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SOME PARTICULAR SELF-INTERACTING DIFFUSIONS:

ERGODIC BEHAVIOUR AND ALMOST SURE

CONVERGENCE

SÉBASTIEN CHAMBEU(A) AND ALINE KURTZMANN*(B)

Abstract. This paper deals with some self-interacting diffusions (Xt, t ≥
0) living on Rd. These diffusions are solutions to stochastic differential
equations:

dXt = dBt − g(t)∇V (Xt − µt)dt,

where µt is the empirical mean of the process X, V is an asymptotically
strictly convex potential and g is a given function. We study the ergodic
behaviour of X and prove that it is strongly related to g. Actually, we
show that X is ergodic (in the limit-quotient sense) if and only if µt

converges a.s. We also give some conditions (on g and V ) for the almost
sure convergence of X.

MSC : 60K35; 37C50
Keywords: Self-interaction diffusion; Reinforced processes; Stochastic ap-

proximation

1. Introduction

Processes with path-interaction have been an intensive research area since
the seminal work of Norris, Rogers and Williams [13]. More precisely, self-
interacting diffusions have been first introduced by Durrett and Rogers [7]
under the name of Brownian polymers. They proposed a model for the shape
of a growing polymer. Denoting by Xt the location of the end of the polymer
at time t, X satisfies a SDE with a drift term depending on its own occupa-
tion measure (in dimension 1, we define it through the local time of X). One
is then interested in rescaling X (see [5, 6, 9, 12, 15]). Later, another model
of polymers has been proposed by Benäım, Ledoux and Raimond [2]. They
have studied a class of self-interacting diffusions depending on the empirical
measure. When the process is living on a compact Riemannian manifold,
they have proved that the asymptotic behaviour of the empirical measure
can be related to the analysis of some deterministic dynamical flow defined
on the space of the Borel probability measures. Benäım and Raimond [3]
went further in this study and in particular, they gave sufficient conditions
for the a.s. convergence of the empirical measure. Very recently, Raimond
[16] has generalized the previous work: he has studied the asymptotic prop-
erties of a process X, living on a Riemannian compact manifold M , solution
to the SDE

dXt = dBt − g(t)∇V ∗ µt(Xt)dt, (1.1)
1
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with V ∗ µt(x) = 1
t

∫ t
0 V (x,Xs)ds, µt = 1

t

∫ t
0 δXsds, |g(t)| ≤ a log(t) and

g′(t) = O(t−γ) with 0 < γ ≤ 1. He has proved that, unless g is constant, the
approximation of µt by a deterministic flow is no longer valid. He has more
particularly investigated the example M = Sn and V (x, y) = − cos d(x, y)
(where d is the geodesic distance on Sn) and proved that a.s. µt converges
weakly towards a Dirac measure. For an overview on reinforced processes,
we refer the reader to Pemantle’s survey [14].

In the present paper, we are concerned with some self-interacting pro-
cesses living on Rd. Consider a smooth potential V : Rd → R+ and an
application g : R+ → R∗+. Our goal is to study the ergodic behaviour of the
self-interacting diffusion X solution to

dXt = dBt − g(t)∇V (Xt − µt)dt, X0 = x. (1.2)

where B is a standard Brownian motion and µt denotes the empirical mean
of X:

µt =
1

r + t

(
rµ̄+

∫ t

0
Xsds

)
, µ0 = µ. (1.3)

Here µ is an initial (given) probability measure on Rd, µ̄ denotes the mean of
µ and r > 0 is an initial weight (it permits to consider any initial probability
measure).

First, note that for a quadratic interaction potential V , the process satis-
fying (1.2) is exactly of the form of (1.1) and, in both cases, the occupation
measure is penalized by g(t). Afterwards, a natural generalization of this
process is the class of self-interacting diffusions discussed here. The inter-
esting point is that we manage to study precisely the asymptotic behaviour
of X and prove a convergence criterion. Moreover, this model could be used
to represent the behaviour of social insects, as the ants trails. Indeed, ants
mark their paths with the trails’ pheromones. Certain ants lay down an
initial trail of pheromones as they return to the nest with food. This trail
attracts other ants and serves as a guide. As long as the food source re-
mains, the pheromone trail will be continually renewed. Despite the quick
evaporation, the path is reinforced and so, the ants manage to gradually
find the best route. In this (simplified) model, the function g reflects the
speed of evaporation and X denotes the trail.

In order to study the solution to (1.2), it is natural to introduce the
process Y , defined by

Yt = Xt − µt. (1.4)

It is easily seen that (Yt, t ≥ 0) is the solution to the SDE

dYt = dBt − g(t)∇V (Yt)dt− Yt
dt

r + t
, Y0 = x− µ; (1.5)

and dµt = Yt
dt
r+t . As Y is a (non-homogeneous) Markov process, it is easier

to study Y than X. Indeed, we will prove that Y converges a.s. and satisfies
the pointwise ergodic theorem. Due to that, the behaviour of X could seem
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a bit easy at first glance. But it really shows unexpected behaviours and,
in particular, it does not satisfy the pointwise ergodic theorem in general
(because µt does not converge, except for functions g going fast to infinity).
This explains how difficult is the study of more general self-interacting dif-
fusions in non-compact spaces (see Kurtzmann [10]), driven by the generic
equation dXt = dBt −

∫
Rd ∇V (Xt, x)dµt(x)dt.

The remainder of the paper is organized as follows. First, we enumerate
the hypotheses and state the main results in Section 2. We motivate our
study, in Section 3, by the basic case when V is quadratic, for which we
have an explicit expression of X (in terms of Brownian martingale). Section
4 deals with the description of the behaviour of Y near the local extrema of
V . Finally, Section 5 is devoted to the proof of the main results.

2. Technical assumptions and main results

In the sequel, (·, ·) stands for the Euclidian scalar product. We also denote
by P(Rd) the set of probability measures on Rd.

Consider the potential V : Rd → R+. Let Max = {M1, . . . ,Mp} be the
(finite) set of saddle points and local maxima of V and denote by Min =
{m1, . . . ,mn} the (finite) set of the local minima of V . So Min∪Max is the
set of critical points of V . We assume that V is either quadratic (Section 3)
or:

1) (regularity and positivity) V ∈ C2(Rd) and V > 0;
2) (convexity) V = W + χ where χ is a compactly supported function

such that ∇χ is C̃-Lipschitz (with C̃ > 0) and there exists c > 0
such that ∇2W ≥ cId;

3) (growth) there exists a > 0 such that for all x ∈ Rd, we have

∆V (x) ≤ aV (x) and lim
|x|→∞

|∇V (x)|2

V (x)
=∞; (2.1)

4) (critical points) ∀mi, ∀ξ ∈ Rd, (∇2V (mi)ξ, ξ) > 0 and for all Mi,
∇2V (Mi) admits a negative eigenvalue.

