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a b s t r a c t

High resolution medical ultrasound (US) imaging is an ongoing challenge in many diagnosis applications

and can be achieved either by instrumentation or by post-processing. Though many works have consid-

ered the issue of resolution enhancement in optical imaging, very few works have investigated this issue

in US imaging. In optics, several algorithms have been proposed to achieve super-resolution (SR) image

reconstruction, which consists of merging several low resolution images to create a higher resolution

image. However, the straightforward implementation of such techniques for US imaging is unsuccessful,

due to the interaction of ultrasound with tissue and speckle. We show how to overcome the limit of SR in

this framework by refining the registration part of common multiframe techniques. For this purpose, we

investigate motion estimation methods adapted to US imaging. Performance of the proposed technique is

evaluated on both realistic simulated US images (providing an estimated best-case performance) and real

US sequences of phantom and in-vivo thyroid images. Compared to classical SR methods, our technique

brings both quantitative and qualitative improvements. Resolution gain was found to be 1.41 for the

phantom sequence and 1.12 for the thyroid sequence and a quantitative study using the phantom further

confirmed the spatial resolution enhancement. Furthermore, the contrast-to-noise ratio was increased by

27% and 13% for simulated and experimental US images, respectively.

1. Introduction

Among all the diagnostic imaging modalities, medical ultra-

sound (US) imaging is currently considered to be on the cutting

edge of noninvasive technologies. Its cost-effectiveness, safety

and portability are the main grounds of its common usage in the

detection of various cancers, in the assessment of blood velocity

or for the investigation of common biological soft tissues. Com-

pared to other modalities such as magnetic resonance imaging or

X-ray computed tomography, the various advantages of US imag-

ing are however counterbalanced by its comparatively poor image

quality. The main drawback of US images is their overall low con-

trast and their limited ability to distinguish between two small

adjacent objects. Depending on the working frequency, which is

related to the design of US transducers as well as the desired

penetration depth, low spatial resolution can even further decrease

the image quality [1,2]. Furthermore, due to underlying instrumen-

tation constraints and random location of scatterers, US images

are contaminated by an intrinsic noise called ‘‘speckle’’ which

greatly reduces the general image quality and can hence lead to

interpretation concerns. Nevertheless, in some cases, the speckle

can be taken into account by a trained observer and may lead to

complementary diagnostic information. The statistical properties

of the speckle can, moreover, be exploited within several signal

processing-based applications such as tissue characterisation and

image segmentation [3].

As a result, over the past few decades, extensive efforts have

been put into improving US image quality. In US, image quality

can be improved in either pre- or post-processing. The former is

usually achieved through the modernization of the US scanners,

for instance by using high frequency transducers (at the cost of

limited penetration depth [4]), backprojection image recovery

methods [5] or by designing a proper adaptive beamforming

(ABF) algorithm such as Diffuse Time-domain Optimized Near-field

Estimator (dTONE) [6] to replace the conventional delay and sum

beamforming (at the cost of high computational load). Unfortu-

nately, such techniques lead to tremendous instrumentation con-

straints that hinder the experimental reproducibility. An

alternative consists of investigating post-processing resolution

enhancement techniques similar to the works proposed in optical

image or video fields [7,8].

The so-called ‘‘super-resolution (SR) approach’’ was originally

based on a sequence of low resolution (LR) optical images of the
⇑ Corresponding author at: University of Dundee, Medical Research Institute,

Ninewells Hospital & Medical School, Scotland, United Kingdom.



same scene using a frequency domain method [9]. The desired high

resolution (HR) was obtained by using the relative sub-pixel

motion between LR images and has been greatly improved [10]

during the past decades. The straightforward implementation of

such algorithms for US imaging was unsuccessful, due to the

intrinsic nature of tissue elastic motions, speckle and the point

spread function (PSF) [11]. Note that unlike strain compounding

[12–14], which consists in averaging several ultrasound images

acquired under different strain conditions in order to reduce the

speckle, our goal is to improve the resolution of US images without

altering their intrinsic characteristics.

In this paper, we show how to overcome the intrinsic limit of SR

in the US imaging framework and how to preserve the native

aspect of US images by refining the registration stage of common

multiple frame SR before reconstructing the HR image. A realistic

US simulation addressing the experimental limit of such a method

is also provided.

