A formal language for cyclic operads

Pierre-Louis Curien 1, 2 Jovana Obradovic 2, 1, *
* Corresponding author
1 PI.R2 - Design, study and implementation of languages for proofs and programs
PPS - Preuves, Programmes et Systèmes, Inria Paris-Rocquencourt, UPD7 - Université Paris Diderot - Paris 7, CNRS - Centre National de la Recherche Scientifique : UMR7126
Abstract : We give a complete proof of the equivalence between the unbiased and biased definitions of cyclic operads, through a lambda-calculus-style formal language, called the mu-syntax, and a new formalism of trees that provides a crisp description of the monad of unrooted trees (whose nodes are decorated with operadic operations).
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01278214
Contributor : Jovana Obradovic <>
Submitted on : Monday, January 21, 2019 - 9:28:43 AM
Last modification on : Thursday, February 7, 2019 - 2:22:15 PM

Files

CO-FLCO.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01278214, version 1

Citation

Pierre-Louis Curien, Jovana Obradovic. A formal language for cyclic operads. Higher Structures, Michael Batanin, 2017. ⟨hal-01278214⟩

Share

Metrics

Record views

29

Files downloads

18