered and scaled genotype
matrix where n is the number of individuals and p is the
number of loci. The new statistics for genome scan are
based on PCA. The objective of PCA is to find a new set of
orthogonal variables called the principal components, which
are linear combinations of (centered and standardized) allele
counts, such that the projections of the data onto these axes
lead to an optimal summary of the data. To present the
method, we introduce the truncated singular value decom-
position (SVD) that approximates the data matrix Y by a
matrix of smaller rank

Y&U�VT;

where U is a ðn� KÞ orthonormal matrix, V is a ðp� KÞ
orthonormal matrix, � is a diagonal ðK � KÞ matrix and K
corresponds to the rank of the approximation. The solution
of PCA with K components can be obtained using the trun-
cated SVD: the K columns of V contain the coefficients of the
new orthogonal variables, the K columns of U contain the
projections (called “scores”) of the original variables onto the
principal components and capture population structure
(supplementary fig. S1, Supplementary Material online), and
the squares of the elements of � are proportional to the
proportion of variance explained by each principal compo-
nent (Jolliffe 2005). We denote the diagonal elements of � byffiffiffi
�
p

k; k ¼ 1; . . . ; K where the �k’s are the ranked eigen-
values of the matrix YYT . Denoting by Vjk, the entry of V
at the jth line and kth column, then the correlation�jk between
the jth SNP and the kth principal component is given by �jk

¼
ffiffiffi
�
p

kVjk=
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

(Cadima and Jolliffe 1995). In the follow-
ing, the statistics �jk are referred to as “loadings” and will be
used for detecting selection.

The second statistic we consider for genome scan corre-
sponds to the proportion of variance of a SNP that is ex-
plained by the first K PCs. It is called the communality in
exploratory factor analysis because it is the variance of ob-
served variables accounted for by the common factors, which
correspond to the first K PCs. Because the principal compo-
nents are orthogonal to each other, the proportion of vari-
ance explained by the first K principal components is equal to
the sum of the squared correlations with the first K principal
components. Denoting by h2

j the communality of the jth SNP,
we have

h2
j ¼

XK

k¼1

�2
jk:

The last statistic we consider for genome scans sums the
squared of normalized loadings. It is defined as h

02
j ¼

XK

k¼1

V2
jk.

Compared to the communality h2, the statistic h
02

1083

Detection of Positive Selection Based on PCA . doi:10.1093/molbev/msv334 MBE
 by guest on N

ovem
ber 5, 2016

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text: <italic>F<sub>ST</sub></italic>
Deleted Text: <italic>F<sub>ST</sub></italic>
Deleted Text: <italic>F<sub>ST</sub></italic>
Deleted Text: <italic>F<sub>ST</sub></italic>
Deleted Text: <italic>F<sub>ST</sub></italic>
Deleted Text: <italic>F<sub>ST</sub></italic>
Deleted Text: <italic>F<sub>ST</sub></italic>
Deleted Text: to 
Deleted Text: principal component analysis
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv334/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv334/-/DC1
http://mbe.oxfordjournals.org/


should theoretically give the same importance to each PC
because the normalized loadings are on the same scale as we

have
Xp

j¼1

V2
jk ¼ 1, for k ¼ 1 . . . K.

Numerical Computations

The method of selection scan should be able to handle a large
number p of genetic variants. In order to compute truncated
SVD with large values of p, we compute the n� n covariance
matrix � ¼ YYT=ðp� 1Þ. The covariance matrix � is typi-
cally of much smaller dimension than the p � p covariance
matrix. Considering the n� n covariance matrix � speeds up
matrix operations. Computation of the covariance matrix is
the most costly operation and it requires a number of arith-
metic operations proportional to pn2. After computing the
covariance matrix �, we compute its first K eigenvalues and
eigenvectors to find �2=ðp� 1Þ and U. Eigenanalysis is per-
formed with the dsyevr routine of the linear algebra package
LAPACK (Anderson et al. 1999). The matrix V, which captures
the relationship between each SNPs and population struc-
ture, is obtained by the matrix operation VT ¼ ��1UTY. The
software PCAdapt fast, process data as a stream and never
store in order to have a very low memory access whatever the
size of the data.

Results

Island Model

To investigate the relationship between communality h2 and
FST, we consider an island model with three islands. We use K
= 2 when performing PCA because there are three islands. We
choose a value of the migration rate that generates a mean FST

value (across the 1,400 neutral SNPs) of 4%. We consider five
different simulations with varying strengths of selection for
the 100 adaptive SNPs. In all simulations, the R2 correlation
coefficient between h2 and FST is larger than 98%. Considering
as candidate SNPs the 1% of the SNPs with largest values of
FST or of h2, we find that the overlap coefficient between the
two sets of SNPs is comprised between 88% and 99%. When
varying the strength of selection for adaptive SNPs, we find
that the relative difference of FDRs obtained with FST (top 1%)
and with h2 (top 1%) is smaller than 5%. The similar values of
FDR obtained with h2 and with FST decrease for increasing
strength of selection (supplementary fig. S2, Supplementary
Material online).

