P. A. Ade, Planck 2015 results. XIII. Cosmological parameters, Planck Collaboration]
URL : https://hal.archives-ouvertes.fr/in2p3-01115223

M. Betoule, Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astronomy & Astrophysics, vol.568, p.22, 2014.
DOI : 10.1051/0004-6361/201423413

URL : https://hal.archives-ouvertes.fr/cea-01271043

J. Bel, P. Brax, C. Marinoni, and P. Valageas, theories from the galaxy clustering ratio, Physical Review D, vol.91, issue.10, pp.103503-2015
DOI : 10.1103/PhysRevD.91.103503

URL : https://hal.archives-ouvertes.fr/cea-01068693

A. Vikhlinin, CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS, The Astrophysical Journal, vol.692, issue.2, p.1060, 2009.
DOI : 10.1088/0004-637X/692/2/1060

URL : http://arxiv.org/abs/0812.2720

P. A. Ade, Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts, Planck Collaboration]
URL : https://hal.archives-ouvertes.fr/in2p3-01115223

S. Ilic, A. Blanchard, and M. Douspis, X-ray galaxy clusters abundance and mass temperature scaling, Astronomy & Astrophysics, vol.582, p.79, 2015.
DOI : 10.1051/0004-6361/201526793

C. Heymans, CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments, Monthly Notices of the Royal Astronomical Society, vol.432, issue.3, p.2433, 2013.
DOI : 10.1093/mnras/stt601

R. A. Battye and A. Moss, Evidence for Massive Neutrinos from Cosmic Microwave Background and Lensing Observations, Physical Review Letters, vol.112, issue.5, p.51303, 2014.
DOI : 10.1103/PhysRevLett.112.051303

M. Raveri, Is there concordance within the concordance ?CDM model?

E. Macaulay, I. K. Wehus, and H. K. Eriksen, Lower Growth Rate from Recent Redshift Space Distortion Measurements than Expected from Planck, Physical Review Letters, vol.111, issue.16, p.161301, 2013.
DOI : 10.1103/PhysRevLett.111.161301

S. De-la-torre, The VIMOS Public Extragalactic Redshift Survey (VIPERS), Astronomy & Astrophysics, vol.557, p.54, 2013.
DOI : 10.1051/0004-6361/201321463

URL : https://hal.archives-ouvertes.fr/hal-01113746

F. Beutler, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: testing gravity with redshift space distortions using the power spectrum multipoles, Monthly Notices of the Royal Astronomical Society, vol.443, issue.2, p.1065, 2014.
DOI : 10.1093/mnras/stu1051

L. Samushia, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring growth rate and geometry with anisotropic clustering, Monthly Notices of the Royal Astronomical Society, vol.439, issue.4, pp.3504-13124899, 2014.
DOI : 10.1093/mnras/stu197

L. Anderson, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples, Monthly Notices of the Royal Astronomical Society, vol.441, issue.1, pp.24-1312, 2014.
DOI : 10.1093/mnras/stu523

H. Steigerwald, J. Bel, and C. Marinoni, Probing non-standard gravity with the growth index: a background independent analysis, Journal of Cosmology and Astroparticle Physics, vol.2014, issue.05, pp.1405-1447, 2014.
DOI : 10.1088/1475-7516/2014/05/042

URL : https://hal.archives-ouvertes.fr/hal-00959340

P. A. Ade, Planck 2015 results. XIV. Dark energy and modified gravity, Planck Collaboration]
URL : https://hal.archives-ouvertes.fr/in2p3-01115223

E. , D. Valentino, A. Melchiorri, and J. Silk, Cosmological Hints of Modified Gravity ?

G. Zhao, L. Pogosian, A. Silvestri, and J. Zylberberg, Searching for modified growth patterns with tomographic surveys, Physical Review D, vol.79, issue.8, p.83513, 2009.
DOI : 10.1103/PhysRevD.79.083513

L. Pogosian, A. Silvestri, K. Koyama, and G. B. Zhao, How to optimally parametrize deviations from general relativity in the evolution of cosmological perturbations, Physical Review D, vol.81, issue.10, 2010.
DOI : 10.1103/PhysRevD.81.104023

D. Bianchi, L. Guzzo, E. Branchini, E. Majerotto, S. De-la-torre et al., Statistical and systematic errors in redshift-space distortion measurements from large surveys, Monthly Notices of the Royal Astronomical Society, vol.427, issue.3, pp.2420-1203, 2012.
DOI : 10.1111/j.1365-2966.2012.22110.x

T. D. Kitching, L. Verde, A. F. Heavens, and R. Jimenez, Discrepancies between CFHTLenS cosmic shear & Planck: new physics or systematic effects?