Remark 2.1. By the growth condition (2.1), |∇V |2 − ∆V is bounded by
below.

Suppose also that g : R+ → R+ is nondecreasing and g ∈ C1(R+). We
denote by g(∞) the limit of g(t) and we exclude the trivial case where g is

identically zero, so that g(∞) > 0. Let G(t) :=
∫ t
0 g(s)ds and G−1 be its

generalized inverse: G−1(t) := inf{u ≥ 0;G(u) ≥ t}.

Remark 2.2. If g(∞) =∞, then for all T > 0, we have that G−1(t+ T )−
G−1(t) −→

t→∞
0.

The following easy result will be very useful in the sequel.

Lemma 2.3. Suppose that g′(t)/g2(t) converges to 0. Then the following
hold:
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i) for any c > 0,
∫ t
0 s

2e2cG(s)ds = O(t2e2cG(t)/g(t));

ii) if g(∞) =∞, then we have
∫ t
0
g′(s)
g(s)2

G(s)ds = O(t);

iii) for H(t) :=
∫ t
0
e−cG(u)

(r+u)2
du, the following expansion holds:

H(t) = H(∞)− 1

cg(t)(r + t)2
e−cG(t) + o

(
e−cG(t)

t2g(t)

)
.

Proof. We deduce all these estimates from an integration by parts:∫ t

0
s2e2cG(s)ds =

t2e2cG(t)

2cg(t)
−
∫ t

0

(
s

g(s)
− s2g′(s)

2g(s)2

)
e2cG(s)

c
ds = O(t2e2cG(t)/g(t)),

and we obtain H(t)−H(s) = e−cG(s)

r+s −
e−cG(t)

r+t −c
∫ t
s g(u)e−cG(u) du

r+u . Similarly

for t large enough and u such that g(u) > 0, we find
∫ t
u
g′(s)
g(s)2

G(s)ds =

−G(t)
g(t) + G(u)

g(u) + t− u = O(t). �

2.1. Existence. We begin by proving that the SDE studied admits a unique
global strong solution.

Proposition 2.4. For any x ∈ Rd, µ ∈ P(Rd) and r > 0, there exists a
unique global strong solution (Xt, t ≥ 0) of (1.2).

Proof. The local existence and uniqueness of the solution to (1.2) is stan-
dard. We only need to prove here that Y , hence X (since Xt := Yt +∫ t
0 Ys

ds
r+s), does not explode in a finite time. To this aim, apply Itô’s for-

mula to the function x 7→ V (x):

dV (Yt) = (∇V (Yt), dBt) +

(
1

2
∆V (Yt)− g(t)|∇V (Yt)|2 −

1

r + t
(∇V (Yt), Yt)

)
dt,

and introduce the sequence of stopping times τ0 = 0 and

τn = inf{t ≥ 0;V (Yt) +

∫ t

0
g(s)|∇V (Ys)|2ds > n}.

By the convexity condition, we have (∇V (y), y) −→
|y|→+∞

+∞ and so the

growth condition (2.1) implies the existence of C such that EV (Yt∧τn) ≤
EV (Y0) + eCt. �

2.2. Results. We give now a description of the asymptotic behaviour of
both µt and Xt.

Definition 2.5. The process X satisfies the pointwise ergodic theorem if

there exists a measure µ∞ such that a.s. µt := 1
r+t

(
rµ+

∫ t
0 δXsds

)
→ µ∞

for the weak convergence of measures: for all continuous bounded function

f , 1
t

∫ t
0 f(Xs)ds

a.s.−−→
∫
fdµ∞.
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Theorem 2.6. (1) The process Y satisfies the pointwise ergodic theo-
rem: almost surely, the empirical measure of Y converges weakly to
a measure, which is a convex combination of Dirac measures taken
in the local minima of V .

(2) The process X satisfies the pointwise ergodic theorem if and only if
the mean-process µt converges almost surely.

A necessary condition for the convergence of µt is that 0 is the unique
minimum of V . We will prove this result in §5.1. Indeed, what we need here
is not only the convergence of Yt to zero, but the convergence of the integral∫ t
0 Ys

ds
r+s , which depends on the speed of convergence of Yt. The main result

of this paper is the following description of the asymptotic behaviour of X,
shown in §5.3:

Theorem 2.7. Suppose that
√
g(t)−1 logG(t) = O(h(t)−1), where G is a

primitive of g and
∫∞
0

ds
(1+s)h(s) <∞.

(1) The process Y converges almost surely to Y∞, where Y∞ belongs to
the set of the local minima of V . For each local minimum m of V ,
one has P(Y∞ = m) > 0.

(2) On the set {Y∞ = 0}, both Xt and µt converge almost surely to
µ∞ := µ +

∫∞
0 Ys

ds
r+s , whereas on the set {Y∞ 6= 0}, we have that

lim
t→∞

Xt
log t = Y∞.

3. A motivating example

We consider V (x) = 1
2(x, cx), where c is a symmetric positive definite

matrix. Let X be the solution of the SDE

dXt = dBt − g(t)

(
cXt −

r

r + t
cµ− 1

r + t

∫ t

0
cXsds

)
dt, X0 = x. (3.1)

Without any loss of generality, we suppose that d = 1. When d ≥ 1, it
suffices to diagonalize the matrix c and to remark that, for an orthogonal
matrix U , the process (U ·Bs, s ≥ 0) is also a Brownian motion.

3.1. Explicit expression of X.

Lemma 3.1. If X is the solution to (3.1), then we have

Yt := Xt − µ̄t =
e−cG(t)

r + t

(∫ t

0
(r + s)ecG(s)dBs + r(x− µ)

)
.

Proof. The process Y satisfies

dYt = dBt −
(
cg(t) +

1

r + t

)
Ytdt, Y0 = x− µ. (3.2)

To express Y in terms of a Brownian martingale, we consider the function
of Y defined by Ut := (r + t)ecG(t)Yt. Then Itô’s formula implies

dUt = (r + t)ecG(t)dBt, U0 = r(x− µ). �
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Corollary 3.2. Let F (t) =
∫ t
0 e
−cG(s) g(s)

r+sds. The solution to the SDE (3.1)
is given by

Xt = x+ rc(µ− x)F (t) +

∫ t

0

[
1− (r + s)cecG(s)(F (t)− F (s))

]
dBs.