2. Motion estimation-based image enhancement in ultrasound

imaging

The main goal of this work is to address the SR reconstruction of

US images when the motions can be estimated within sub-pixel

accuracy. Here, the motion to be estimated for the HR image esti-

mation is induced by the US transducer held by the practitioner

and the associated compression of the local medium in the context

of static elastography. This non-rigid tissue deformation has been

used in many applications such as thyroid nodular disease charac-

terisation [15]. More details regarding the magnitude of this

motion can be found in Sections 4.1 and 4.2 for a sequence of phan-

tom and thyroid images, respectively.

Note that any US image sequence exhibiting a non-integer dis-

placement (in terms of number of samples) between consecutive

frames can, in theory, be processed via the proposed method. This

displacement may be natural (e.g. cardiac motion) or manually

induced by the practitioner as in our case.

One should note that the overall displacement in the US

sequences considered here is relatively small (especially in the thy-

roid case, where only a slight compression with the ultrasound

probe has been applied) compared to the natural motion of the

body (e.g., cardiac motion). In the case of image sequences with

larger motions, the original low resolution images would be further

decorrelated and would theoretically enhance the quality of the

non-uniform interpolation process. This greater decorrelation

would however be a drawback with respect to the registration

step, whose accuracy is crucial in the proposed approach.

2.1. Image sequence model

Let Iðx; yÞ ¼ I1ðx; yÞ; I2ðx; yÞ; . . . ; INðx; yÞf g be a given set of N LR

images. In order to create the desired HR image Jðx; yÞ, the

employed multiframe SR algorithm relies on a three-step scheme

depicted in Fig. 1.

The first task deals with accurately estimating the motion

between the N input images. The relation between two consecutive

frames is given by

Inþ1ðx; yÞ ¼ Inðxþ unðx; yÞ; yþ vnðx; yÞÞ ð1Þ

for 1 6 n 6 N ÿ 1, where unðx; yÞ and vnðx; yÞ are the spatially vary-

ing displacement fields along the two directions between images n

and nþ 1. Various algorithms have been used to perform this

motion estimation step, e.g., [7,16] depending on the motion char-

acteristics, but very few works have investigated applying it to SR in

US [17].

Once both the estimated relative motions ûðx; yÞ ¼ û1ðx; yÞ;f

û2ðx; yÞ; . . . ; ûNÿ1ðx; yÞg and v̂ðx;yÞ¼ v̂1ðx;yÞ; v̂2ðx;yÞ; . . . ; v̂Nÿ1ðx;yÞf g

are computed, the N images can be aligned according to a reference

frame onto an HR grid, taking into account the motion estimation

sub-pixel accuracy. The set of registered images is denoted by

Îðx; yÞ ¼ Î1ðx; yÞ; Î2ðx; yÞ; . . . ; ÎNðx; yÞ
n o

. By convention, the first

frame is considered as the reference frame, i.e., Î1ðx; yÞ ¼ I1ðx; yÞ.

Non-uniform interpolation is then performed onto this HR grid in

order to fuse the N images contained in Îðx; yÞ. Unlike uniform

interpolation, which would be employed on the set of images with-

out pre-alignment, non-uniform interpolation processes the

images registered using the motion estimated in the first step. In

Fig. 1. The classical three-step scheme for super-resolution image reconstruction. I1ðx; yÞ; I2ðx; yÞ; . . . ; INðx; yÞ are N low resolution input images and Jðx; yÞ is the desired high

resolution output image. The final restoration stage is optional and will not be addressed in this paper.

Fig. 2. Overview of BDBM, adapted from [15]. (a) Rectangular mesh on image I1 and

deformed mesh on image I2 . (b) Parametric estimation for a given region of interest

(ROI) (hatched region) around one node.



our work, we choose the bicubic interpolation as it achieves the

best compromise between calculation time and quality of the

resulting image [10].

A third deblurring step (not addressed in this paper, see [18,19])

can be added in order to enhance the output image Jðx; yÞ, depend-

ing on the observation model and the available a priori information

about the PSF.

Note that in the proposed framework, the motion estimation

stage is the key element of the SR image reconstruction and will

hence almost completely determine the quality of the resulting

image. We have recently shown in [11] that classical motion esti-

mation, usually involved in multiframe SR frameworks (see [10]

and references therein), provide poor results when performed

using US images. Indeed, these methods fail to estimate the true

elastic motion and therefore break the speckle characteristics,

resulting in an image degradation [11]. The main issue is that the

motion estimation must be performed on the LR images with

sub-pixel accuracy in order to provide improvements in the result-

ing HR image.

