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EXISTENCE OF STABLE SOLUTIONS TO (−∆)mu = eu IN RN WITH m ≥ 3

AND N > 2m

XIA HUANG AND DONG YE

Abstract. We consider the polyharmonic equation (−∆)mu = eu in RN with m ≥ 3 and
N > 2m. We prove the existence of many entire stable solutions. This answer some questions
raised by Farina and Ferrero in [7].

1. Introduction

In this paper, we are interested in the existence of entire stable solutions of the polyharmonic
equation

(1.1) (−∆)mu = eu in RN .

with m ≥ 3 and N > 2m.

Definition 1. A solution u to (1.1) is said stable in Ω ⊆ RN if
∫

Ω
|∇(∆

m−1
2 φ)|2dx−

∫
Ω
euφ2dx ≥ 0 for any φ ∈ C∞0 (Ω), when m is odd;∫

Ω
|∆

m
2 φ|2dx−

∫
Ω
euφ2dx ≥ 0 for any φ ∈ C∞0 (Ω), when m is even.

Moreover, a solution to (1.1) is said stable outside a compact set K if it’s stable in RN \K. For
simplicity, we say also that u is stable if Ω = RN .

For m = 1, Farina [6] showed that (1.1) has no stable classical solution in RN for 1 ≤ N ≤ 9.
He also proved that any classical solution which is stable outside a compact set in R2 verifies eu ∈
L1(R2), therefore u is provided by the stereographic projection thanks to Chen-Li’s classification
result in [3], that is, there exist λ > 0 and x0 ∈ R2 such that

u(x) = ln

[
32λ2

(4 + λ2|x− x0|2)2

]
for some λ > 0.(1.2)

Later on, Dancer and Farina [4] showed that (1.1) admits classical entire solutions which are
stable outside a compact set of RN if and only if N ≥ 10.

It is well known that for any m ≥ 1, λ > 0 and x0 ∈ R2m, the function u defined in (1.2)
resolves (1.1) in the conformal dimension R2m, they are the so-called spherical solutions, since
they are provided by the stereographic projections.

For m = 2, the stability properties of entire solutions to (1.1) were studied in many works,
especially the study for radial solutions is complete. Let u(x) = u(r) be a smooth radial solution
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to (1.1), then u satisfies the following initial value problem

(1.3)


(−∆)mu = eu,

u(2k+1)(0) = 0, ∀ 0 ≤ k ≤ m− 1,

∆ku(0) = ak, ∀ 0 ≤ k ≤ m− 1.

Here the Laplacian ∆ is seen as ∆u = r1−N (rN−1u′
)′

and ak are constants in R. Equivalently,

let vk = (−∆)ku for 0 ≤ k ≤ m− 1, the equation (1.3) can be written as a system

−v′′k −
N − 1

r
v′k = vk+1 for 0 ≤ k ≤ m− 2; and − v′′m−1 −

N − 1

r
v′m−1 = ev0(1.4)

where vk(0) = (−1)kak and v′k(0) = 0 for any 0 ≤ k ≤ m− 1.

Let m = 2, a0 = u(0) = 0 (It’s always possible by the scaling u(λx) + 2m lnλ). Denote by uβ
the solution to (1.3) verifying a1 = β, it’s known from [1, 5, 11] that:

• There is no global solutions to (1.3) if N ≤ 2.
• For N ≥ 3, there exists β0 < 0 depending on N such that the solution to (1.3) is globally

defined, if and only if β ≤ β0.
• If N = 3 or 4, any entire solution uβ is unstable in RN , but stable outside a compact

set.
• If 5 ≤ N ≤ 12, then uβ is stable outside a compact set for every β < β0 while uβ0 is

unstable outside every compact set.
• If 5 ≤ N ≤ 12, there exists β1 < β0 such that uβ is stable in RN , if and only if β ≤ β1.
• If N ≥ 13, uβ is stable for every β ≤ β0.

Moreover, Dupaigne et al. showed in [5] the examples of non radial stable solutions for ∆2u = eu

in RN with any N ≥ 5, and Warnault proved in [11] that no stable (radial or not) smooth solution
exists for ∆2u = eu if N ≤ 4.

