
HAL Id: hal-01277208
https://hal.science/hal-01277208

Submitted on 24 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite Abstractions for the Verification of Epistemic
Properties in Open Multi-Agent Systems
Francesco Belardinelli, Davide Grossi, Alessio Lomuscio

To cite this version:
Francesco Belardinelli, Davide Grossi, Alessio Lomuscio. Finite Abstractions for the Verification of
Epistemic Properties in Open Multi-Agent Systems. 24th International Joint Conferences on Artificial
Intelligence (IJCAI 2015), Jul 2015, Buenos Aires, Argentina. pp.854–860. �hal-01277208�

https://hal.science/hal-01277208
https://hal.archives-ouvertes.fr

Finite Abstractions for the Verification of
Epistemic Properties in Open Multi-Agent Systems

Francesco Belardinelli
Laboratoire IBISC

Université d’Evry, France
belardinelli@ibisc.fr

Davide Grossi
Department of Computer Science

University of Liverpool, UK
d.grossi@liverpool.ac.uk

Alessio Lomuscio
Department of Computing

Imperial College London, UK
a.lomuscio@imperial.ac.uk

Abstract
We develop a methodology to model and verify
open multi-agent systems (OMAS), where agents
may join in or leave at run time. Further, we specify
properties of interest on OMAS in a variant of first-
order temporal-epistemic logic, whose characteris-
ing features include epistemic modalities indexed
to individual terms, interpreted on agents appear-
ing at a given state. This formalism notably allows
to express group knowledge dynamically. We study
the verification problem of these systems and show
that, under specific conditions, finite bisimilar ab-
stractions can be obtained.

1 Introduction
Modal temporal-epistemic logic has long been adopted as a
formalism for reasoning about multi-agent systems (MAS).
In its basic setting it consists of either the linear or the branch-
ing version of discrete-time temporal logic, augmented with
knowledge modalities for the agents in the system. Several
properties of MAS (e.g., perfect recall, no learning, syn-
chronicity) have been axiomatised on the widely adopted
semantics of Interpreted Systems [?]. In the past decade
several model checking methodologies and toolkits that use
temporal-epistemic specification languages have been devel-
oped [?; ?; ?].

Two key assumptions are made in the basic setting of the
formalism above. Firstly, facts are expressed in propositional
terms. Secondly, the number of agents is finite and given
at design time. As a consequence, the indexes of individ-
ual knowledge operators are constants in a finite set Ag of
agents, while the indexes for group knowledge operators are
finite subsets of Ag. Proposals have been made to over-
come the first limitation by introducing first-order versions
of temporal-epistemic logic both on quantified versions of in-
terpreted systems [?] and on artifact-centric multi-agent sys-
tems [?]. These approaches surmount the shortcomings of
a purely propositional language by extending the syntax to
first-order formulas. In some cases completeness can be re-
tained [?] and verification can in principle be performed on
finite abstractions [?; ?].

Regarding the second limitation, proposals have been put
forward to consider a set of objects that vary at design time;

the set of agents is normally considered to be finite in each
system run. This is a sensible assumption in many scenarios,
but there are applications of MAS (e.g., e-commerce, smart
grids) where an unbounded number of agents may freely enter
and leave the system at run time. There is, therefore, a need to
account for the unbounded and possibly infinite agents join-
ing in or leaving an open MAS. In this setting it is still of
interest to reason about their evolution and what they know
individually and collectively. For example, in an auction set-
ting, such as fishmarkets [?], different agents attend different
auctions at run time. Nonetheless, all of them, however many
they may be, will eventually know what the reserve price for a
particular good is. Formally, such a temporal-epistemic spec-
ification can be expressed in the proposed formalism as:

AG ∀x(Good(x)→ ∃y AF ∀z KzPrice(y, x)) (1)

(1) intuitively expresses that any good x has always a price
y that will eventually be learnt by all agents z currently at-
tending the auction. A key feature of this specification is that
agents appear as quantifiable terms in the logical language
and appear as such in the indexes of the epistemic opera-
tors. In particular, compare the subformula ∀zKzPrice(y, x)
of (1), where the quantification domain of ∀z changes de-
pending on the state, with the standard temporal-epistemic
formula

∧
a∈AgKaPrice(y, x), which assumes Ag fixed. In

this paper we propose a formalism accounting for (1); we
show that, while the verification problem is undecidable in
general, bounded MAS admit finite abstractions.