Proof. Remark that d
dtµt = Yt

r+t . So, by Fubini’s theorem for stochastic

integrals (see [17] p.175), we have

µt =

∫ t

0
(r + s)ecG(s)(H(t)−H(s))dBs + r(x− µ̄)H(t) + µ̄

with H(t) =
∫ t
0
e−cG(u)

(r+u)2
du = 1

r − cF (t)− e−cG(t)

r+t . As Xt = Yt + µt, the latter

result implies the desired expression. �

3.2. Ergodic result. We begin to prove the pointwise ergodic theorem for
the following non-homogeneous (Gauss-)Markov process.

Proposition 3.3. Let a : R+ → R+ be a continuous function, A(t) :=∫ t
0 a(s)ds and K(t) := e−2A(t)

∫ t
0 e

2A(s)ds. Suppose that a(∞) = lim
t→∞

a(t)

exists and is nonzero, so that K(∞) = 1
2a(∞) <∞. Consider the process

dZt = −a(t)Ztdt+ dBt, Z0 = z.

Then, denoting by γ the centered Gaussian measure with variance K(∞)
(with the convention γ = δ0 for K(∞) = 0), we have for all continuous
bounded function ϕ

1

t

∫ t

0
ϕ(Zs)ds

a.s.−−→
t→∞

∫
ϕ(z)γ(dz).

Proof. We prove the result for the Fourier transform. First, note that

Zt = e−A(t)
(∫ t

0
eA(s)dBs + z

)
.

Let Fs := σ(Bu, 0 ≤ u ≤ s). Knowing Fs, Zt has the Gaussian dis-

tribution with mean m(s, t) := e−(A(t)−A(s))Zs and variance K(s, t) :=

e−2A(t)
∫ t
s e

2A(u)du. Fix t ∈ R+, u ∈ R and define the martingale M t,u
s :=

E
(
eiuZt |Fs

)
= exp

{
ium(s, t)− u2

2 K(s, t)
}

. Applying Itô’s formula to s 7→
M t,u
s , we find that dM t,u

s = iue−(A(t)−A(s))M t,u
s dBs, and so

eiuZt = EeiuZt +

∫ t

0
iue−(A(t)−A(s))M t,u

s dBs.

Then, by Fubini’s theorem for stochastic integrals, we easily obtain∫ t

0
eiuZsds =

∫ t

0
EeiuZsds+

∫ t

0
dBs

∫ t

s
iue−(A(r)−A(s))M r,u

s dr. (3.3)
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As Zt is Gaussian with variance K(0, t), it converges in distribution to a
Gaussian variable of law γ = N (0,K(∞)). Because of Cesàro’s result, we
have

lim
t→∞

1

t

∫ t

0
EeiuZsds = e−

u2

2
K(∞).

We wish to find an asymptotic equivalent to the stochastic factor of (3.3).

To this aim, consider Nu
s,t(v) :=

∫ t
s iue

A(v)−A(r)M r,u
v dr. First, on the set

{
∫∞
0 < Nu

·,t(s) >s ds < ∞}, the local martingale
∫ t
0 N

u
s,t(s)dBs converges

a.s. to a finite variable and so, is of the order of o(t). Actually, we decompose
it as ∫ t

0
Nu
s,∞(s)dBs −

∫ t

0
Nu
t,∞(s)dBs. (3.4)

On the set {
∫∞
0 < Nu

·,t(s) >s ds =∞}, the LLN for martingales implies a.s.∫ t

0
dBs

∫ ∞
s

iue−(A(r)−A(s))M r,u
s dr = o

(∫ t

0

∣∣∣∣∫ ∞
s

iue−(A(r)−A(s))M r,u
s dr

∣∣∣∣2 ds

)
.

Indeed, we obtain the following upper bound by using the initial definition
of M r,u

s :

|Nu
s,t(s)| ≤ |u|

∫ t

s
eA(s)−A(r)dr = |u|eA(s)(It − Is)

where It :=
∫ t
0 e
−A(r)dr = I∞ − e−A(t)

a(t) + o
(
e−A(t)

a(t)

)
, we find by the triangle

inequality that
∫ t
0 e

2A(s)(It − Is)2ds = O(t). So we have

E
(∫ t

0
Nu
t,∞(s)dBs

)2

=

∫ t

0
E(Nu

t,∞(s)2)ds ≤ |u|2
∫ t

0
e2A(s)ds(I∞ − It)2 = O(1).

Borel-Cantelli’s lemma permits to conclude that 1
t

∫ t
0 N

u
t,∞(s)dBs converges

a.s. to 0. �

Theorem 3.4. Suppose that g′(t)/g2(t) converges to 0. Then, with prob-

ability 1, the empirical measure µt = r
r+tµ + 1

r+t

∫ t
0 δXsds converges weakly

to µ∞. Moreover, the mean µt = 1
r+t

∫ t
0 Xsds+ r

r+tµ also converges almost
surely.

Proof. We remind that reader that g′(t)/g2(t) converges to 0. We start by
proving that µ̄t converges a.s. Decompose the process µt = µ1t + µ2t + µ3t
where

µ1t = µ+ r(x− µ)H(t),

µ2t = (H(t)−H(∞))

∫ t

0
(r + s)ecG(s)dBs,

µ3t =

∫ t

0
(r + s)ecG(s)(H(∞)−H(s)) dBs.
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The convergence of H(t) obviously implies the convergence of µ1t . The de-

terministic factor of µ2t is equivalent to 1
cg(t)t2

e−cG(t) and, due to Lemma 2.3,

the quadratic variation of the stochastic factor in µ2t is of the order of
t2e2cG(t)

g(t) . By Lemma 2.3 and the law of the iterated logarithm ([11] The-

orem 3), we finally have µ2t
a.s.−−→
t→∞

0. Finally, µ3t is a L2-bounded martingale

and thus converges a.s. Putting all the pieces together, we conclude that

µt
a.s.−−→
t→∞

µ+H(∞)r(x− µ) +
∫∞
0 (r + s)ecG(s)(H(∞)−H(s)) dBs.

To show that µt converges, we first point out that the deterministic factor
of Xt converges. Decompose the process X into three parts: Xt = µ∞ +
φ(t)Ut + o(1) where

µ∞ := x+ cr(µ− x)F (∞) +

∫ ∞
0

[
1− (r + s)cecG(s)(F (∞)− F (s))

]
dBs,

Ut :=
e−cG(t)

r + t

∫ t

0
(r + s)ecG(s)dBs,

φ(t) := c(r + t) (F (∞)− F (t)) ecG(t).