Recently, Farina and Ferrero [7] studied (1.1) for general m ≥ 3, they obtained many results
about the existence and stability of solutions, especially for the radial solutions. More precisely,
they proved that

• For N ≤ 2m, no stable solution (radial or not) exists;
• For m ≥ 1 odd and 1 ≤ N ≤ 2m− 1, any radial solution is stable outside a compact set;
• For m ≥ 1 and N = 2m, then the spherical solutions, i.e. solutions given by (1.2) are

stable outside a compact set.
• For m ≥ 3 odd, if (−1)kak ≤ 0 for same 1 ≤ k ≤ m−1, then the radial solution is stable

outside a compact set;
• For m ≥ 2 even and u(0) = 0, there exists a function Φ : Rm−1 → (−∞, 0) (depending

on N) such that the solution to (1.3) is global if and only if am−1 ≤ Φ(a1, ..., am−2).
Moreover, if am−1 < Φ(a1, ..., am−2), then the solution is stable outside a compact set;

It is also worthy to mention that for the conformal or critical dimension N = 2m with m ≥ 2,
many existence results were established by prescribing the behavior of u at infinity. See [2, 12, 5]
for m = 2 and see [8] for m ≥ 3. Clearly, these results imply the existence of many non radial
solutions which are stable outside a compact set.

However, in the supercritical dimensions N > 2m with m ≥ 3, less is known for stable
solutions. Farina and Ferrero raised then the question (see for instance Problem 4.1 (iii) in [7])
about the existence of stable solutions. In this work, we will provide rich examples of stable
solutions. First we consider radial solutions to (1.3) and show that the solution is stable if we
allow am−1 to be negative enough.
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Theorem 1.1. Let m ≥ 2 and N > 2m. Given any (ak)0≤k≤m−2, there exists β ∈ R such that
the solution to equation (1.3) is stable in RN for any am−1 ≤ β.

Furthermore, given any N > 2m, we prove the existence of non radial stable solution to (1.1)
and the existence of stable radial solutions for the following borderline situations.

(i) N > 2m, m ≥ 3 is odd, and (−1)kak > 0 for any 1 ≤ k ≤ m− 1;
(ii) N > 2m, m ≥ 4 is even, u(0) = 0 and am−1 = Φ(a1, ..., am−2);

The existence of stable radial solutions on the borderline for m ≥ 4 even in arbitrary supercritical
dimension is a new phenomenon comparing to m = 2, where the borderline solutions are not
stable out of any compact set if 5 ≤ N ≤ 12.

Theorem 1.2. For m ≥ 3 be odd and N > 2m, then there exists entire stable solution u of
(1.3) satisfying sign(ak) = (−1)k for all 1 ≤ k ≤ m− 1.

Theorem 1.3. For any m ≥ 3 and N > 2m, there exist non radial stable solutions to (1.1).
Moreover, when m ≥ 4 is even, there are radial stable solutions on the borderline hypersurface
of existence, i.e. when am−1 = Φ(ak).

The proof of Theorem 1.3 is based on the following result, which is inspired by [5], where we
construct some stable solutions to (1.1) by super-sub solution method.

Proposition 1.4. For any m ≥ 2 and N > 2m, let P (x) be a polynomial verifying

lim
|x|→∞

P (x)

ln |x|
=∞ and deg(P ) ≤ 2m− 2.

Then there exists CP ∈ R such that for any C ≥ CP , we have a solution u of (1.1) verifying

−P (x)− C ≤ u(x) ≤ −P (x)− C + (1 + |x|2)m−
N
2 in RN .

Consequently, there exists C̃P ∈ R such that the above solution u is stable in RN for any C ≥ C̃P .

It will be interesting to know if all radial solutions are stable in high dimensions as for m = 2
and N ≥ 13. Unfortunately, we are not able to answer this question completely, but we can
prove that for m ≥ 3 odd, and a wide class of initial data (ak), the corresponding radial solutions
are effectively always stable in large dimensions.

Theorem 1.5. Let m ≥ 3 be odd, then there exists N0 depending only on m such that for any
N ≥ N0, the radial solution to (1.3) with ak ≤ 0 for 1 ≤ k ≤ m− 1 is stable in RN .