Related Work. A quantified doxastic logic, with modal-
ities indexed by variables, was introduced in [?]. However,
this focused on a 3-valued semantics in view of providing
sound axiomatisations. In contrast, here we consider a 2-
valued semantics and the model checking problem. Various
classes of models and types of quantifications have been de-
veloped recently to account for Artifact-centric Systems [?;
?; ?]. While our work is influenced by the techniques intro-
duced therein, none of these contributions deals with open
MAS with a possibly infinite number of agents. In [?] agents
appear in the relational structure, but there is no explicit quan-
tification on them. This feature, however, may be useful in a
number of scenarios, as we argue in this paper. There are also
similarities with recent work on parametrised verification of
MAS [?; ?]. However, parametrised verification aims at es-
tablishing whether properties hold irrespective of the finite

but unbounded number of agents in the system; here we deal
with an infinite set of agents which we only bound at a state
and not in the whole model. Closer to our approach is [?]
which introduces a semantics for dynamic agent networks;
however, epistemic operators are not discussed there.

Scheme of the paper. In Section 2 we formalise open
multi-agent systems in our setting and introduce a novel first-
order temporal-epistemic logic CTLKx. We state the model
checking problem for this setting (Section 2.2) and illustrate
the formal machinery with a use case (Section 2.3). Section 3
contains the main theoretical results on the existence of finite,
bisimilar abstractions. We conclude and point to future work
in Section 4.

2 Open Multi-agent Systems
In this section we present a formalism to reason about open
multi-agent systems (OMAS). A key feature of OMAS is that
agents may join and leave the system at run time. We then put
forward a first-order version of the temporal-epistemic logic
CTLK to reason about OMAS, that allows us to index knowl-
edge operators with variables. We conclude by formulating
the model checking problem for OMAS. Since we wish to
account for possibly infinite domains of objects and agents
we import some basic terminology from related literature [?;
?].
Definition 1 (Database schema and instance) A database
schema is a finite set D = {P1/q1, . . . , Pn/qn} of predicate
symbols P with arity q ∈ N.

Given a (possibly infinite) interpretation domain X , a D-
instance over X is a mapping D associating each predicate
symbol P to a finite q-ary relation on X , i.e., D(P) ⊆ Xq .

For a database schema D, D(X) is the set of all D-
instances on X; while the active domain adom(D) is the fi-
nite set

⋃
P∈D{u1, . . . , uq ∈ X | 〈u1, . . . , uq〉 ∈ D(P)}

of all individuals occurring in some predicate interpretation
D(P). Further, the primed version of a database schema D
as above is the schema D′ = {P ′1/q1, . . . , P ′n/qn}. Then,
the disjoint union D ⊕ D′ of D-instances D and D′ is the
(D ∪ D′)-instance s.t. (i) D ⊕ D′(P) = D(P), and (ii)
D ⊕ D′(P ′) = D′(P). Hereafter, primed versions and dis-
joint unions are used to account for the temporal evolution of
a database from the previous state D to the next state D′.

2.1 Agents in OMAS
To introduce OMAS, we import some preliminary notions
from [?]. Hereafter we assume a finite number of agent types
T0, . . . , Tk. Each agent type T comprises (i) a local database
schema DT , and (ii) a finite set ActT of parametric actions
α(~x). Hence, agents of the same type share the database
schema and available actions. For every agent type T , AgT ,
Ag′T , . . . are (possibly infinite) sets of agent names. In the
rest of the paper, the interpretation domain X contains a set
AgT of agent names for each type T , i.e., X = Ag ∪ U for
Ag =

⋃
type T AgT and some other (possibly empty) set U

of elements. We will also consider a set Con ⊆ X of con-
stants, including names for agents. To describe the temporal
evolution of OMAS, we define protocols for agent types. To
do so, we first introduce isomorphisms on database instances.

Definition 2 (Instance Isomorphism) Instances D ∈
D(X) and D′ ∈ D(X ′) are isomorphic, or D ' D′, iff for
some bijection ι : adom(D) ∪ Con 7→ adom(D′) ∪ Con,
(i) ι is the identity on Con; (ii) ι is type-preserving, i.e., for
every type T , ι is a bijection from (adom(D) ∪ Con) ∩ AgT
into (adom(D′) ∪ Con) ∩ Ag′T ; and (iii) for every P ∈ D,
~u ∈ Xq , ~u ∈ D(P) iff ι(~u) ∈ D′(P).

Whenever the above holds, we say that ι is a witness for
D ' D′ and write D

ι' D′ to state this explicitly. While
isomorphisms depend on the set Con of constants, in what
follows we consider Con fixed and omit it.

We now introduce the local protocol PrT for a type T .

Definition 3 (Protocols) Given domain X , PrT is a function
fromDT (X) to 2ActT (X), where ActT (X) is the set of ground
actions α(~u), for α(~x) ∈ ActT and ~u ∈ X |~x|.