Again, we prove the result for the Fourier transform. We have the following:

1

t

∫ t

0
eiuXsds =

eiu(µ∞+o(1))

t

∫ t

0
eiuφ(s)Usds.

By Proposition 3.3, φ(t)Ut is ergodic. So 1
t

∫ t
0 e

iuφ(s)Usds converges a.s. �

Corollary 3.5. Suppose that g′(t)/g2(t) converges to 0 and g(∞) < ∞.

Then the limit limµt = µ∞ is the Gaussian measure µ∞ = N
(
µ∞,

1
2g(∞)c

)
.

3.3. Asymptotic behaviour of X. We prove here that, depending on g,
X exhibits three different behaviours: X converges either almost surely, or
in probability (and not a.s.), or it diverges. First, we describe roughly the
asymptotic behaviour of X.

Proposition 3.6. Suppose that g(∞) <∞. Then we have

P
(

lim sup
t→∞

Xt = +∞
)

= P
(

lim inf
t→∞

Xt = −∞
)

= 1.

Proof. Let A be a non negligible subset of R. We have the asymptotic
equivalence ∫ t

0
δXs(A)ds ∼

t→∞
tl

where l is a positive constant depending on A. So,
∫∞
0 δXs(A)ds = ∞ a.s.

and µ∞ is diffusive. It then implies that for all K > 0,
∫∞
0 δXs([K,∞[)ds =

∞ a.s. and so

P

⋂
K≥1

{∫ ∞
0

1l{Xs≥K} ds =∞
} = 1.
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We conclude that P(lim sup
t→∞

Xt = +∞) = 1. The proof is the same for

lim inf
t→∞

Xt. �

Proposition 3.7. Suppose that g′(t)/g2(t) converges to 0 and g(∞) = ∞.
Then Xt converges in probability to a random variable X∞ and a.s. µt
converges weakly to δX∞.

Proof. As Y is Gaussian and E(Y 2
t ) = O(g(t)−1), it converges in L2 and so

in probability to 0. Decomposing X as Xt = Yt +
∫ t
0 Ys

ds
r+s , it remains to

show that the previous integral converges in probability. Using the explicit
form of Y , Fubini’s theorem for stochastic integrals ensures∫ t

0
Ys

ds

r + s
= r(x−µ̄)

∫ t

0
e−cG(s) ds

(r + s)2
+

∫ t

0
(r+u)ecG(u)

(∫ t

u
e−cG(s) ds

(r + s)2

)
dBu.

The quadratic variation of the Brownian integral converges by Lemma 2.3
and thus X converges to X∞ in L2. Remark that the law of the iterated
logarithm does not imply here that X converges a.s. since we do not know
whether logG(t)/g(t) converges to 0 or not. We then easily have that µt
converges toward δX∞ in probability. By Theorem 3.4, a.s. µt converges
(weakly) and so we conclude. �

Proposition 3.8. Suppose that g′(t)/g2(t) converges to 0 and g(t)−1 logG(t)
is bounded for t large enough. Then there exists C > 0 such that

P(lim sup
t→∞

|Yt| ≤ C) = 1.

Proof. We write Y as a Brownian (local) martingale: Yt = e−cG(t)

r+t

(
Y0 +

∫ t
0 (r + s)ecG(s)dBs

)
.

To estimate the quadratic variation of Y , we use Lemma 2.3 and thus, by
the law of the iterated logarithm, there exists C such that a.s. lim sup

t→∞
|Yt| ≤

C. �

Corollary 3.9. Suppose that g(t)−1 logG(t) is lower bounded away from 0
and upper bounded for t large enough. Then Xt is bounded a.s., converges
in probability (but not a.s.) to X∞ = µ∞ and a.s. µt converges weakly to
δX∞.

Proof. Y is a.s. bounded and µt converges a.s., so Xt = Yt + µt is also a.s.
bounded. As Yt is Gaussian, it converges (in law) to a centered Gaussian
variable. The latter being bounded, Yt converges in probability to 0. By
the law of the iterated logarithm, Yt does not converge a.s. to 0 (since
logG(t)/g(t) > 0 for large t). So, Xt converges in probability to µ∞. We
conclude by uniqueness of the limit that a.s. µt converges weakly to δµ∞ . �

Proposition 3.10. Suppose that g′(t)/g2(t) converges to 0 and lim
t→∞

g(t)−1 logG(t) =

0. Then the process Yt := Xt − µt converges to 0 a.s. Moreover, both Xt

and µt converge to µ∞ a.s. and a.s. µt converges weakly to δµ∞.
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Proof. We only need to prove that Yt := Xt−µt converges a.s. to 0. We have

already seen that Yt = e−cG(t)

r+t

∫ t
0 (r+s)ecG(s)dBs+ r(x−µ) e

−cG(t)

r+t =: Ut+vt.
The deterministic term vt converges obviously to 0 and the law of the iterated
logarithm implies that Ut converges a.s. to 0. By uniqueness of the limit of
µt, we conclude that µ∞ = δµ∞ . �

4. Study of Y with respect to the critical points of V

From now on, we assume that g′(t)/g2(t) converges to 0 (this hypothesis
is only needed to study the behaviour of Y near a local minimum of V ). We
study the process Yt = Xt − µ̄t, which is the solution to

dYt = dBt −
(
g(t)∇V (Yt) +

Yt
r + t

)
dt; Y0 = x− µ. (4.1)

More precisely, we study the behaviour of Y near the critical points of V .
We show in particular, for each local minimum of V , that Y stays close to it
with positive probability; whereas this probability is zero for any unstable
critical point.

4.1. Behaviour near the critical points of V .

Proposition 4.1. Almost surely, ∀ε > 0, ∀t > 0,

T εt := inf{s ≥ t; d(Ys,Min ∪Max) < ε} <∞.

Proof. Let ε > 0. Applying Itô’s formula to x 7→ V (x), we obtain

dV (Yt) = (∇V (Yt), dBt)−
(
g(t)|∇V (Yt)|2 +

1

r + t
(Yt,∇V (Yt))−

1

2
∆V (Yt)

)
dt.

It then follows from the growth condition (2.1) that on the set {z; d(z,Min∪
Max) > ε} and for t ≥ 0, the function y 7→ 1

r+t(y,∇V (y)) + g(t)|∇V (y)|2−
1
2∆V (y) is bounded from below. So, there exists C > 0 such that, ∀y ∈
{z; d(z,Min ∪Max) > ε}, we have

g(t)|∇V (y)|2 +
1

r + t
(y,∇V (y))− 1

2
∆V (y) ≥

(
g(t)− g(∞)

2

)
|∇V (y)|2−C.