The following Hardy inequalities will play an important role in our study of stability, see
Theorem 3.3 in [10]. Let m ≥ 2 and N > 2m. If m is odd, then

λN,m

∫
RN

ϕ2

|x|2m
dx ≤

∫
RN
|∇(∆

m−1
2 ϕ)|2dx for any ϕ ∈ C∞0 (RN ),

where

(1.5) λN,m :=
(N − 2)2

16
m
2

m−1
2∏
i=1

(N − 4i− 2)2(N + 4i− 2)2.

If m is even, then

µN,m

∫
RN

ϕ2

|x|2m
dx ≤

∫
RN
|∆

m
2 ϕ|2dx for any ϕ ∈ C∞0 (RN ),
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where

(1.6) µN,m :=
1

16
m
2

m−2
2∏
i=0

(N + 4i)2(N − 4i− 4)2.

Theorem 1.1 is proved in Section 2. More examples of stable solutions will be given in Section
3, including the proofs of Theorem 1.2, 1.3 and 1.5.

2. A first existence result

Here we prove Theorem 1.1. We will make use of a well-known comparison result (see for
instance Proposition 13.2 in [7]).

Lemma 2.1. Let u, v ∈ C2m([0, R)) be two radial functions such that ∆mu− eu ≥ ∆mv− ev in
[0, R) and

∆ku(0) ≥ ∆kv(0), (∆ku)′(0) ≥ (∆kv)′(0), ∀ 0 ≤ k ≤ m− 1.(2.1)

Then for any r ∈ [0, R) we have

∆ku(r) ≥ ∆kv(r), for all 0 ≤ k ≤ m− 1.

Now, we consider radial solutions to the initial value problem (1.3). Denote

(2.2) ck = ∆k(r2k) =
k∏
i=1

2i(N − 2 + 2i) for any k ≥ 1.

Case 1: m ≥ 3 is odd.

Fix ∆ku(0) = ak for 0 ≤ k ≤ m − 2. Consider the solution u(ak) to (1.3) associated to the

initial values ak, 0 ≤ k ≤ m − 1. We know that the solution is globally defined in RN for any
(ak), see [7]. Clearly, the polynomial

Ψ(r) = a0 +
∑

1≤k≤m−1

ak
ck
r2k with ck given by (2.2)

verifies ∆mΨ ≡ 0 in RN and ∆kΨ(0) = ak for all 0 ≤ k ≤ m− 1.

As ∆m(u(ak) − Ψ) = −eu(ak) < 0, it’s easy to check that u(ak)(r) < Ψ(r) for any r > 0. We
claim that: u(ak) is stable when am−1 is small enough. In fact, we need only to get the following
estimate:

(2.3) eΨ(r) ≤
λN,m
r2m

in RN ,

where λN,m > 0 is given by (1.5). Let

h(r) = cm−1r
2−2m

a0 +
∑

1≤k≤m−2

ak
ck
r2k + 2m ln r − lnλN,m

 .
Obviously limr→+∞ h(r) = 0 and limr→0 h(r) = −∞. So H0 = sup(0,∞) h(r) < ∞ exists and

(2.3) holds if −am−1 ≥ H0. We conclude that if am−1 ≤ −H0,∫
RN
|∇(∆

m−1
2 φ)|2dx−

∫
RN

eu(ak)φ2dx ≥
∫
RN
|∇(∆

m−1
2 φ)|2dx−

∫
RN

eΨφ2dx

≥
∫
RN
|∇(∆

m−1
2 φ)|2dx− λN,m

∫
RN

φ2

|x|2m
dx ≥ 0,
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i.e. u(ak) is stable in RN .

Case 2: m is even.