Divergence Model

To compare the performance of different PCA-based sum-
mary statistics, we simulate genetic variation in models of
population divergence. The divergence models assume that
there are three populations, A, B1 and B2 with B1 and B2 being
the most related populations (figs. 1 and 2). The first simula-
tion scheme assumes that local adaptation took place in the
lineages corresponding to the environments of populations A
and B1 (fig. 1). The SNPs, which are assumed to be indepen-
dent, are divided into three groups: 9,500 SNPs evolve neu-
trally, 250 SNPs confer a selective advantage in the
environment of A, and 250 other SNPs confer a selective

advantage in the environment of B1. Genetic differentiation,
measured by pairwise FST, is equal to 14% when comparing
population A to the other ones and is equal to 5% when
comparing populations B1 and B2. Performing PCA with K
= 2 shows that the first component separates population A
from B1 and B2 whereas the second component separates B1

from B2 (supplementary fig. S1, Supplementary Material
online). The choice of K = 2 is evident when looking at the
scree plot because the eigenvalues, which are proportional to
the proportion of variance explained by each PC, drop
beyond K = 2 and stay almost constant as K further increases
(supplementary fig. S3, Supplementary Material online).

We investigate the relationship between the communality
statistic h2, which measures the proportion of variance ex-
plained by the first two PCs, and the FST statistic. We find a
squared Pearson correlation coefficient between the two sta-
tistics larger than 98.8% in the simulations corresponding to
figures 1 and 2 (supplementary fig. S4, Supplementary
Material online). For these two simulations, we look at the
SNPs in the top 1% (respectively, 5%) of the ranked lists based
on h2 and FST, and we find an overlap coefficient always larger
than 93% for the lists provided by the two different statistics
(respectively, 95%). Providing a ranking of the SNPs almost
similar to the ranking provided by FST is therefore possible
without considering that individuals originate from prede-
fined populations.

We then compare the performance of the different statis-
tics based on PCA by investigating if the top-ranked SNPs
(top 1%) manage to pick SNPs involved in local adaptation
(fig. 1). The squared loadings �2

j1 with the first PC pick SNPs
involved in selection in population A (39% of the top 1%), a
few SNPs involved in selection in B1 (9%), and many false
positive SNPs (FDR of 53%). The squared loadings with the
second PC �2

j2 pick less false positives (FDR of 12%) and most
SNPs are involved in selection in B1 (88%) with just a few
involved in selection in A (1%). When adaptation took place
in two different evolutionary lineages of a divergence tree
between populations, a genome scan based on PCA has the
nice property that outlier loci correlated with PC1 or with PC2
correspond to adaptive constraints that occurred in different
parts of the tree.

Because the communality h2 gives more importance to the
first PC, it picks preferentially the SNPs that are the most
correlated with PC1. There is a large overlap of 72% between
the 1% top-ranked lists provided by h2 and �2

j1. Therefore, the
communality statistic h2 is more sensitive to ancient adapta-
tion events that occurred in the environment of population
A. In contrast, the alternative statistic h

02 is more sensitive to
recent adaptation events that occurred in the environment of
population B1. When considering the top-ranked 1% of the
SNPs, h

02 captures only one SNP involved in selection in A (1%
of the top 1%) and 88 SNPs related to adaptation in B1 (88%
of the top 1%). The overlap between the 1% top-ranked lists
provided by h

02 and by �2
j2is of 86%.

The h
02 statistic is mostly influenced by the second prin-

cipal component because the distribution of squared loadings
corresponding to the second PC has a heavier tail, and this
result holds for the two divergence models and for the 1000
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Genomes data (supplementary fig. S5, Supplementary
Material online). To summarize, the h2 and h

02 statistics
give too much importance to PC1 and PC2, respectively,
and they fail to capture in an equal manner both types of
adaptive events occurring in the environment of populations
A and B1.

We also investigate a more complex simulation in which
adaptation occurs in the four branches of the divergence tree
(fig. 2). Among the 10,000 simulated SNPs, we assume that
there are four sets of 125 adaptive SNPs with each set being
related to adaptation in one of the four branches of the di-
vergence tree. Compared with the simulation of figure 1, we
find the same pattern of population structure (supplemen-
tary fig. S1, Supplementary Material online). The squared
loadings �2

j1 with the first PC mostly pick SNPs involved in
selection in the branch that predates the split between B1 and
B2 (51% of the top 1%), SNPs involved in selection in the
environment of population A (9%), and false positive SNPs
(FDR of 38%). Except for false positives (FDR of 14%), the
squared loadings �2

j2 with the second PC rather pick SNPs
involved in selection in B1 and B2 (42% for B1 and 44% for B2).
Once again, there is a large overlap between the SNPs picked
by the communality h2 and by �2

1 (92% of overlap) and be-
tween the SNPs picked by h

02 and �2
2 (93% of overlap).

Because the first PC discriminates population A from B1

and B2 (supplementary fig. S1, Supplementary Material
online), the SNPs most correlated with PC1 correspond to
SNPs related to adaptation in the (red and green) branches
that separate A from populations B1 and B2. In contrast, the
SNPs that are most correlated to PC2 correspond to SNPs
related to adaptation in the two (blue and yellow) branches
that separate population B1 from B2 (fig. 2).

We additionally evaluate to what extent the results are
robust with respect to some parameter settings. When con-
sidering the 5% of the SNPs with most extreme values of the
statistics instead of the top 1%, we also find that the summary
statistics pick SNPs related to different evolutionary events
(supplementary fig. S6, Supplementary Material online). The
main difference being that the FDR increases considerably
when considering the top 5% instead of the top 1% (supple-
mentary fig. S6, Supplementary Material online). We also
consider variation of the selection coefficient ranging from s
= 1.01 to s = 1.1 (s = 1.025 corresponds to the simulations of
figs. 1 and 2). As expected, the FDR of the different statistics
based on PCA is considerably reduced when the selection
coefficient increases (supplementary fig. S7, Supplementary
Material online).