(4.2)
Let us introduce the stopping time T εt = inf{s ≥ t; d(Ys,Min ∪Max) < ε}
and prove that P(T εt < +∞) = 1. It follows from (4.2) that there exists t0
such that, for t > t0,

(
V (Ys∧T ε

t
) + C(s ∧ T εt ), s ≥ t

)
and(

V (Ys∧T ε
t
) + C(s ∧ T εt ) +

∫ s∧T ε
t

0

(
g(u)− 1

2
g(∞)

)
|∇V (Yu∧T ε

t
)|2du, s ≥ t

)
are two super-martingales. As they are positive, they converge a.s. (as

s→∞). So, the process
(∫ s∧T ε

t
0 g(u)|∇V (Yu∧T ε

t
)|2du, s ≥ t

)
also converges

a.s. On the set {T εt = +∞}, we have

|∇V (Ys∧T ε
t
)|2 a.s.−−→

s→∞
0.
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Thus Ys∧T ε
t

gets close to Min ∪Max and there is a contradiction. Finally,
P(T εt < +∞) = 1 for all t > t0. For t ≤ t0, we conclude since t 7→ T εt is
increasing. �

Corollary 4.2. Almost surely, the sequence of stopping times Tn := inf{s >
n; d(Ys,Min∪Max) < ε} satisfies: Tn →∞, and ∀n ≥ 1, P(Tn < +∞) = 1
and d(YTn ,Min ∪Max) < ε.

4.2. Case of a stable critical point: local minimum. We will prove
that if Y0 is near a local minimum m, then the set {Ys; s ≥ 0} stays near
m with a positive probability. Indeed, a second-order Taylor expansion
permits to compare (y−m,∇V (y)) with |y−m|2 and we use a comparison
theorem. Let m be a local minimum of V such that ∇2V (m) > 0. By
Taylor’s formula, there exist a > 0 and ε0 > 0 such that for all |y−m| ≤ ε0
we have (y − m,∇V (y)) ≥ a|y − m|2. Without any loss of generality, we
suppose m = 0 in the proofs.

Proposition 4.3. Suppose that g(t)−1 logG(t) is bounded on R+. Let ε0 >
ε > 0. Then, there exists a positive stopping time T0 such that for all T > T0,
we have, on the event {|YT −m| < ε}, that P (∀s ≥ 0; |Ys+T −m| < ε) > 0.
Moreover, for any T > T0, we have on the event {∀s ≥ T ; |Ys −m| < ε}:

|Yt+T −m| = O
(√

g(t+ T )−1 logG(t+ T )
)
a.s.

Proof. Consider the time-shifted process Ỹt := Yt+T . Let ε > 0. We will
construct a one-dimensional process U such that for all t ≥ 0, we have a.s.

|Ỹt| ≤ Ut.
1) Suppose that d = 1. As V

′′
(m) > 0, there exists a > 0 such that

for all |y| ≤ ε, yV
′
(y) ≥ ay2. Introduce the nonnegative process U , unique

solution to the SDE

dUt = sign (Ỹt) dBT
t − ag(t+ T )Utdt+ dLt, U0 = |Ỹ0|, (4.3)

where L is the local time of U in 0. Let α(t) be the function such that∫ α(t)
0 e2aG(s+T )ds = t and α(0) = 0. Then, the processAt :=

∫ α(t)
0 eaG(s+T )dLs

is the local time in zero of Wt =
∫ α(t)
0 eaG(s+T ) sign (Ỹs) dBT

s . Denote by W+

the reflected Brownian motion associated to W . Skorokhod’s lemma (see [8])

then entails that eaG(α(t)+T )Uα(t) = W+
t . So, the (strong) solution to (4.3)

is
Ut = U0 + e−aG(t+T )W+

α−1(t)
. (4.4)

By a martingale comparison theorem, we prove that |Ỹt| ≤ Ut a.s. (Indeed,

let l be a function of class C2 such that ∀x > 0 : l(x) > 0 and l
′
(x) > 0,

and ∀x ≤ 0 : l(x) = 0. We apply Itô’s formula to l(|Ỹt| − Ut) to show

that, on the event {|Ỹs| > Us}, we have l(|Ỹt| − Ut) ≤ 0 a.s.). Finally, as

α−1(t) =
∫ t
0 e

2aG(s+T )ds, we conclude by the law of the iterated logarithm

(LIL), that a.s. Ut = O
(√

g(t+ T )−1 logG(t+ T )
)

.
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2) Suppose that d ≥ 2. Define τ := inf{t > 0; Ỹt = 0}. Itô’s formula
implies

d|Ỹt∧τ | = dWt∧τ − g(t ∧ τ + T )

(
Ỹt∧τ

|Ỹt∧τ |
,∇V (Ỹt∧τ )

)
dt− |Ỹt∧τ |

r + t ∧ τ + T
dt+

d− 1

2|Ỹt∧τ |
dt

where Wt =
∫ t
0

(
Ỹs
|Ỹs|

,dBT
s

)
is a standard Brownian motion. The condition

∇2V (0) > 0 implies that there exists a > 0 such that

∀|y| ≤ ε, (y,∇V (y)) ≥ a|y|2. (4.5)

Let us introduce the (d − 1)-dimensional Bessel process R. Consider the

time-shifted process Ut := e−aG(t+T )R∫ t
0 e

2aG(s+T )ds, which is the nonnegative

(strong) solution to

dUt = dβTt − ag(t+ T )Utdt+
d− 1

2Ut
dt, (4.6)

where β is a Brownian motion. On the event {∀s ≥ T ; |Ys| < ε}, we

apply the previous comparison theorem to obtain a.s. |Ỹt| ≤ Ut. On
the other hand, R is the radial part of a d-dimensional Brownian mo-
tion. So, the LIL implies a.s. Rt = O(

√
(t+ T ) log log(t+ T )) and Ut =

O
(√

g(t+ T )−1 logG(t+ T )
)

.

Now, we prove that P (∀s ≥ T ; |Ys −m| < ε) > 0. Let τT := inf{s >
T ; |Ys−m| > ε}. For all T < t < τT , we have a.s. |Yt−m| ≤ Ut. By the LIL

applied to U , we conclude that, for T large enough, P

(
sup
s≥T

Us < ε

)
> 0

and finally P(τT =∞) > 0. �

Corollary 4.4. Suppose that g(t)−1 logG(t) converges to 0 when t tends to
infinity. Then, there exists T0 > 0 such that for all T > T0, the process Yt
converges almost surely to m on the event {∀s ≥ T ; |Ys −m| < ε} .