Let ∆ku(0) = ak for 0 ≤ k ≤ m−2 be fixed. We can check that the scaling u(λx)+2m lnλ does
not affect the stability of the solution, so we can assume that a0 = 0 without loss of generality.
By Theorem 2.2 in [7], the solution to (1.4) is global if and only if am−1 ≤ β0 = Φ(ak). For any
am−1 < β0, consider

Ψ(r) = uβ0(r) +
(am−1 − β0)r2m−2

cm−1
,

then ∆mΨ = ∆muβ0 = euβ0 ≥ eΨ. Using Lemma 2.1, we have u(ak) ≤ Ψ in RN as ∆kΨ(0) =

∆ku(ak)(0) for any 0 ≤ k ≤ m− 1. As above, if there holds

(2.4) euβ0e
(am−1−β0)r

2m−2

cm−1 ≤
µN,m
r2m

in RN ,

with µN,m given by (1.6), then u(ak) is stable in RN . Let

g(r) = cm−1r
2−2m

[
uβ0(r)− ln

µN,m
r2m

]
− β0.

By [7], the borderline entire solution uβ0(r) = o(r2m−2) as r → ∞. So limr→+∞ g(r) = −β0,
limr→0 g(r) = −∞, and (2.4) holds if we take −am−1 ≥ sup(0,∞) g.

3. More stable solutions

Here we show more examples of stable solutions by proving Theorems 1.2, 1.3 and 1.5.

3.1. Proof of Theorem 1.2. Consider uε, solution of (1.3) with the initial conditions ak =
(−1)kε for 0 ≤ k ≤ m − 3; am−2 = −β with β > 0 and am−1 = ε. Here ε ∈ (0, 1] is a small
parameter, for simplicity, we will omit the exponent ε in the following. Let

Ψ(r) := − β

cm−2
r2m−4 + εH(r),

where

H(r) := 1 +
m−3∑
k=1

(−1)k

ck
r2k +

r2m−2

cm−1
with ck given by (2.2).

Therefore (−∆)mΨ ≡ 0 and ∆kΨ(0) = ∆ku(0) for any 0 ≤ k ≤ m− 1. Denote also

H+(r) := 1 +

m−3∑
k=1

r2k

ck
+
r2m−2

cm−1
.

As we have

u ≤ Ψ ≤ − β

cm−2
r2m−4 + εH+(r) in [0,∞),

there holds u(r) ≤ εH+(1) in [0, 1]. Denote γ0 := eH+(1) and consider v := u − Ψ + γ0
cm
r2m.

Then ∆mv = ∆mu+ γ0 = −eu + γ0 ≥ 0 for any ε ≤ 1 and r ∈ [0, 1]. Since ∆kv(0) = 0 for any
0 ≤ k ≤ m− 1, we get v ≥ 0 in [0, 1], hence

u(r) ≥ εH(r)− β

cm−2
r2m−4 − γ0

cm
r2m

> −H+(1)− β

cm−2
− γ0

cm
=: ξ0, ∀ r ∈ [0, 1], ε ≤ 1.
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Inversely, consider w := u − Ψ + eξ0
cm
r2m in [0, 1], there holds ∆mw = eξ0 − eu ≤ 0 in [0, 1]. By

Lemma 2.1, we have then ∆kw(r) ≤ 0 in [0, 1] for any 0 ≤ k ≤ m, so that for r ∈ [0, 1],

∆m−1u(r) ≤ ε− eξ0

2N
r2, ∆m−2u(r) ≤ −β +

ε

2N
r2 − eξ0

8N(N + 2)
r4.

Moreover, as ∆m−1u is decreasing, we have ∆m−1u(r) ≤ ∆m−1u(1) ≤ ε− eξ0
2N in (1,∞). Conse-

quently, for r > 1,

∆m−2u(r) = ∆m−2u(1) +

∫ r

1
ρ1−N

∫ ρ

0
sN−1∆m−1u(s)dsdρ

≤ −β +
ε

2N
− eξ0

8N(N + 2)
+

∫ r

1
ρ1−N

∫ ρ

0

[
ε− eξ0 min(1, s)2

2N

]
sN−1dsdρ

= −β + ε
r2

2N
− eξ0

[
1

8N(N + 2)
+

1

2N2

∫ r

1

(
ρ− 2

N + 2
ρ1−N

)
dρ

]
= −β +

eξ0

8N(N − 2)
+

(
ε− eξ0

4N2

)
r2 − eξ0

N2(N2 − 4)
r2−N .

