Unsupervised clustering of hyperspectral images of brain tissues by hierarchical non-negative matrix factorization

Abstract : Hyperspectral images of high spatial and spectral resolutions are employed to perform the challenging task of brain tissue characterization and subsequent segmentation for visualization of in-vivo images. Each pixel is a high-dimensional spectrum. Working on the hypothesis of pure-pixels on account of high spectral resolution, we perform unsupervised clustering by hierarchical non-negative matrix factorization to identify the pure-pixel spectral signatures of blood, brain tissues, tumor and other materials. This subspace clustering was further used to train a random forest for subsequent classification of test set images constituent of in-vivo and ex-vivo images. Unsupervised hierarchical clustering helps visualize tissue structure in in-vivo test images and provides a inter-operative tool for surgeons. Furthermore the study also provides a preliminary study of the classification and sources of errors in the classification process.
Type de document :
Communication dans un congrès
BIOIMAGING 2016 , Feb 2016, Rome, Italy. SCITEPRESS, 2 (77-84), pp.8, 2016, Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies,. 〈http://www.bioimaging.biostec.org/Home.aspx〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01280453
Contributeur : Bangalore Ravi Kiran <>
Soumis le : lundi 29 février 2016 - 15:49:04
Dernière modification le : vendredi 27 octobre 2017 - 17:36:02
Document(s) archivé(s) le : lundi 30 mai 2016 - 15:46:46

Fichier

H2NMFBrain_Bioimaging2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01280453, version 1

Collections

Citation

Bangalore Ravi Kiran, Bogdan Stanciulescu, Jesus Angulo. Unsupervised clustering of hyperspectral images of brain tissues by hierarchical non-negative matrix factorization. BIOIMAGING 2016 , Feb 2016, Rome, Italy. SCITEPRESS, 2 (77-84), pp.8, 2016, Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies,. 〈http://www.bioimaging.biostec.org/Home.aspx〉. 〈hal-01280453〉

Partager

Métriques

Consultations de la notice

363

Téléchargements de fichiers

626