S. Joudaki, CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics, Monthly Notices of the Royal Astronomical Society, vol.465, issue.2
DOI : 10.1093/mnras/stw2665

P. Creminelli, G. D. 'amico, J. Norena, and F. Vernizzi, < ???1 side unveiled, Journal of Cosmology and Astroparticle Physics, vol.2009, issue.02, p.18, 2009.
DOI : 10.1088/1475-7516/2009/02/018

G. Gubitosi, F. Piazza, and F. Vernizzi, The effective field theory of dark energy, Journal of Cosmology and Astroparticle Physics, vol.2013, issue.02, p.32, 2013.
DOI : 10.1088/1475-7516/2013/02/032

J. K. Bloomfield, E. Flanagan, M. Park, and S. Watson, Dark energy or modified gravity? An effective field theory approach, Journal of Cosmology and Astroparticle Physics, vol.2013, issue.08, p.10, 2013.
DOI : 10.1088/1475-7516/2013/08/010

J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Essential building blocks of dark energy, Journal of Cosmology and Astroparticle Physics, vol.2013, issue.08, p.25, 2013.
DOI : 10.1088/1475-7516/2013/08/025

J. Bloomfield, A simplified approach to general scalar-tensor theories, Journal of Cosmology and Astroparticle Physics, vol.2013, issue.12, p.44, 2013.
DOI : 10.1088/1475-7516/2013/12/044

F. Piazza and F. Vernizzi, Effective field theory of cosmological perturbations, Classical and Quantum Gravity, vol.30, issue.21, p.214007, 2013.
DOI : 10.1088/0264-9381/30/21/214007

URL : https://hal.archives-ouvertes.fr/cea-01223905

S. Tsujikawa, The Effective Field Theory of Inflation/Dark Energy and the Horndeski Theory, Lect. Notes Phys, vol.892, issue.97, 2015.
DOI : 10.1007/978-3-319-10070-8_4

J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi, Effective theory of dark energy at redshift survey scales, Journal of Cosmology and Astroparticle Physics, vol.2016, issue.02
DOI : 10.1088/1475-7516/2016/02/056

URL : https://hal.archives-ouvertes.fr/cea-01223827

N. Frusciante, M. Raveri, and A. Silvestri, Effective field theory of dark energy: a dynamical analysis, Journal of Cosmology and Astroparticle Physics, vol.2014, issue.02, p.26, 2014.
DOI : 10.1088/1475-7516/2014/02/026

B. Hu, M. Raveri, N. Frusciante, and A. Silvestri, Effective field theory of cosmic acceleration: An implementation in CAMB, Physical Review D, vol.89, issue.10, p.103530, 2014.
DOI : 10.1103/PhysRevD.89.103530

M. Raveri, B. Hu, N. Frusciante, and A. Silvestri, Effective field theory of cosmic acceleration: Constraining dark energy with CMB data, Physical Review D, vol.90, issue.4, pp.43513-064059, 2014.
DOI : 10.1103/PhysRevD.90.043513

J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi, Effective theory of interacting dark energy, Journal of Cosmology and Astroparticle Physics, vol.2015, issue.08
DOI : 10.1088/1475-7516/2015/08/054

URL : https://hal.archives-ouvertes.fr/cea-01458940

G. W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, International Journal of Theoretical Physics, vol.29, issue.4, p.363, 1974.
DOI : 10.1007/BF01807638

C. Deffayet, S. Deser, and G. Esposito-farese, Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress tensors, Physical Review D, vol.80, issue.6, p.640150906, 1967.
DOI : 10.1103/PhysRevD.80.064015

C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, -essence to generalized Galileons, Physical Review D, vol.84, issue.6, p.64039, 2011.
DOI : 10.1103/PhysRevD.84.064039

URL : https://hal.archives-ouvertes.fr/in2p3-00379092

A. Nicolis, R. Rattazzi, and E. Trincherini, Galileon as a local modification of gravity, Physical Review D, vol.79, issue.6, p.64036, 2009.
DOI : 10.1103/PhysRevD.79.064036

F. Piazza, H. Steigerwald, and C. Marinoni, Phenomenology of dark energy: exploring the space of theories with future redshift surveys, Journal of Cosmology and Astroparticle Physics, vol.2014, issue.05, p.43, 2014.
DOI : 10.1088/1475-7516/2014/05/043