4.3. Case of an unstable critical point: local maximum or sad-
dle point. If M is a local maximum of V, then as ∆V (M) < 0, ε1 :=
sup{ε; ∀|y| < ε, ∆V (M + y) < 0} exists and is finite.
If M is a saddle point of V , then as ∇2V admits a negative eigenvalue in
M , there exists an unstable direction e associated to M . Let Pe : Rd 7→ Re
be the projection on Re. The amount ε2 := sup{ε; ∀|y| < ε, ∂2eeV (M + y) <
0 and (∂eV (Pe(y)), ∂eV (y)) > 0} exists and is finite.

Proposition 4.5. Let M be an unstable critical point of V . If M is a local
maximum, suppose that 0 < ε < ε1. If M is a saddle point, suppose that
0 < ε < ε2.

Let T be a positive stopping time such that |YT −M | < ε. Then

P (∀s ≥ T ; |Ys −M | < ε) = 0.
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Proof. Note that T <∞ a.s. by Proposition 4.1. Suppose that M is a local
maximum and M = 0, because the method of the proof is the same for
M 6= 0 (in that case, we have an additional term M log(t+T )). Let D(t, Yt)
be the drift term of V (Yt). On the event A := {∀s ≥ T ; |Ys| < ε}, we obtain

D(t+ T, Yt+T ) = g(t+ T )|∇V (Yt+T )|2 +
(Yt+T ,∇V (Yt+T ))

r + t+ T
− 1

2
∆V (Yt+T ) ≥ C1

t+ T
+ C2

where C1 = 1
2 inf{(y,∇V (y)); |y| < ε} and C2 = −1

2 sup{∆V (y); |y| < ε} >
0. We thus find for t large enough that D(t+ T, Yt+T ) ≥ C > 0 and so

E (V (Yt+T )1lA) ≤ E (V (YT )1lA)− CtP(A) + o(t). (4.7)

Finally, this last inequality is impossible (since V is positive) unless P(A) =
0.

Suppose now that M is a saddle point. We apply Itô’s formula to x 7→
V (Pe(x)) and follow the previous computation with C1 = 1

2 inf{(Pe(y), ∂eV (Pe(y))); |y| <
ε} and C2 = −1

2 sup{∂2eeV (Pe(y)); |y| < ε} > 0. �

5. Asymptotics

Through this section, we always suppose that g(∞) = +∞ and g′(t)/g2(t)
converges to 0, even if we do not remind the reader in the statements of the
results. In particular, it implies that for all T > 0, G−1(t+T )−G−1(t) goes
to 0 when t tends to infinity.

5.1. Ergodicity.

Lemma 5.1. The process Y is bounded in L2.

Proof. We show a stronger result: EV (Yt) is bounded. For all n ∈ N, define
the stopping time τn = inf{t ≥ 0; |Yt| > n}. Then, there exists C > 0 such
that we have by localization:

EV (Yt∧τn) ≤ EV (Y0) + eCt <∞.
Let n go to infinity and use Fatou’s lemma to find, for all t ≥ 0, that V (Yt) ∈
L1. For t large enough, we have that −g(t)V (x)+aV (x) ≤ −1

2g(t)V (x). So,
as W is c−strictly convex and by the growth hypothesis (2.1), the following
holds for t large enough

d

dt
EV (Yt) ≤ −

1

2
g(t)EV (Yt).

Now, solving u̇ = −1
2g(t)u leads to EV (Yt) = O(1). �

In order to obtain the ergodic result for Y , we introduce a dynamical
system φ, whose asymptotics are close to Y (see [1] for more details):

Definition 5.2. The process Y is an asymptotic pseudotrajectory for the
flow φ if

∀T > 0, ∀α > 0, lim
t→+∞

P

(
sup

0≤h≤T
|Yt+h − φh(Yt)| ≥ α

)
= 0. (5.1)
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Proposition 5.3. Let φ : R+ × Rd → Rd be the flow generated by

d

dt
φt(x) = −∇V (φt(x)); φ0(x) = x. (5.2)

Then (YG−1(t), t ≥ 0) is an asymptotic pseudotrajectory for φ.

Proof. Let Ỹt = YG−1(t) and B̃t = BG−1(t). We will use Markov’s inequality

and then prove that limt→∞ E
(

sup0≤h≤T |Ỹt+h − φh(Ỹt)|
)

= 0.

Define κ(t) := (r +G−1(t))g(G−1(t)). A simple computation yields to

Ỹt+h − φh(Ỹt) = B̃t+h − B̃t +

∫ h

0

(
∇V (φs(Ỹt))−∇V (Ỹt+s)

)
ds−

∫ h

0
Ỹt+s

ds

κ(t+ s)
.

Applying Itô’s formula to h 7→ e−2C̃h|Ỹt+h − φh(Ỹt)|2, we have:

1

2
e2C̃hd(e−2C̃h|Ỹt+h−φh(Ỹt)|2) =

(
Ỹt+h − φh(Ỹt),dB̃t+h

)
+

(
Ỹt+h − φh(Ỹt), Ỹt+h

)
κ(t+ h)

dh−

−C̃|Ỹt+h−φh(Ỹt)|2dh+
(
Ỹt+h − φh(Ỹt),∇V (φh(Ỹt))−∇V (Ỹt+h)

)
dh+

e2C̃h

2g(G−1(t+ h))
dh.

First, we notice that
(
G−1(t)

)′
= 1/g(G−1(t)). By the convexity assumption

on V , we also remark that

−C̃|Ỹt+h − φh(Ỹt)|2 +
(
Ỹt+h − φh(Ỹt),∇V (φh(Ỹt))−∇V (Ỹt+h)

)
≤ 0,

and so we deduce the following upper bound for all 0 ≤ h ≤ T :

1

2
|Ỹt+h − φh(Ỹt)|2 ≤ e2C̃h

∫ h

0
e−2C̃s(Ỹt+s − φs(Ỹt),dB̃t+s) +

e2C̃T

2

(
G−1(t+ T )−G−1(t)

)
+e2C̃h

∫ h

0

(
Ỹt+s − φs(Ỹt), Ỹt+s

) ds

κ(t+ s)
.(5.3)

To conclude, we will now find an upper bound for each right-hand term

of (5.3). By BDG’s inequality for the local martingale
∫ h
0 e
−2C̃s(Ỹt+s −

φs(Ỹt),dB̃t+s) and a rough upper bound for its quadratic variation, there
exists α > 0 such that:

E

(
sup

0≤h≤T

∫ h

0
e−2C̃s(Ỹt+s − φs(Ỹt),dB̃t+s)

)
≤ α(G−1(t+T )−G−1(t))E

(
sup

0≤h≤T
|Ỹt+h − φh(Ỹt)|2

) 1
2

.