2.2. Paper contribution

Several methods have been proposed to perform the motion

estimation task in US imaging, in various applications such as car-

diology or elastography. Recent literature has shown the ongoing

aspects of motion estimation in US imaging, with works such as

[20]. A complete review of motion estimation algorithms in US

imaging would however be out of the scope of this paper. Taking

into account the nature of the tissue deformations exploited in this

Fig. 3. Realistic simulation results of SR image reconstruction using a real US image as a template. (a) One of the 15 simulated LR input images. (b) Result of our method.

Fig. 4. Distribution of the (a) LR and (b) HR envelope data.



paper (i.e., the elastographic fashion), we resorted to a recent

motion estimation method designed for elastography.

This work relies entirely on a post-processing framework and is

therefore not related to the constraints of the acquisition stage,

such as the frame rate. SR image reconstruction is however com-

patible with a real time implementation using an efficient motion

estimation algorithm and a sliding window update process com-

monly used in compound imaging [21], with no reduction in frame

rate.

The motion estimation method used in this paper, referred to as

Bilinear Deformable Block Matching (BDBM) [15,22], is adapted to

complex tissue motion estimation and to small local deformations.

Unlike classical block matching (BM), also called speckle tracking in

US literature, BDBM is based on a local bilinear model and conse-

quently takes into account the local deformations of the tissues.

This method defines rectangular regions of interest (ROI) and a

local parametrical motion model estimates the translations of its

four corners, as shown in Fig. 2. Unlike the classical BM method

that takes into account only rigid translations via two parameters

ðdu; dv Þ, this method uses a bilinear model with eight parameters

to describe the local motion field:

uðx; yÞ ¼ au � xþ bu � yþ cu � x � yþ du

vðx; yÞ ¼ av � xþ bv � yþ cv � x � yþ dv
ð2Þ

where u and v are the displacements along lateral and axial direc-

tions and au;v ; bu;v ; cu;v stand for the local scaling factors, rotations,

and shears in each direction, respectively. The eight parameters of

the bilinear transformation are locally estimated in the ROIs Rp as

shown in Fig. 2. For this purpose, in each Rp, BDBM resorts to clas-

sical BM in order to track each of the four corners.

The estimation of the bilinear parameters is refined using a

multi-scale iterative approach, which consists of locally deforming

the image with the estimated parameters of the previous iteration,

and restarting the estimation by further refining the search regions

(rectangular block of pixels defined around each corner in classical

BM). It has been shown that two iterations are sufficient in order to

obtain good results [15]. For this reason, we also used two itera-

tions (K ¼ 2) in this paper. The main steps of the BDBM method

for estimating the motion between two images are summarized

in Algorithm 1 and its comprehensive description can be found

in [15].

Algorithm 1. Motion estimation with BDBM [15,22]

Require: Unregistered input images Inðx; yÞ and Inþ1ðx; yÞ.

Ensure: Registered output image Înþ1ðx; yÞ.

� Create initial rectangular mesh on In.

� Define regions of interest Rp around nodes Np.

for all Np do

� Initialize the translations of region of interest Rp taking

into account the estimation results of its neighbours

[15].

for k ¼ 1 to K do

� Consider four rectangular blocks denoted Bpq, around

corners Cpq of Rp, with 1 6 q 6 4, and place four

corresponding search regions on Inþ1.

� Interpolate the search regions by ratio su;k in the

lateral direction and s
v ;k in the axial direction.

� Estimate the translations of corners Cpq of the current

Rp by simple block matching using the sum of

absolute differences cost function four times.

� Compute the parameters of the bilinear model for the

current study zone, which contains Rp and Bpq.

� Deform the current study zone according to the

previously computed parameters.

end for

end for

� Compute the dense motion field as detailed in [22].

� Compensate the motion to obtain Înþ1ðx; yÞ.

Once the motion for every image pair is estimated, the HR image

can be reconstructed. All the LR images are first expressed in the

coordinate frame of the reference image by accumulating the

motion computed between successive frames of the sequence, as

was performed for echocardiographic images in [23]. The image val-

ues are then interpolated on a regular HR grid using the sub-pixel

motion information. As stated before, bicubic interpolation is cho-

sen because of its low computational complexity and good results.