URL : https://hal.archives-ouvertes.fr/hal-01113732

L. Perenon, F. Piazza, C. Marinoni, and L. Hui, Phenomenology of dark energy: general features of large-scale perturbations, Journal of Cosmology and Astroparticle Physics, vol.2015, issue.11, p.29, 2015.
DOI : 10.1088/1475-7516/2015/11/029

URL : https://hal.archives-ouvertes.fr/hal-01261102

E. Bellini and I. Sawicki, Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity, Journal of Cosmology and Astroparticle Physics, vol.2014, issue.07, p.50, 2014.
DOI : 10.1088/1475-7516/2014/07/050

J. Gleyzes, D. Langlois, and F. Vernizzi, A unifying description of dark energy, International Journal of Modern Physics D, vol.23, issue.13, p.1443010, 2015.
DOI : 10.1142/S021827181443010X

URL : https://hal.archives-ouvertes.fr/cea-01223706

J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi-aubourg, S. Bailey et al., Exploring gravitational theories beyond Horndeski [arXiv:1408 Cosmological implications of baryon acoustic oscillation (BAO) measurements, JCAP 1502, p.18, 1952.

J. M. Cline, S. Jeon, and G. D. Moore, The phantom menaced: Constraints on low-energy effective ghosts, Physical Review D, vol.70, issue.4, p.43543, 2004.
DOI : 10.1103/PhysRevD.70.043543

M. Kunz, Degeneracy between the dark components resulting from the fact that gravity only measures the total energy-momentum tensor, Physical Review D, vol.80, issue.12, p.123001, 2009.
DOI : 10.1103/PhysRevD.80.123001

M. Kunz, S. Nesseris, and I. Sawicki, Using dark energy to suppress power at small scales, Physical Review D, vol.92, issue.6, p.63006, 2015.
DOI : 10.1103/PhysRevD.92.063006

J. Beltran-jimenez, F. Piazza, and H. Velten, Piercing the Vainshtein screen with anomalous gravitational wave speed: Constraints on modified gravity from binary pulsars

A. Adams, N. Arkani-hamed, S. Dubovsky, A. Nicolis, and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, Journal of High Energy Physics, vol.1999, issue.10, p.14, 2006.
DOI : 10.1016/S0920-5632(00)00782-9

A. Hojjati, L. Pogosian, and G. B. Zhao, Testing gravity with CAMB and CosmoMC, Journal of Cosmology and Astroparticle Physics, vol.2011, issue.08, pp.1108-1113, 2011.
DOI : 10.1088/1475-7516/2011/08/005

J. Bel, C. Marinoni, B. R. Granett, L. Guzzo, J. A. Peacock et al., The VIMOS Public Extragalactic Redshift Survey (VIPERS) : ?m 0 from the galaxy clustering ratio measured at z ? 1, Astron. Astrophys, vol.563, p.3713103380, 2014.

A. Hojjati, L. Pogosian, and G. Zhao, Testing gravity with CAMB and CosmoMC, JCAP 005, p.1108, 2011.
DOI : 10.1088/1475-7516/2011/08/005

R. Adam, Planck 2015 results. I. Overview of products and scientific results, Planck Collaboration]
URL : https://hal.archives-ouvertes.fr/in2p3-01113893

N. Aghanim, Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, Planck Collaboration]
URL : https://hal.archives-ouvertes.fr/in2p3-01169549

C. L. Bennett, D. Larson, and J. L. Weiland, ) OBSERVATIONS: FINAL MAPS AND RESULTS, The Astrophysical Journal Supplement Series, vol.208, issue.2, pp.20-12125225, 2013.
DOI : 10.1088/0067-0049/208/2/20

URL : http://arxiv.org/abs/1212.5225

C. Haslam, H. Stoffel, C. J. Salter, and W. E. Wilson, A 408 MHz all-sky continuum survey. II -The atlas of contour maps, Astronomy and Astrophysics Supplement Series, 1982.

A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Physical Review D, vol.66, issue.10, p.103511, 2002.
DOI : 10.1103/PhysRevD.66.103511

A. Lewis, Efficient sampling of fast and slow cosmological parameters, Physical Review D, vol.87, issue.10, 2013.
DOI : 10.1103/PhysRevD.87.103529

J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, New Class of Consistent Scalar-Tensor Theories, Physical Review Letters, vol.114, issue.21, p.211101, 2015.
DOI : 10.1103/PhysRevLett.114.211101

URL : https://hal.archives-ouvertes.fr/cea-01223880