Combining the above estimates, we conclude that if 0 < ε ≤ ε1 := min(1, e
ξ0

4N2 ),

∆m−2u(r) ≤ −β +
eξ0

2N
=: h(β) for any r ∈ [0,∞).

This yields then for ε ≤ ε1, by Young’s inequality,

u(r) ≤ ε+ ε
m−3∑
k=1

(−1)k

ck
r2k + h(β)

r2m−4

cm−2
≤ 2ε1 +

[
C1 + h(β)

]r2m−4

cm−2
, ∀ r > 0.

As limβ→∞ h(β) = −∞, there exists β1 large such that u(r) ≤ lnλN,m − 2m ln r in (0,∞) if
β ≥ β1. This means that u is stable for any 0 < ε ≤ ε1 and β ≥ β1.

3.2. Proof of Proposition 1.4 and Theorem 1.3. As already mentioned, Theorem 1.3 is a
direct consequence of Proposition 1.4. So we will consider firstly Proposition 1.4.

Let P be s polynomial in RN with deg(P ) ≤ 2m− 2 such that ln |x| = o(P (x)) as |x| goes to
infinity. We are looking for a solution u of the form u(x) = −P (x)− C + z(x) with

(3.5) (−∆)mz(x) = e−P (x)−C+z(x) in RN and z(x) = O(|x|2m−N ) as |x| → ∞.
Equivalently, we will resolve the following system:

(3.6)


−∆z = (N − 2m)(2m− 2)v1 in RN ,

−∆vk = (N − 2m+ 2k)(2m− 2k − 2)vk+1 in RN , 1 ≤ k ≤ m− 2

−∆vm−1 = dme
−P (x)−Cez in RN .

Here

1

dm
=

m−1∏
i=1

2i(N − 2i− 2).

Set Wj := (1 + |x|2)j−
N
2 for j ∈ Z, the straightforward calculations yield that

−∆Wj = (N − 2j)(2j − 2)Wj−1 + (N − 2j)(N − 2j + 2)Wj−2 for any j ∈ Z.
Therefore, for 2 ≤ j < N

2 , we have −∆Wj ≥ (N − 2j)(2j − 2)Wj−1.
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Let N > 2m,

Z(x) := Wm(x) > 0, Vk := Wm−k(x) > 0 for 1 ≤ k ≤ m− 1.

So −∆Z ≥ (N − 2m)(2m− 2)V1, −∆Vk ≥ (N − 2m+ 2k)(2m− 2k − 2)Vk+1 for 1 ≤ k ≤ m− 2
and

−∆Vm−1 = N(N − 2)W−1 = N(N − 2)(1 + |x|2)−1−N
2 .

Consider

f(x) := −P (x) +
N + 2

2
ln(1 + |x|2) + ln dm − ln[N(N − 2)] + (1 + |x|2)m−

N
2 ,

by our assumption on P and m < N
2 , readily maxRN f(x) = CP < ∞ exists. For any C ≥ CP ,

we have

−∆Vm−1 ≥ dme−P (x)−CP eZ ≥ dme−P (x)−CeZ in RN .

In other words, (Z, V1, ..., Vm−1) is a super-solution in RN to the system (3.6) for C ≥ CP .

Since the system (3.6) is cooperative, (0, 0, ..., 0) and (Z, V1, ..., Vm−1) form a pair of ordered
sub and super-solutions, we obtain the existence of a solution to (3.6), hence a solution of (3.5).
Moreover, the solution u satisfies −P (x)− C ≤ u(x) ≤ −P (x)− C + Z(x) in RN .

To ensure the stability of u, it’s sufficient to choose C such that

(3.7) eu(x) ≤ e−P (x)−C+Z(x) ≤ e−P (x)−C+1 ≤
γN,m
|x|2m

in RN ,

where γN,m = λN,m in (1.5) if m is odd and γN,m = µN,m given by (1.6) if m is even. Let
g(x) = 1− ln γN,m − P (x) + 2m ln |x|, clearly C ′P = maxRN\{0} g(x) <∞ exists since

lim
|x|→0

g(x) = lim
|x|→∞

g(x) = −∞.

Therefore, if we take C̃p = max(CP , C
′
P ), u is a stable solution in RN if C ≥ C̃P . The proof of

Proposition 1.4 is completed.