Several studies have investigated the optimal number of LR

images to use when reconstructing the HR image [10]. This

depends on many parameters, such as the registration accuracy,

the imaging model or the total frequency content. Intuitively,

Fig. 5. Envelope of RF lines averaged around 10� 1 mm in lateral distance for the phantom images in Fig. 3. The LR input image is in blue, the reconstructed HR output image

using the true and the estimated displacement fields are in red and in green, respectively. Vertical straight lines provide the delimitation of the inclusion. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)



one may think that the more LR images are used, the better the

reconstruction should be. Nevertheless, there is a limit to the

improvement that can be obtained: even from a very large number

of LR images, it may not be possible to reconstruct a sharp HR

image. Blur, noise, and inaccuracies in the signal model limit the

increase in resolving power that can be obtained. The performance

increases rapidly with the first images whereas the improvement is

marginal beyond that (see, e.g., [10]).

Since this paper focuses on the registration part of the SR image

reconstruction, the independent deconvolution problem (third

step in Fig. 1) will not be addressed here but can be found in some

related works [18,19].

3. Simulation of a realistic synthetic ultrasound sequence

Performance of the SR image reconstruction scheme mainly

depends on the accuracy of the motion estimation. In order to

assess both the feasibility and the limitations of our approach,

we have used a framework for the generation of realistic simulated

US sequences based on a true known motion [23]. The SR ratio

related to the new spatial sampling of the HR image, which

accounts for the pixel density increase in each direction, is set to

9. Namely, a 50� 50 pixel LR image would lead to a 450� 450 pix-

el HR image.

The first frame of the synthetic sequence, Is1ðx; yÞ, adopts an

experimental US image as a template, denoted by I1ðx; yÞ. We used

a phantom image, which consists of a 5-mm-diameter cylindrical

inclusion acquired with a 7.5 MHz linear probe, as the template.

The first step for the simulation of Is1ðx; yÞ deals with the gen-

eration of a scatter map with the set of scatter points positioned

according to a uniform distribution [24]. The size of the simulated

US image is 30.04 mm � 34.72 mm, or 2311 pixels � 217 pixels

axially and laterally, respectively. The number of scatterers S, set

to 5� 104 in our experiments, is chosen so that the speckle is fully

Fig. 6. Results of SR image reconstruction using various methods. (a) One of the 15 LR input images and the resulting HR output images using (b) a bicubic interpolation, (c)

classic SR [10], and (d) our method.



developed and the simulated image is visually acceptable. Position

and amplitude of the ith scatterer of frame n are denoted by

ðxi;n; yi;nÞ and ai;n, respectively.

The scatterer amplitudes for the first frame are obtained by

sampling the value of a template image ~I1ðx; yÞ at the correspond-

ing coordinates

ai;1 ¼ ~I1ðxi;1; yi;1Þ; 1 6 i 6 S ð3Þ

where ~I1ðx; yÞ is the (bicubic) interpolated envelope of the real US

radio-frequency (RF) image I1ðx; yÞ, before the B-mode log-compres-

sion as stated in [23,25].

The following frames of the sequence are then obtained by sim-

ply displacing the scatter map according to a known estimated

motion, i.e., for 1 6 i 6 S;1 6 n 6 Nf ÿ 1,

xi;nþ1 ¼ xi;n þ ûnðx; yÞ

yi;nþ1 ¼ yi;n þ v̂nðx; yÞ

(

ð4Þ

where Nf stands for the total number of frames in the simulated

sequence and ûnðx; yÞ and v̂nðx; yÞ are the known motions in both

directions. To ensure realism, the motion introduced in the simulat-

ed sequence is derived from a previous estimation performed on a

real phantom image sequence, hence the term ‘‘realism’’. As this

previous estimation may generate some errors and irregularities

in the estimated motion fields, a slight low-pass filter is applied

to these motion fields beforehand, as a pre-processing stage to

the sequence simulation.

The amplitude of the displaced scatterers remains the same for

all the frames of the sequence in order to preserve the speckle

coherence. Namely, for 1 6 i 6 S;1 6 n 6 Nf ÿ 1,

ai;n ¼ ai;1 ð5Þ

Once the complete sequence of scatter maps is computed, the asso-

ciated US image is synthesized with Field II [24]. In the software

parametrization, we used the linear transducer features with which

the phantom was originally acquired: 7.5 MHz center frequency,

60 MHz sampling frequency, 512 physical elements of size

5 mm � 0.2 mm (height and width, respectively), with 128 active

elements.