We now estimate the remaining term of (5.3) by the triangle inequality. As
κ is nondecreasing, we have the following bound by Lemma 5.1:

E
∫ T

0

(
|Ỹt+s|2

κ(t+ s)
+
|Ỹt+s − φs(Ỹt)|2

κ(t+ s)

)
ds ≤ MT

κ(t)
+

T

κ(t)
E

(
sup

0≤h≤T
|Ỹt+h − φh(Ỹt)|2

)
.
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So, we obtain for t large enough:

E

(
sup

0≤h≤T
|Ỹt+h − φh(Ỹt)|2

)
≤ 4e4C̃T (G−1(t+ T )−G−1(t)) + 4Me2C̃T

T

κ(t)
,

and the result follows since G−1(t + T ) − G−1(t) and 1/κ(t) converge to
0. �

Lemma 5.4. Suppose that for all T > 0, G−1(t+T )−G−1(t) vanishes when

t tends to infinity. Then,
(
µG
−1

t := 1
t

∫ t
0 δYG−1(s)

ds, t ≥ 0
)

is a tight family

of measures.

Proof. It is enough to show that a.s. ϕ(t) :=
∫ t
0 V (YG−1(s))ds = O(t). Let

A > 0 and K be a compact set such that ∀x ∈ Kc, V (x) ≥ A. Then

µG
−1

t (V ) ≥ AµG
−1

t (1lKc). From the growth assumption (2.1), there exists
a > 0 and for all ε > 0, there exists kε such that ∆V ≤ aV and V ≤
kε + ε|∇V |2. It then yields

ϕ(t) ≤ kεt+ ε

∫ t

0
|∇V (YG−1(s))|2ds and

∫ t

0
∆V (YG−1(s))ds ≤ aϕ(t). (5.4)

Applying Itô’s formula to V (YG−1(t)), we obtain

V (YG−1(t))− V (Y0) =

∫ G−1(t)

0
(∇V (Ys),dBs)−

∫ t

0

(YG−1(s),∇V (YG−1(s)))

(r +G−1(s))g(G−1(s))
ds

−
∫ t

0
|∇V (YG−1(s))|2ds+

1

2

∫ t

0
∆V (YG−1(s))

ds

g(G−1(s))
.(5.5)

Consider the (local-)martingale term of (5.5). On the set {
∫∞
0 |∇V (Ys)|2ds <

∞}, it is bounded in L2 and thus converges. Whereas on the set {
∫∞
0 |∇V (Ys)|2ds =

∞}, the strong LLN implies that, for t large enough, a.s.∫ G−1(t)

0
(∇V (Ys),dBs) ≤

1

2

∫ t

0
|∇V (YG−1(s))|2ds.

By (5.5), we then find for t large enough∫ t

0
|∇V (YG−1(s))|2ds ≤

∫ t

0
∆V (YG−1(s))ds− 2V (YG−1(t)) + 2V (Y0)

− 2

∫ t

0

(YG−1(s),∇V (YG−1(s)))

(r +G−1(s))g(G−1(s))
ds

≤ aϕ(t)

g(G−1(t))
+ 2V (Y0) +O

(∫ t

0

ds

G−1(s)g(G−1(s))

)
.

So, we have a.s.
∫ t
0 |∇V (YG−1(s))|2ds = O(t) + aϕ(t). Putting this result in

(5.4) and choosing ε small enough, we conclude that ϕ(t) = O(t) a.s. �
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Theorem 5.5. The process Y satisfies the pointwise ergodic theorem. More
precisely, there exist some (deterministic) constants ai ≥ 0, such that

∑
ai =

1 and µYt = 1
t

∫ t
0 δYsds converges (for the weak convergence of measures)

toward
∑

1≤i≤n
aiδmi.

Proof. By Benäım & Schreiber [4], Proposition 5.3 implies that the limit
points of the empirical measure of YG−1(t) are included in the set of all the

“invariant measures” for d
dtφt(x) = −∇V (φt(x)) with the initial condition

φ0(x) = x. All these invariant measures are included in Span{δm1 , · · · , δmn , δM1 , · · · , δMp}.
Let µG

−1

t = 1
t

∫ t
0 δYG−1(s)

ds. By Lemma 5.4, the empirical measure µG
−1

t

converges. One also shows that µt is a Cauchy sequence in L1: there exists
C > 0 such that for any s > 0,

|Eµt+s − Eµt| ≤
s

t(t+ s)

∫ t

0
E|Xu|du+

1

t+ s

∫ t+s

t
E|Xu|du ≤ C

s

t+ s
.

So, the limit-measure of µG
−1

t writes
∑n

i=1 aiδmi +
∑p

i=1 biδMi (where ai, bi
are nonnegative constants such that

∑
(ai + bi) = 1). And the same result

holds for µt. Indeed, for all continuous bounded function ψ and t > s, we
have (by an integration by parts)∫ t

s
ψ(Yu)du =

G(t)

g(t)
µG
−1

G(t)ψ −
G(s)

g(s)
µG
−1

G(s)ψ +

∫ t

s

g
′
(u)G(u)

g2(u)
µG
−1

G(u)ψdu

= (t− s)µG−1

G(t)ψ +
G(s)

g(s)

(
µG
−1

G(t)ψ − µ
G−1

G(s)ψ
)

+

∫ t

s

g
′
(u)G(u)

g2(u)
(µG

−1

G(u)ψ − µ
G−1

G(t)ψ)du.

As µG
−1

G(t)ψ converges a.s., we deduce that

µtψ = o(1) + µG
−1

G(t)ψ +
1

t

∫ t

s

g
′
(u)G(u)

g2(u)
(µG

−1

G(u)ψ − µ
G−1

G(t)ψ)du.