By Def. 3 the protocol PrT returns a ground action in
ActT (X) for every DT -instance. In the rest of the paper we
assume the following requirement on protocols:

for all instances D,D′ ∈ DT (X), if D
ι' D′ then

α(~u) ∈ PrT (D) iff α(ι(~u)) ∈ PrT (D′) (∗)
So, by requirement (∗) isomorphic states allow “isomorphic”
ground actions. Most OMAS of interest satisfy (∗). For ex-
ample, in an English auction an agent may make a valid bid
as long as the bid is above the current best price.

We now introduce the notion of agent.

Definition 4 (Agents) Given an agent name a ∈ AgT of type
T , an agent is a tuple a = 〈DT ,ActT ,PrT 〉 where DT , ActT ,
and PrT are defined as above.

We assume a finite number of agent types, but we do
not assume a bound on the number of agents of each type
in any concrete instantiation of the system. This is com-
mon place in OMAS, such as in services, auctions, etc.,
whereby engineers have prior knowledge of the behaviour
of the agent types without knowing how many instances
of each type will be executed at runtime. We provide an
example of this in Section 2.3. Agents as in Def. 4 are
related to the notion of agent templates introduced in [?;
?]. However, while the latter assumes that any concrete run
admits a finite number of agents built on these types, we do
not make this assumption here.

In the following an agent is often identified with her
name; therefore we write a = 〈Da,Acta,Pra〉 and omit
the type. By Def. 4 a local state l ∈ Da(U ∪ Ag) en-
codes the knowledge of agent a about the elements in U as
well as fellow agents in Ag. Thus, a fundamental differ-
ence with the standard approach to multi-agent systems [?; ?;
?] is that the agent’s information is structured as a relational
database.

We can now introduce OMAS to represent the interactions
amongst agents, beginning with the notion of global state.

Definition 5 (Global States) Given a finite subset A ⊆ Ag
of agents ai = 〈Di,Acti,Pri〉 defined on domain X = U ∪
Ag, for i ≤ n, a global state is a tuple s = 〈l0, . . . , ln〉 of
instances li ∈ Di(X) s.t.

⋃
i≤n adom(li) ∩Ag ⊆ A.

Note that, while we admit an infinite number of agents
in existence, only a finite number of them can be active at
any given time, and different agents can be active at different
times, thus accounting for the openness of the system. Also
by Def. 5, a global state s comprises at least all agents ap-
pearing in its active domain adom(s) =

⋃
i≤n adom(li). For

instance, if agent a appears in the local state lb ∈ Db(X) of
agent b ∈ A, and thus a ∈ adom(s), then a also belongs
to A. By assuming a fixed enumeration of agents, we will
identify global states containing the same local states for the
same agents, possibly in a different order. Further, let ag be
the function that for any global state s = 〈l0, . . . , ln〉 returns
the set ag(s) = {a0, . . . , an} of agents s.t. li ∈ Dai(X) for
i ≤ n. By the requirement above on global states, for ev-
ery state s, adom(s) ∩ Ag ⊆ ag(s). We let G be the set⋃
n∈N(

∏
i≤nDai(X)) of all global states. As a consequence,

G is infinite whenever X is.
To account for the knowledge of agents, we say that states

s = 〈l0, . . . , ln〉 and s′ = 〈l′0, . . . , l′m〉, of possibly different
lengths, are epistemically indistinguishable for agent ai, or
s ∼i s′, iff ai ∈ ag(s), ai ∈ ag(s′), and li = l′i. Since
s and s′ can be tuples of different length, an agent does not
generally know the exact number of active agents at each mo-
ment, nor their identity. Observe that if a /∈ ag(s), then the
set {s′ ∈ G | s′ ∼a s} is empty. That is, if agent a is not
active in state s, then no state is indistinguishable for her. We
elaborate more on this point in Section 2.2.

Finally, we introduce open multi-agent systems.
Definition 6 (OMAS) Given a (possibly infinite) domain
X = Ag ∪ U containing a (possibly infinite) set Ag =
{a0, a1, . . .} of agents ai = 〈Di,Acti,Pri〉, an open multi-
agent system is a tuple P = 〈Ag,U, I, τ〉 where
• I is the set of initial states s0 for some finite ag(s0) ⊆ Ag;
• τ : G × Act(X) 7→ 2G is the global transition function,

where Act is the set of joint (parametric) actions, and
τ(〈l0, . . . , ln〉, 〈α0(~u0), . . . , αn(~un)〉) is defined iff
αi(~ui) ∈ Pri(li) for every i ≤ n.
An OMAS describes all system’s executions from an initial

state s0 ∈ I , according to the global transition function τ ,
which returns the successor states τ(s, α(~u)) ⊆ G given the
current state s and joint ground action α(~u) by all agents in s.
Since the domain X is typically infinite, OMAS are infinite-
state systems in general. Specifically, OMAS are open and
dynamic as global states may be tuples of different length,
comprising different agents. Differently from most literature
on MAS [?; ?; ?], which assumes that the set of agents is
finite and fully specified at design time, here the successor
states returned by the transition function may contain fewer
or more agents w.r.t. the current state.