Fig. 3 shows one frame of a realistic simulated US sequence and

the reconstructed HR image using the estimated motion fields. The

distributions of the simulated LR data and the reconstructed HR

data are shown in Fig. 4. A fit to a Rayleigh distribution [3] was

computed and the corresponding parameter r was estimated in

both cases using the raylfit MATLAB function, resulting in

r ¼ 19:03 for the LR data and r ¼ 19:72 for the HR data. This small

3.6% change in the distribution parameter confirms the preserva-

tion of the US image statistical properties. US B-mode profiles of

RF lines passing through the cylindrical inclusion are shown in

Fig. 5. The RF lines located around 10� 1 mm in lateral distance

were averaged using a moving average and presented together

with the theoretical delineation of the phantom (two vertical

lines).

It is important to notice that here, the SR image reconstruction

is performed both with the true known motion used in the simula-

tion of the synthetic US sequence and with motion fields estimated

with the BDBM method on the synthetic sequence. The resulting

HR images are visually consistent, as highlighted by the profiles

in Fig. 5. Therefore, this realistic simulation gives the experimental

limit of the method performance, showing that the chosen motion

estimation algorithm is accurate enough for our application.

4. Results

4.1. In-vitro phantom images

The process described in Section 2 is assessed using US

sequences containing 15 images of the 50� 50� 50 mm phantom

with the same cylindrical inclusion of 5 mm in diameter scanned

with a 7.5 MHz linear probe. The average displacements between

two consecutive frames are 0.205 mm and 0.058 mm in the axial

and lateral directions, respectively. Fig. 6 shows one of the fifteen

LR input images and the HR output image. As in Fig. 5, B-mode pro-

files of RF lines are examined using a moving average in Fig. 7,

together with the theoretical delineation of the phantom (two ver-

tical lines). Again, note that the horizontal (axial) distance in Fig. 6

corresponds to the vertical distance in Fig. 7. Furthermore, Figs. 6

and 7 can be seen as the experimental versions of the results pre-

sented in Figs. 3 and 5.

Qualitative improvements are observable as the inclusion is

more accurately identified while both the structure of the speckle

and the general aspect of the US image are preserved. The fine

cylindrical structure of the inclusion is also recovered with the

HR image.

Fig. 7. Envelope of RF lines averaged around 10� 1 mm in lateral distance for the phantom images in Fig. 6. The LR input image is in blue and the reconstructed HR output

image is in green. Vertical straight lines provide the delimitation of the inclusion. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)



A numerical measure of the resolution gain (RG) [26,27] was

computed in order to assess the size of the speckle for LR and HR

images. The RG criterion is defined by the ratio between the num-

ber of pixels of the normalized autocorrelation functions with val-

ues higher than 0.75, computed for the LR envelope image and for

the HR image. A square region of 15� 15 mm2 centred on the

inclusion was used for each image and the gain was found to be

1.41. The improvement is modest and is related to the fact that

the speckle spot size is not significantly modified in the recon-

structed image. This gain could be further enhanced by using, for

instance, deconvolution methods as a final step in the process

described in Fig. 1.

Two other quantitative measures were used in order to high-

light the contribution of our approach in terms of contrast and

structure. The contrast resolution enhancement was assessed in

terms of contrast-to-noise ratio (CNR), a criterion often involved

in the evaluation of US image processing techniques [22,28]. The

CNR is defined as

CNR ¼
jli ÿ loj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
i þ r2

o

q ð6Þ

where li and lo are the means of regions inside and outside the

inclusion, respectively, and r2
i and r2

o are the corresponding vari-

ances. The outer regions were chosen at the same depth as the inner

region for a legitimate comparison. The CNR was computed on

4 mm � 4 mm regions of approximately 15� 104 samples and

was increased by approximately 13% compared to the original LR

image, as summarized in Table 2, for the simulated and the in vitro

phantoms. The CNR was successively computed using one LR input

image and the three HR images based on bicubic interpolation, clas-

sic SR as reported in [11] and our method (see the corresponding

images in Fig. 6). The greater improvement is achieved in the phan-

tom simulation since the ground truth motion is perfectly known.

It is important to note that the improvement of any given quan-

titative measure is only an indication and cannot reflect the algo-

rithm’s general behaviour. Thus, though the classic HR image

leads to an increase of 2.9% in the CNR in Table 2, the general

aspect of the image makes it impossible to exploit such a result.