In the divergence model of figure 1, we also compare the
FDRs obtained with the statistics h2, h

02
, and with a Bayesian

factor model implemented in the software PCAdapt
(Duforet-Frebourg et al. 2014). For the optimal choice of K
= 2, the statistic h

02 and the Bayesian factor model provide the
smallest FDR (supplementary fig. S8, Supplementary Material
online). However, when varying the value of K from K = 1 to K
= 6, we find that the communality h2 and the Bayesian ap-
proach are robust to overspecification of K (K 4 3) whereas
the FDR obtained with h

02 increases importantly as K

increases beyond K = 2 (supplementary fig. S8,
Supplementary Material online).

We also consider a more general isolation-with-migration
model. In the divergence model where adaptation occurs in
two different lineages of the population tree (fig. 1), we add
constant migration between all pairs of populations. We
assume that migration occurred after the split between B1

and B2. We consider different values of migration rates gen-
erating a mean FST of 7.5% for the smallest migration rate to a
mean FST of 0% for the largest migration rate. We find that the
R2 correlation between FST and h2 decreases as a function of
the migration rate (supplementary fig. S9, Supplementary
Material online). For FST values larger than 0.5%, R2 is larger
than 97%. The squared correlation R2 decreases to 47% for the
largest migration rate. Beyond a certain level of migration rate,
population structure, as ascertained by principal components,
is no more described by well-separated clusters of individuals
(supplementary fig. S10, Supplementary Material online) but
by a more clinal or continuous pattern (supplementary fig.
S10, Supplementary Material online) explaining the difference
between FST and h2. However, the FDRs obtained with the
different statistics based on PCA and with FST evolve similarly
as a function of the migration rate. For both types of
approaches, the FDR increases for larger migration with
almost no true discovery (only one true discovery in the
top 1% lists) when considering the largest migration rate.

The main results obtained under the divergence models
can be described as follows. The principal components cor-
respond to different evolutionary lineages of the divergence
tree. The communality statistic h2 provides similar list of can-
didate SNPs than FST and it is mostly influenced by the first
principal component which can be problematic if other PCs
also convey adaptive events. To counteract this limitation,
which can potentially lead to the loss of important signals
of selection, we show that looking at the squared loadings
with each of the principal components provide adaptive SNPs
that are related to different evolutionary events. When adding
migration rates between lineages, we find that the main re-
sults are unchanged up to a certain level of migration rate.
Above this level of migration rate, the relationship between
FST and h2 does not hold anymore and genome scans based
on either PCA or FST produce a majority of false positives.

1000 Genomes Data

Since we are interested in selective pressures that occurred
during the human diaspora out of Africa, we decide to ex-
clude individuals whose genetic makeup is the result of recent
admixture events (African Americans, Columbians, Puerto
Ricans, and Mexicans). The first three principal components
capture population structure whereas the following compo-
nents separate individuals within populations (fig. 3 and sup-
plementary fig. S11, Supplementary Material online). The first
and second PCs ascertain population structure between
Africa, Asia, and Europe (fig. 3) and the third principal com-
ponent separates the Yoruba from the Luhya population
(supplementary fig. S11, Supplementary Material online).
The decay of eigenvalues suggests to use K = 2 because the
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eigenvalues drop between K = 2 and K = 3 where a plateau of
eigenvalues is reached (supplementary fig. S3, Supplementary
Material online).

When performing a genome scan with PCA, there are dif-
ferent choices of statistics. The first choice is the h2 commu-
nality statistic. Using the three continents as labels, there is a
squared correlation between h2 and FST of R2 ¼ 0:989 . To
investigate if h2 is mostly influenced by the first PC, we de-
termine if the outliers for the h2 statistics are related with PC1
or with PC2. Among the top 0.1% of SNPs with the largest
values of h2, we find that 74% are in the top 0.1% of the
squared loadings �2

j1 corresponding to PC1 and 20% are in
the top 0.1% of the squared loadings �2

j2 corresponding to
PC2. The second possible choice of summary statistics is the
h
02 statistic. Investigating the repartition of the 0.1% outliers

for h0 , we find that 0.005% are in the top 0.1% of the squared
loadings �2

j1 corresponding to PC1 and 85% are in the top
0.1% of the squared loadings �2

j2 corresponding to PC2. The
h
02 statistic is mostly influenced by the second PC because the

distribution of the V2
2j (normalized squared loadings) has a

longer tail than the corresponding distribution for PC1 (sup-
plementary fig. S5, Supplementary Material online). Because
the h2 statistic is mostly influenced by PC1 and h

02 is mostly
influenced by PC2, confirming the results obtained under the
divergence models, we rather decide to perform two separate
genome scans based on the squared loadings �2

j1 and �2
j2.

The two Manhattan plots based on the squared loadings
for PC1 and PC2 are displayed in figures 4 and 5 (supplemen-
tary table S1, Supplementary Material online, contains the
loadings for all variants). Because of linkage disequilibrium
(LD), Manhattan plots generally produce clustered outliers.
To investigate if the top 0.1% outliers are clustered in the
genome, we count—for various window sizes—the propor-
tion of contiguous windows containing at least one outlier.
We find that outlier SNPs correlated with PC1 or with PC2 are
more clustered than expected if they would have been

uniformly distributed among the 36,536,154 variants (supple-
mentary fig. S12, Supplementary Material online).
Additionally, the clustering is larger for the outliers related
to the second PC as they cluster in fewer windows (supple-
mentary fig. S12, Supplementary Material online). As the
genome scan for PC2 captures more recent adaptive
events, it reveals larger genomic windows that experienced
fewer recombination events.