Remark 3.1. We do not know if the assumption lim|x|→∞
P (x)
ln |x| =∞ is equivalent or not to the

apparently weaker condition lim|x|→∞ P (x) =∞.

Proof of Theorem 1.3. Indeed, if P is non radial in Proposition 1.4, the solution u constructed
is clearly non radial. On the other hand, if P is radial, as our super and sub-solutions are radial,
we can work in the subclass of radial functions to get a radial solution u. So for m ≥ 4 even, if
we consider polynomials P (r) =

∑
0≤k≤j bkr

2k with bj > 0 and 1 ≤ j ≤ m− 2, we obtain radial

stable solutions u satisfying u(r) = o(r2m−2) at infinity. By [7], such radial solutions must be
on the borderline hypersurface am−1 = Φ(ak).

Remark 3.2. For m ≥ 3 odd, if we take P (x) = P (r) = b1r
2 with b1 > 0, the radial stable

solutions obtained verify that (−∆)ku(0) > 0, i.e. sign(ak) = (−1)k for 1 ≤ k ≤ m − 1, since
otherwise u(r) ≤ −Cr4 at infinity, see [7]. The solutions obtained in the proof of Theorem 1.2
are different, because they satisfy limr→∞∆m−1u < 0.
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3.3. Proof of Theorem 1.5. Our argument is based on the following estimate.

Lemma 3.3. Let ξ be a radial function in C2(RN ). Suppose that ∆ξ ≥ r`g(r) with ` > −1 and
g nonincreasing in r, then

ξ(r) ≥ ξ(0) +
r`+2

(N + `)(`+ 2)
g(r), ∀ r ≥ 0.

In fact, we have

(3.8) ξ′(r) ≥ r1−N
∫ r

0
g(s)sN−1s`ds ≥ r1−Ng(r)

∫ r

0
sN+`−1ds =

r`+1

N + `
g(r).

Integrating again, we get

ξ(r) ≥ ξ(0) + g(r)
r`+2

(N + `)(`+ 2)
.

Consider now m odd. Let u be the solution to (1.3) with ak ≤ 0 for all 1 ≤ k ≤ m − 1.
Denote wk := ∆ku for 1 ≤ k ≤ m − 1. As ∆m−1w1 = −eu < 0 and ∆kw1(0) = ak+1 ≤ 0
for all 0 ≤ k ≤ m − 2, we get w1 ≤ 0 in RN , hence u is decreasing in r. By Lemma 3.3, as
−∆wm−1 = eu,

−wm−1(r) ≥ −am−1(0) +
r2

2N
eu(r) ≥ r2

2N
eu(r),

so we have

−∆wm−2(r) = −wm−1(r) ≥ r2

2N
eu(r), ∀ r > 0.

Applying again Lemma 3.3, we obtain

−wm−2(r) ≥ −am−2 +
r4

8N(N + 2)
eu(r) ≥ r4

8N(N + 2)
eu(r).

By induction, for all 1 ≤ k ≤ m− 1,

−wm−k(r) ≥
r2k

Pk(N)
eu(r) for any r > 0,

where

Pk(N) = 2kk!
k−1∏
`=0

(N + 2`).

In particular, there holds

−∆u(r) = −w1(r) ≥ r2m−2

Pm−1(N)
eu(r), ∀ r > 0.

Using (3.8), we get

−u′(r) ≥ r2m−1

(N + 2m− 2)Pm−1(N)
eu(r), ∀ r > 0.

Therefore

e−u(r) ≥ e−u(0) +

∫ r

0

s2m−1

(N + 2m− 2)Pm−1(N)
ds ≥ r2m

Pm(N)
,

hence

eu(r) ≤ Pm(N)

r2m
for any r > 0.

As polynomial in N , deg(Pm) = m while deg(λN,m) = 2m, so there exists N0 such that for

N ≥ N0, Pm(N) ≤ λN,m, then eu ≤ Pm(N)
r2m

≤ λN,m
r2m

i.e. the solution u is stable in RN .
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57045 Metz, France

E-mail address: dong.ye@univ-lorraine.fr