Note that the interpolation-based HR image improves the CNR

whereas no additional information is provided in the reconstruc-

tion process.

The image structure enhancement was finally quantified by tak-

ing advantage of the characteristics of the phantom. The inclusion

interface must be accurately delineated and the transition between

the inner and the outer regions should be as narrow as possible in

the B-mode images. The related gain can thus be thought of as the

improvement in the transition width and slope, as summarized in

Table 1. The interface width was estimated as the region located

Table 2

Contrast-to-noise ratio comparison for the phantom images. Best results are shown in

bold for each case.

Images LR Interpolation Classic Our method

Simulated phantom images

CNR ð�10ÿ3Þ 331.72 335.62 332.08 421.80

(increase) (–) (+1.5%) (+0.3%) (+27.2%)

Experimental phantom images

Images LR interpolation classic our method

CNR ð�10ÿ3Þ 507.90 528.87 522.67 573.65

(increase) (–) (+4.1%) (+2.9%) (+12.9%)

Table 1

Width and slope of the inclusion interfaces in the simulated and the experimental

phantom images. ‘‘Interface 1’’ and ‘‘Interface 2’’ (vertical straight lines in Fig. 5)

correspond to the upper and lower regions, respectively, between the inclusion and

the surrounding medium. Best results are shown in bold for each case.

Images Simulation Experimentation

LR HR LR HR

Interface 1 width (mm) 1.48 0.76 1.98 0.53

Interface 2 width (mm) 1.47 1.10 1.93 2.14

Interface 1 mean slope 3.08 7.27 2.46 9.91

Interface 2 mean slope 2.64 3.79 2.47 3.42

Fig. 8. Experimental results of SR image reconstruction on in vivo thyroid images with a malignant tumour delineated by a specialist doctor. T – thyroid gland, Tm –

malignant tumour. (a) One of the 15 LR input images. (b) Resulting HR output image.



around the inclusion delineations, between the two main

surrounding peaks. Its slope was computed using a linear least

squares fitting. Note that these peaks may not always clearly exist

and are dependent on the LR image native quality. Table 1 shows

that the HR reconstructed images of the phantom have a better

delineation of the inclusion interfaces in almost every case.

4.2. In-vivo thyroid images

The proposed algorithm was also used to process 15 US frames

of an in vivo thyroid with a malignant tumour. The images were

initially acquired for US static elastography, while applying a small

compression with the US probe. The average displacements

between two consecutive frames are 0.031 mm and 0.046 mm in

the axial and lateral directions, respectively. More details about

the thyroid data may be found in [22]. The results are displayed

in Fig. 8. Though the evaluation of in vivo data is more complicated,

results show a better accuracy of the thyroid overall structure

according to the delineation provided by a specialist doctor and

shown in Fig. 8(a). Though confirmed by elastograms in [23], this

manual delineation might not be entirely accurate and is hence

used here for indication only.

The RG was computed using a square region of 15� 15 mm2

located on the boundary between healthy and tumoral regions,

resulting in a moderate gain of 1.12.

The CNR was calculated in a slightly different way than in Sec-

tion 4.1 since the inner and outer regions are not clearly defined.

The inner region was chosen in the tumour region (dark lower part

of the thyroid) while the outer region was rather chosen in the

healthy region (bright upper part of the thyroid). The delineations

of these regions were hand-drawn by a specialist doctor. The CNR

was thus increased by approximately 24% compared to the original

LR thyroid image.

5. Conclusion

This work proposed a framework for the image enhancement of

ultrasound images based on a set of low-resolution ultrasound

frames. The key steps of this reconstruction scheme are motion

compensation and image reconstruction. Elastic motion estimation

and bicubic interpolation are performed in order to better recon-

struct the high-resolution output image, enhancing the overall

image quality and preserving the ultrasound image nature. The

algorithm performance is assessed using synthetic and in vivo

ultrasound data and shows improvements in both qualitative and

quantitative ways. In vivo ultrasound thyroid images are eventual-

ly processed and enhanced in the same way, thus demonstrating

the various capabilities of this promising reconstruction technique

in ultrasound imaging.

Future works will involve the compensation of the registration

errors during a more robust interpolation stage by further taking

into account the statistics of ultrasound images. To confirm the

results presented in this paper, further investigations need to be

conducted using a more extensive dataset. It would also be desir-

able to investigate the use of super-resolution image reconstruc-

tion in combination with deconvolution approaches via the

incorporation of information related to the point spread function.
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