The 1000 Genome data contain many low-frequency SNPs;
82% of the SNPs have a minor allele frequency smaller than
5%. However, these low-frequency variants are not found
among outlier SNPs. There are no SNP with a minor allele
frequency smaller than 5% among the 0.1% of the SNPs most
correlated with PC1 or with PC2.

The 100 SNPs that are the most correlated with the first PC
are located in 24 genomic regions (supplementary table S2,
Supplementary Material online). Most of the regions contain
just one or a few SNPs except a peak in the gene APPBP2 that
contains 33 out of the 100 top SNPs, a peak encompassing the
RTTN and CD226 genes containing 17 SNPS and a peak in the
ATP1A1 gene containing seven SNPs (fig. 4). Confirming a
larger clustering for PC2 outliers, the 100 SNPs that are the
most correlated with PC2 cluster in fewer genomic regions
(supplementary table S3, Supplementary Material online).
They are located in 14 genomic regions including a region
overlapping with EDAR contains 44 top hits, two regions
containing eight SNPs and located in the pigmentation
genes SLC24A5 and SLC45A2, and two regions with seven
top hit SNPs, one in the gene KCNMA1 and another one
encompassing the RGLA/MYO5C genes (fig. 5).

We perform Gene Ontology (GO) enrichment analyses
using Gowinda for the SNPs that are the most correlated
with PC1 and PC2. For PC1, we find, among others, enrich-
ment (FDR � 5%) for ontologies related to the regulation of
arterial blood pressure, the endocrine system and the immu-
nity response (interleukin production, response to viruses)
(supplementary table S4, Supplementary Material online).
For PC2, we find enrichment (FDR � 5%) related to olfac-
tory receptors, keratinocyte and epidermal cell differentiation,
and ethanol metabolism (supplementary table S5,
Supplementary Material online). We also search for polygenic
adaptation by looking for biological pathways enriched with
outlier genes (Daub et al. 2013). For PC1, we find one enriched
(FDR � 5%) pathway consisting of the beta defensin path-
way (supplementary table S6, Supplementary Material
online). The beta defensin pathway contains mainly genes
involved in the innate immune system consisting of 36 defen-
sin genes and of two Toll-Like receptors (TLR1 and TLR2).
There are additionally two chemokine receptors (CCR2 and
CCR6) involved in the beta defensin pathway. For PC2, we
also find one enriched pathway consisting of fatty acid omega
oxidation (FDR � 5%, supplementary table S7,
Supplementary Material online). This pathway consists of
genes involved in alcohol oxidation (CYP, ALD, and ALDH
genes). Performing a less stringent enrichment analysis which
can find pathways containing overlapping genes, we find
more enriched pathways: the beta defensin and the defensin
pathways for PC1 and ethanol oxidation, glycolysis/
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FIG. 1. Repartition of the 1% top-ranked SNPs for each PCA-based
statistic under a divergence model with two types of adaptive con-
straints. Thicker and colored lineages correspond to lineages where ad-
aptation took place. The squared loadings with PC1 �2

j1 pick a large
proportion of SNPs involved in selection in population A whereas the
squared loadings with PC2 �2

j2 pick SNPs involved in selection in pop-
ulation B 1. This difference is reflected in the different repartition of the
top-ranked SNPs for the communality h2 and the statistic h02.
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gluconeogenesis and fatty acid omega oxidation for PC2 (sup-
plementary table S8, Supplementary Material online).

To further validate the proposed list of candidate SNPs
involved in local adaptation, we test for an enrichment of
genic or nonsynonymous SNP among the SNPs that are the
most correlated with the PC. We measure the enrichment
among outliers by computing odds ratio (Kudaravalli et al.
2009; Fagny et al. 2014). For PC1, we do not find significant
enrichments (table 1) except when measuring the enrich-
ment of genic regions compared with nongenic regions
(OR = 10.18 for the 100 most correlated SNPs, P < 5%
using a permutation procedure). For PC2, we find an enrich-
ment of genic regions among outliers as well as an enrich-
ment of nonsynonymous SNPs (table 1). By contrast with the
enrichment of genic regions for SNPs extremely correlated
with the first PC, the enrichment for the variants extremely
correlated with PC2 outliers is significant when using different
thresholds to define outliers (table 1).

Discussion
The promise of a fine characterization of natural selection in
humans fostered the development of new analytical methods
for detecting candidate genomic regions (Vitti et al. 2013).
Population-differentiation based methods such as genome
scans based on FST look for marked differences in allele fre-
quencies between population (Holsinger and Weir 2009).
Here, we show that the communality statistic h2, which mea-
sures the proportion of variance of a SNP that is explained by
the first K principal components, provides a similar list of
outliers than the FST statistic when there are K + 1 popula-
tions. In addition, the communality statistic h2 based on PCA
can be viewed as an extension of FST because it does not
require to define populations in advance and can even be
applied in the absence of well-defined populations.