So, by Lemma 2.3, µt converges. We also wish to show that bi = 0 for all i.
Proposition 4.5 implies that, for an unstable critical point M , there exists a

direction j such that for all ε > 0, P(∀s ≥ T, |Y (j)
s −M (j)| ≤ ε) = 0. Consider

a continuous function f , supported by a small ball (of radius α > 0) around
M : f vanishes in all critical points except M and f(M) = 1. Then, we have

a.s.
∫ t
0 1l{|Y (j)

s −M(j)|≤α}ds = o(t) and 1
t

∫ t
0 f(Ys)ds converges almost surely to

b. So, we conclude that b = 0. �

At this stage, we have proved that Y satisfies the pointwise ergodic the-
orem. The main question is whether X also satisfies the pointwise ergodic
theorem or not. To answer it, we remind that µt converges a.s. if and only

if
∫ t
0 Ys

ds
r+s converges, and if Yt

a.s.−−→
t→∞

0 polynomially fast then µt converges
a.s.
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Proposition 5.6. The measure µt converges weakly if and only if µt con-
verges a.s.

Proof. We have shown in Theorem 5.5 that Y is pointwise ergodic. Consider
the Fourier transform of µt and recall that Xt = Yt + µt. We have for all
u ∈ Rd:
1

t

∫ t

0
ei(u,Xs)ds =

ei(u,µ∞)

t

∫ t

0
ei(u,Ys)ds+

1

t

∫ t

0
ei(u,Ys)

(
ei(u,µs) − ei(u,µ∞)

)
ds.

The first right member converges a.s. to ei(u,µ∞)
∑

1≤p≤n e
i(u,mp). For the

second right member, Cesàro asserts that it converges a.s. to 0 if and only
if µt converges a.s. �

5.2. Almost sure convergence toward the local minima of V . Let
0 < ε < ε0 and T > T0 be as in Section 4. Let m be a local minimum of V
such that |YT −m| < ε.

Lemma 5.7. If lim
t→∞

g(t)−1 logG(t) = 0, then for all α > 0, we have∫∞
0 e−αg(t)dt < +∞.

Proof. For all ε > 0, there exists t such that, for all s ≥ t, we have g(s) ≥
ε−1 logG(s). Moreover, there exists a > 0 such that for t large enough

g(t) ≥ a and then G(t) ≥ at. So, we conclude that
∫∞
1 e−ε

−1α log(at)dt < ∞
(choose for instance ε = α/2). �

Proposition 5.8. If g(t)−1 logG(t) converges to 0, then Yt converges a.s.

and for all i, we have P
(

lim
t→∞

Yt = mi

)
> 0 and P

(
lim
t→∞

Yt = Mi

)
= 0.

Proof. Benäım ([1] Proposition 4.6) asserts that if −∇V (x) is a continuous

globally integrable vector field, and if for all α > 0, we have
∫∞
0 e−αg◦G

−1(t)dt <
+∞ and P(supt |Yt| < ∞) = 1, then Y is a.s. an asymptotic pseudotrajec-
tory for the flow induced by −∇V . Actually, the first and last conditions
are fulfilled here. Moreover, as G−1 is nondecreasing, the (finite) integral∫∞
0 e−αg(t)dt is a upper bound for the preceding one. Thus, Y is a.s. an

asymptotic pseudotrajectory for the flow φ defined by (5.2) and φ restricted
to the limit points of Y does not admit any other attractor than the set of
limit points. Finally, Y converges a.s. and its limit points are included into
the set {x;∇V (x) = 0}.

If Y converges to Y∞, then due to Proposition 4.5, the limit Y∞ is not
a local maximum. On the event {∀s ≥ T ; |Ys −mi| < ε}, occuring with a
positive probability by Proposition 4.3, we have a.s. |Yt+T −mi| ≤ Ut. As

lim
t→∞

Ut

√
g(t)

logG(t) = 1 a.s., we conclude that Ut
a.s.−−→
t→∞

0. �

Corollary 5.9. Suppose that lim g(t)−1 logG(t) = 0.
1) If V is a strictly uniformly convex function (m its unique minimum),

then Yt
a.s.−−→
t→∞

m.
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2) A necessary condition for the almost sure convergence of Y to 0 is that
the potential V admits a unique minimum at 0 (e.g. V is symmetric and
strictly convex).

5.3. Back to X.

Theorem 5.10. Assume that g(t)−1 logG(t) = O(h(t)−2), with h : R+ →
R+ such that

∫∞
0

ds
(1+s)h(s) < +∞. Then, on the set {Y∞ 6= 0}, Xt

log t converges

to Y∞. Moreover:

(1) If 0 is the unique local minimum of V , then

P
(

lim
t→∞

Xt = µ+

∫ ∞
0

Ys
ds

r + s

)
= P

(
lim
t→∞

µt = µ+

∫ ∞
0

Ys
ds

r + s

)
= 1;

(2) If V admits 0 as a (non-unique) local minimum, then Xt converges

on the event {Yt
a.s.−−→ 0} and diverges elsewhere. More precisely, one

has

P
(

lim
t→∞

Xt = µ+

∫ ∞
0

Ys
ds

r + s

)
+ P( lim

t→∞
|Xt| =∞) = 1

and 1 > P
(

lim
t→∞

Xt = µ+

∫ ∞
0

Ys
ds

r + s

)
= P

(
lim
t→∞

µt = µ+

∫ ∞
0

Ys
ds

r + s

)
> 0;

(3) If 0 is not a local minimum of V , then

P
(

lim
t→∞
|Xt| =∞

)
= P

(
lim
t→∞
|µt| =∞

)
= 1.

Proof. Denote m = (m(1), · · · ,m(d)). First, suppose that m = 0. By Propo-
sition 5.8, Yt converges toward 0 with a positive probability. On this event,

Proposition 4.3 implies that the integral
∫ t
0

Ys
r+sds converges. So, µt con-

verges toward this (limit) integral and the result follows for X. On the
other hand, if m 6= 0, then P(Yt → m) > 0 and so the jth-coordinate of µt
converges to sgn(m(j))∞. So, the direction j is unstable and Xt does not
converge a.s. Moreover, on the set {Y∞ 6= 0}, we have∣∣∣∣ µtlog t

− Y∞
∣∣∣∣ ≤ 1

log t

∫ t

0
|Ys − Y∞|

ds

r + s
≤ 1

log t

∫ t

0

√
logG(s)

g(s)

ds

r + s
.

The latter upper bound tends to 0 by the law of the iterated logarithm

(Proposition 4.3). As Xt
log t = µt

log t + Yt
log t , the result follows. �

Remark 5.11. Any polynomial h satisfies the required condition. In par-
ticular, one can choose g(t) = tα(log(1 + t))β with α > 0, or α = 0 and
β > 2.
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[1] Benäım M. (1999), Dynamics of stochastic approximation algorithms, Sém. Prob.
XXXIII, Lecture Notes in Math. 1709, 1-68, Springer.
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Ann. Inst. H. Poincaré, Probab. Statist. 46(3), 618-643.
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