To provide an example of genome scans based on PCA
when there are no clusters of populations, we additionally
consider the POPRES data consisting of 447,245 SNPSs typed

for 1,385 European individuals (Nelson et al. 2008). The scree
plot indicates that there are K = 2 relevant clusters (supple-
mentary fig. S3, Supplementary Material online). The first
principal component corresponds to a Southeast–
Northwest gradient and the second one discriminates indi-
viduals from Southern Europe along a East–West gradient
(Novembre et al. 2008; Jay et al. 2013) (fig. 6). Considering
the 100 SNPs most correlated with the first PC, we find that
75 SNPs are in the lactase region, 18 SNPs are in the HLA
region, 5 SNPs are in the ADH1C gene, 1 SNP is in HERC2, and
another is close to the LOC283177 gene (fig. 7). When con-
sidering the 100 SNPs most correlated with the second PC, we
find less clustering than for PC1 with more peaks (supple-
mentary fig. S13, Supplementary Material online). The regions
that contain the largest number of SNPs in the top 100 SNPs
are the HLA region (41 SNPs) and a region close to the NEK10
gene (10 SNPs), which is a gene potentially involved in breast
cancer (Ahmed et al. 2009). The genome scan retrieves well-
known signals of adaption in humans that are related to
lactase persistence (LCT) (Bersaglieri et al. 2004), immunity
(HLA), alcohol metabolism (ADH1C) (Han et al. 2007), and
pigmentation (HERC2) (Wilde et al. 2014). The analysis of the
POPRES data shows that genome scan based on PCA can be
applied when there is a clinal or continuous pattern of pop-
ulation structure without well-defined clusters of individuals.

When there are clusters of populations, we have shown
with simulations that genome scans based on FST can be
reproduced with PCA. Genome scans based on PCA have
the additional advantage that a particular axis of genetic var-
iation, which is related to adaptation, can be pinpointed.
Bearing some similarities with PCA, performing a spectral
decomposition of the kinship matrix has been proposed to
pinpoint populations where adaptation took place (Fariello
et al. 2013). However, despite of some advantages, the statis-
tical problems related to genome scans with FST remain. The
drawbacks of FST arise when there is hierarchical population
structure or range expansion because FST does not account
for correlations of allele frequencies among subpopulations
(Bierne et al. 2013; Lotterhos and Whitlock 2014). An alter-
native presentation of the issues arising with FST is that it
implicitly assumes either a model of instantaneous divergence
between populations or an island-model (Bonhomme et al.
2010). Deviations from these models severely impact FDRs

Table 1. Enrichment Measured with Odds Ratio (OR) of the Variants
Most Correlated with the Principal Components Obtained from the
1000 Genomes Data.

Top 0:1% Top 0:01% Top 0:005% Top 100 SNPs

pc1–genic/nogenic 1:60� 1.24 1.09 1.93

pc1–nonsyn/all 1.70 1.18 2.42 10:07�

pc1–UTR/all 1.37 0.80 1.65 3.44

pc2–genic/nogenic 1:51� 2.27 4:73�� 4:44�

pc2–nonsyn/all 1.72 4:66� 7.40 12:18�

pc2–UTR/all 1.68 4:01� 3.36 2.73

Note.—Enrichment significant at the 1% (respectively, 5%) level are indicated with **
(resp. *).
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FIG. 2. Repartition of the 1% top-ranked SNPs of each PCA-based sta-
tistic under a divergence model with four types of adaptive constraints.
Thicker and colored lineages correspond to lineages where adaptation
occurred. The different types of SNPs picked by the squared loadings �2

j1

and �2
j2 is also found when comparing the communality h2 and the

statistic h02.
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(Duforet-Frebourg et al. 2014). Viewing FST from the point of
view of PCA provides a new explanation about why FST does
not provide an optimal ranking of SNPs for detecting selec-
tion. The statistic FST or the proposed h2 communality statis-
tic are mostly influenced by the first principal component
and the relative importance of the first PC increases with the
difference between the first and second eigenvalues of the
covariance matrix of the data. Because the first PC can rep-
resent ancient adaptive events, especially under population
divergence models (McVean 2009), it explains why FST and
the communality h2 are biased toward ancient evolutionary
events. Following recent developments of FST -related statis-
tics that account for hierarchical population structure
(Bonhomme et al. 2010; G€unther and Coop 2013; Foll et al.
2014), we proposed an alternative statistic h

02, which should
give equal weights to the different PCs. However, analyzing
simulations and the 1000 Genomes data show that h

02 do not
properly account for hierarchical population structure be-
cause outliers identified by h

02 are almost always related to
the last PC kept in the analysis. To avoid to bias data analysis
in favor of one principal component, it is possible to perform
a genome scan for each principal component.

In addition to ranking the SNPs when performing a genome
scan, a threshold should be chosen to extract a list of outlier
SNPs. We do not have addressed the question of how to
choose the threshold and rather used empirical threshold
such as the 99% quantile of the distribution of the test statistic
(top 1%). If interested in controlling the FDR, we can assume
that the loadings �kj are Gaussian with zero mean (Galinsky
et al. 2015). Because of the constraints imposed on the loadings
when performing PCA, the variance of the �kj’s is equal to the
proportion of variance explained by the kth PC, which is given
by �k=ðp� ðn� 1ÞÞ where �k is the kth eigenvalue of the
matrix YYT . Assuming a Gaussian distribution for the loadings,
the communality can then be approximated by a weighted
sum of chi-square distribution. Approximating a weighted
sum of chi-square distribution with a chi-square distribution,
we have (Yuan and Bentler 2010)

h2 � K=c� �2
K;

where c ¼
PK

i¼1 �K=ðp� ðn� 1ÞÞ is the proportion of vari-
ance explained by the first K PCs. The chi-square approximation
of equation (3) bears similarity with the approximation of
Lewontin and Krakauer (1973) that states that FST � ðnpops �

1Þ=�FST follows a chi square approximation with (npops� 1)
degrees of freedom where �FST is the mean FST over loci and
npops is the number of populations. In the simulations of an
island model and of a divergence model, quantile-to-quantile
plots indicate a good fit to the theoretical chi-square distribu-
tion of expression (3) (supplementary fig. S14, Supplementary
Material online). When using the chi-square approximation to
compute P values, we evaluate if FDR can be controlled using
Benjamini–Hochberg correction (Benjamini and Hochberg
1995). We find that the actual proportion of false discoveries
corresponds to the target FDR for the island model but the
procedure is too conservative for the divergence model (sup-
plementary fig. S15, Supplementary Material online). For

instance, when controlling FDR at a level of 25%, the actual
proportion of false discoveries is of 15%. A recent test based on
FST and a chi-square approximation was also found to be con-
servative (Whitlock and Lotterhos 2015).

Analysing the phase 1 release of the 1000 Genomes data
demonstrates the suitability of a genome scan based on PCA
to detect signals of positive selection. We search for variants
extremely correlated with the first PC, which corresponds to
differentiation between Africa and Eurasia and with the
second PC, which corresponds to differentiation between
Europe and Asia. For variants most correlated with the
second PC, there is a significant enrichment of genic and
nonsynonymous SNPs whereas the enrichment is less detect-
able for variants related to the first PC. The enrichment anal-
ysis confirms that positive selection may favor local
adaptation of human population by increasing differentiation
in genic regions especially in nonsynonymous variants
(Barreiro et al. 2008). Consistent with LD, we find that can-
didate variants are clustered along the genome with a larger
clustering for variants correlated with the Europe–Asia axis of
differentiation (PC2). The difference of clustering illustrates
that statistical methods based on LD for detecting selection
will perform differently depending on the time frame under
which adaptation had the opportunity to occur (Sabeti et al.
2006). The fact that population divergence, and its concom-
itant adaptive events, between Europe and Asia is more
recent that the out-of-Africa event is a putative explanation
of the difference of clustering between PC1 and PC2 outliers.
Explaining the difference of enrichment between PC1 and
PC2 outliers is more difficult. The weaker enrichment for
PC1 outliers can be attributed either to a larger number of
false discoveries or to a larger importance of other forms of
natural selection such as background selection (Hernandez
et al. 2011).

When looking at the 100 SNPs most correlated with PC1 or
PC2, we find genes for which selection in humans was already
documented (9/24 for PC1 and 5/14 for PC2, supplementary
table S9, Supplementary Material online). Known targets for
selection include genes involved in pigmentation (MATP,
OCA2 for PC1 and SLC45A2, SLC24A5, and MYO5C for
PC2), in the regulation of sweating (EDAR for PC2), and in
adaptation to pathogens (DARC, SLC39A4, and VAV2 for
PC1). A 100 kb region in the vicinity of the APPBPP2 gene
contains one-third of the 100 SNPs most correlated with PC1.
This APPBPP2 region is a known candidate for selection and
has been identified by looking for miRNA binding sites with
extreme population differentiation (Li et al. 2012). APPBPP2 is
a nervous system gene that has been associated with
Alzheimer disease, and it may have experienced a selective
sweep (Williamson et al. 2007). For some SNPs in APPBPP2,
the differences of allele frequencies between Eurasiatic pop-
ulation and sub-Saharan populations from Africa are of the
order of 90% (http://popgen.uchicago.edu/ggv/, last accessed
December 2015) calling for a further functional analysis.
Moreover, looking at the 100 SNPs most correlated with
PC1 and PC2 confirms the importance of noncoding RNA
(FAM230B, D21S2088E, LOC100133461, LINC00290,
LINC01347, LINC00681), such as miRNA (MIR429), as a
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substrate for human adaptation (Li et al. 2012; Grossman et al.
2013). Among the other regions with a large number of can-
didate SNPs, we also found the RTTN/CD226 regions, which
contain many SNPs correlated with PC1. In different selection
scans, the RTTN genes has been detected (Carlson et al. 2005;
Barreiro et al. 2008), and it is involved in the development of
the human skeletal system (Wu and Zhang 2010). An other
region with many SNPs correlated with PC1 contains the
ATP1A1 gene involved in osmoregulation and associated
with hypertension (Gurdasani et al. 2015). The regions con-
taining the largest number of SNPs correlated with PC2 are
well-documented instances of adaptation in humans and in-
cludes the EDAR, SLC24A5, and SLC45A2 genes. The
KCNMA1 gene contains seven SNPs correlated with PC2
and is involved in breast cancer and obesity (Jiao et al.
2011; OeggerLi et al. 2012). As for KCNMA1, the MYO5C
has already been reported in selection scans although no
mechanism of biological adaption has been proposed yet
(Chen et al. 2010; Fumagalli et al. 2010). To summarize, the
list of most correlated SNPs with the PCs identifies well-
known genes related to biological adaptation in humans
(EDAR, SLC24A5, SLC45A2, DARC), but also provides candi-
date genes that deserve further studies such as the APPBPP2,
TP1A1, RTTN, KCNMA1, and MYO5C genes, as well as the
ncRNAs listed above.

We also show that a scan based on PCA can also be used to
detect more subtle footprints of positive selection. We con-
duct an enrichment analysis that detects polygenic adapta-
tion at the level of biological pathways (Daub et al. 2013). We
find that genes in the beta-defensin pathway are enriched in
SNPs correlated with PC1. The beta-defensin genes are key
components of the innate immune system and have evolved

through positive selection in the catarrhine primate lineages
(Hollox and Armour 2008). As for the HLA complex, some
beta-defensin genes (DEFB1, DEFB127) show evidence of
long-term balancing selection with major haplotypic clades
coexisting since millions of years (Cagliani et al. 2008; Hollox
and Armour 2008). We also find that genes in the omega fatty
acid oxidation pathways are enriched in SNPs correlated with
PC2. This pathway was also found when investigating poly-
genic adaptation to altitude in humans (Foll et al. 2014). The
proposed explanation was that omega oxidation becomes a
more important metabolic pathway when beta oxidation is
defective, which can occur in case of hypoxia (Foll et al. 2014).
However, this explanation is not valid in the context of the
1000 Genomes data when there are no populations living in
hypoxic environments. Proposing phenotypes on which se-
lection operates is complicated by the fact that the omega
fatty acid oxidation pathway strongly overlaps with two other
pathways: ethanol oxidation and glycolysis. Evidence of selec-
tion on the alcohol dehydrogenase locus have already been
provided (Han et al. 2007) with some authors proposing that
a lower risk for alcoholism might have been beneficial after
rice domestication in Asia (Peng et al. 2010). This hypothesis is
speculative and we lack a confirmed biological mechanism
explaining the enrichment of the fatty acid oxidation path-
way. More generally, the enrichment of the beta-defensin and
of the omega fatty acid oxidation pathways confirms the
importance of pathogenic pressure and of metabolism in
human adaptation to different environments (Hancock
et al. 2008; Barreiro and Quintana-Murci 2009; Fumagalli
et al. 2011; Daub et al. 2013).

In conclusion, we propose a new approach to scan genomes
for local adaptation that works with individual genotype data.
Because the method is efficiently implemented in the software
PCAdapt fast, analyzing 36,536,154 SNPs took only 502 min
using a single core of an Intel(R) Xeon(R) (E5-2650, 2.00GHz,
64 bits). Even with low-coverage sequence data (3�), PCA-
based statistics retrieve well-known examples of biological ad-
aptation which is encouraging for future whole-genome se-
quencing project, especially for nonmodel species, aiming at
sampling many individuals with limited cost.

Materials and Methods

Simulations of an Island Model

Simulations were performed with ms (Hudson 2002). We
assume that there are three islands with 100 sampled indi-
viduals in each of them. There is a total of 1,400 neutral SNPs,
and 100 adaptive SNPs. SNPs are assumed to be unlinked. To
mimic adaptation, we consider that adaptive SNP have a
migration rate smaller than the migration rate of neutral
SNPs (4N0m ¼ 4 for neutral SNPs) (Bazin et al. 2010). The
strength of selection is equal to the ratio of the migration
rates of neutral and adaptive SNPs. Adaptation is assumed to
occur in one population only. The ms command lines for
neutral and adaptive SNPs are given below (assuming an ef-
fective migration rate of 4N0m ¼ 0:1 for adaptive SNPs).

./ms 300 1400 -s 1 -I 3 100 100 100 -ma x 4 4 4 x
4 4 4 x #neutral.

GBR
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CEU

YRI

CHB

JPT

LWK

TSI

EUROPE ASIA AFRICA
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FIG. 3. PCA with K = 2 applied to the 1000 Genomes data. The sampled
populations are the following: British in England and Scotland (GBR),
Utah residents with Northern and Western European ancestry (CEU),
Finnish in Finland (FIN), Iberian populations in Spain (IBS), Toscani in
Italy (TSI), Han Chinese in Bejing (CHB), Southern Han Chinese (CHS),
Japanese in Tokyo (JPT), Luhya in Kenya (LWK), Yoruba in Nigeria (YRI).
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/ms 300 100 -s 1 -I 3 100 100 100 -ma x 0.1 0.1
0.1 x 4 0.1 4 x #outlier

The values of migrations rates we consider for adaptive SNPs
are 4N0m ¼ 0:04; 0:1; 0:4; 1; 2.

Simulations of Divergence Models

We assume that each population has a constant effective
population size of N0 ¼ 1; 000 diploid individuals, with 50
individuals sampled in each population. The genotypes con-
sist of 10,000 independent SNPs. The simulations were per-
formed in two steps. In the first step, we used the software ms
to simulate genetic diversity (Hudson 2002) in the ancestral
population. We kept only variants with a minor allele fre-
quency larger than 5% at the end of the first step. The
second step was performed with SimuPOP (Peng and
Kimmel 2005) and simulations were started using the allele
frequencies generated with ms in the ancestral population.
Looking forward in time, we consider that there are 100 gen-
erations between the initial split and the following split be-
tween the two B subpopulations, and 200 generations
following the split between the two B subpopulations. We
assume no migration between populations. In the simulation
of figure 1, we assume that 250 SNPs confer a selective ad-
vantage in the branch leading to population A and 250 other
SNPs confer a selective advantage in the branch leading to
population B1. We consider an additive model for selection
with a selection coefficient of s = 1.025 for heterozygotes. For
the simulation of figure 2, we assume that there are four
nonoverlapping sets of 125 adaptive SNPs with each set
being related to adaptation in one of the four branches of
the divergence tree. A SNP can confer a selective advantage in
a single branch only.

When including migration, we consider that there are 200
generations between the initial split and the following split

between the two B subpopulations, and 100 generations fol-
lowing the split between the two B subpopulations. We con-
sider migration rates ranging from 0.2% to 5% per generation.
Migration is assumed to occur only after the split between B1

and B2. The migration rate is the same for the three pairs of
populations. To estimate the FST statistic, we consider the
estimator of Weir and Cockerham (1984).

1000 Genomes Data

We downloaded the 1000 Genomes data (phase 1 v3) (The
1000 Genomes Project Consortium 2012). We kept low-cov-
erage genome data and excluded exomes and triome data to
minimize variation in read depth. Filtering the data resulted in

0.
60

0.
72

0.
84

0.
96

Chromosomes

S
qu

ar
ed

 lo
ad

in
gs

 ρ
j1

2

CAMTA1

ATP1A1(OS)

DARC

ADAMTS2

PDE7B

CNTNAP2

PTP4A3

PLEC

SLC39A4

DOCK38

VAV2

MATP

RCL1 AP5M1

OCA2

FAM189A1

AVEN

LOC101928991
LOC646021

APPBP2

RTTN/CD226
LRRC4B

SRMS/
CDH4

1 5 10 15 20

FIG. 4. Manhattan plot for the 1000 Genomes data of the squared
loadings �2

j1 with the first principal component. For sake of presentation,
only the top-ranked SNPs (top 0.1%) are displayed and the 100 top-
ranked SNPs are colored in red.

S
qu

ar
ed

 lo
ad

in
gs

  ρ
j2

2

SLC35F3
ATAD3C

KIF3C

EDAR

PASK

SLC45A2
MYLK4

CALN1

KCNMA1

VRK1

SLC24A5

MYO5C

SPNS2
RGMA

0.
44

0.
55

0.
66

0.
77

Chromosomes

1 5 10 15 20

FIG. 5. Manhattan plot for the 1000 Genomes data of the squared
loadings �2

j2 with the second principal component. For sake of presen-
tation, only the top-ranked SNPs (top 0.1%) are displayed and the 100
top-ranked SNPs are colored in red.

−0.04 −0.02 0.00 0.02 0.04 0.06 0.08

−0
.0

5
0.

00
0.

05
0.

10

PC1

P
C

2

Former Yugoslavia
Eastern Europe
Former USSR
SE Europe
Anglo−Irish Isles
FennoScandia
Italy
Central Europe
SW Europe
Western Europe

FIG. 6. PCA with K = 2 applied to the POPRES data.

1090

Duforet-Frebourg et al. . doi:10.1093/molbev/msv334 MBE
 by guest on N

ovem
ber 5, 2016

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text: -
Deleted Text: <italic>F<sub>ST</sub></italic>
http://mbe.oxfordjournals.org/


a total of 36,536,154 SNPs that have been typed on 1,092
individuals. Because the analysis focuses on biological adap-
tation that took place during the human diaspora out of
Africa, we removed recently admixed populations (Mexican,
Columbian, PortoRican, and AfroAmerican individuals from
the Southwest of the United States). The resulting data set
contains 850 individuals coming from Asia (two Han Chinese
and one Japanese populations), Africa (Yoruba and Luhya),
and Europe (Finish, British in England and Scotland, Iberian,
Toscan, and Utah residents with Northern and Western
European ancestry).

Enrichment Analyses

We used Gowinda (Kofler and Schl€otterer 2012) to test for
enrichment of GO. A gene is considered as a candidate if there
is at least one of the most correlated SNPs (top 1%) that is
mapped to the gene (within an interval of 50 kb upstream
and downstream of the gene). Enrichment was computed as
the proportion of genes containing at least one outlier SNPs
among the genes of the given GO category that are present in
the data set. In order to sample a null distribution for enrich-
ment, Gowinda performs resampling without replacement of
the SNPs. We used the –gene option of Gowinda that assumes
complete linkage within genes.

We performed a second enrichment analysis to determine
if outlier SNPs are enriched for genic regions. We computed
odds ratio (Kudaravalli et al. 2009)

OR ¼
Prðgenic j outlierÞ

Prðnot genic j outlierÞ

Prðnot genic j not outlierÞ

Prðgenic j not outlierÞ
:

We implemented a permutation procedure to test if an
odds ratio is significantly larger than 1 (Fagny et al. 2014). The
same procedure was applied when testing for enrichment of

UTR regions (untranslated regions) and of nonsynonymous
SNPs.

Polygenic Adaptation

To test for polygenic adaptation, we determined whether
genes in a given biological pathway show a shift in the distri-
bution of the loadings (Daub et al. 2013). We computed the
SUMSTAT statistic for testing if there is an excess of selection
signal in each pathway (Daub et al. 2013). We applied the
same pruning method to take into account redundancy of
genes within pathways. The test statistic is the squared load-
ing standardized into a z-score (Daub et al. 2013). SUMSTAT
is computed for each gene as the sum of test statistic of each
SNP belonging to the gene. Intergenic SNPs are assigned to a
gene provided they are situated 50 kb up- or downstream. We
downloaded 63,693 known genes from the UCSC website and
we mapped SNPs to a gene if a SNP is located within a gene
transcript or within 50 kb of a gene. A total of 18,267 genes
were mapped with this approach. We downloaded 2,681 gene
sets from the NCBI Biosystems database. After discarding
genes that were not part of the aforementioned gene list,
removing gene sets with less than 10 genes and pooling
nearly identical gene sets, we kept 1,532 sets for which we
test if there was a shift of the distribution of loadings.

Supplementary Material
Supplementary figures S1–S15 and tables S1–S9 Molecular
Biology and Evolution online (http://www.mbe.oxfordjour-
nals.org/).
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