We now state a requirement on joint actions in OMAS. To
introduce it, we first extend isomorphisms to global states.
Definition 7 (State Isomorphism) The global states s ∈ G
and s′ ∈ G′ are isomorphic, or s ' s′, iff for some bijection
ι : adom(s) ∪ Con ∪ ag(s) 7→ adom(s′) ∪ Con ∪ ag(s′), for
every aj ∈ ag(s), ι is a witness for laj ' l′ι(aj).

Any function ι as above is a witness for s ' s′, also in-
dicated as s

ι' s′. As for instance isomorphisms, ' is an

equivalence relation, and by Def. 7 isomorphic states are tu-
ples of the same length. In the rest of the paper we impose the
following requirement on the transition functions in OMAS:

for all states s, s′ ∈ G, s
ι' s′ implies that t ∈

τ(s, α(~u)) iff ι(t) ∈ τ(s′, α(ι(~u))) (+)

Similarly to protocols, requirement (+) guarantees that ac-
tions performed with “isomorphic” values in isomorphic
states, also return isomorphic states. In Section 2.3 we will
discuss an OMAS satisfying (+); but similar assumptions are
common place in database theory and the theory of program-
ming languages [?; ?].

We now introduce some useful notation. We define the
transition relation s → s′ on global states iff s

α(~u)−−−→ s′ for
some joint ground action α(~u), i.e., s′ ∈ τ(s, α(~u)). An s-
run r is an infinite sequence s0 → s1 → · · · , with s0 = s.
For n ∈ N, we set r(n) = sn. A state s′ is reachable from
s iff s′ = r(i) for some s-run r and i ≥ 0. Hereafter we en-
force seriality on the transition relation→ by assuming skip
actions. Further, we introduce S as the set of states reach-
able from some initial state s0 ∈ I . Since the domain X
may be infinite, the set S of reachable states is also infinite in
principle. Indeed, OMAS are infinite-state systems in gen-
eral. Finally, we will refer to the global database schema
Ds = D0 ∪ · · · ∪ Dn of a state s = 〈l0, . . . , ln〉, and the
corresponding Ds-instance Ds s.t. Ds(P) =

⋃
i≤n li(P), for

P ∈ Ds. Therefore, we suppose that each agent has a truth-
ful, yet limited, view of the global database Ds. Also, the
disjoint union s ⊕ s′ is defined as state s′′ = 〈l′′0 , . . . , l′′m〉
on ag(s) ∪ ag(s′) s.t. (i) if ai ∈ ag(s) ∩ ag(s′) then l′′i =
li ⊕ l′i; (ii) if ai ∈ ag(s) \ ag(s′) then l′′i = li; and (iii) if
ai ∈ ag(s′) \ ag(s) then l′′i = l′i.

2.2 The Specification Language FO-CTLKx

We now introduce FO-CTLKx, a first-order extension of
the temporal epistemic logic CTLK, as a specification lan-
guage for OMAS. Differently from other quantified temporal-
epistemic logics [?], FO-CTLKx features an expressive for-
mulation of the epistemic operators that can be indexed by
individual terms. Below we consider a set Var of individ-
ual variables containing a set VarAg of variables for agents,
as well as the database schema D =

⋃
type T DT . Terms

t, t′, . . . are either variables or constants in Con.
Definition 8 (FO-CTLKx) The FO-CTLKx formulas are
defined in BNF as follows:

ϕ ::= P (~t) | t = t′ | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ |
EϕUϕ | Kaϕ | Kzϕ

where t, t′ are terms, P ∈ D, a ∈ Con∩Ag, z ∈ VarAg , and
~t is a q-tuple of terms.

The temporal formulas AXϕ and AϕUϕ′ (resp. EϕUϕ′)
are read as “for all runs, next ϕ” and “for every (resp. some)
run, ϕ until ϕ′”. The epistemic formula Ktϕ means that “the
agent denoted by t knows ϕ”. The fact that epistemic modal-
ities are indexed to terms represents a significant difference
w.r.t. standard approaches. Free and bound variables are de-
fined as standard, as well as sets var(φ) (resp. fr(φ), con(φ))

of all variables (resp. free variables, constants) in φ. Notice
that z ∈ fr(Kzφ) and a ∈ con(Kaφ). The same symbols
are sometimes used to refer to individual variables and action
parameters, the context will disambiguate.

To define the satisfaction of an FO-CTLKx formula on an
OMAS, we introduce the notion of an assignment σ : Var 7→
X s.t. for every z ∈ VarAg , σ(z) ∈ Ag. We denote by σxu the
assignment s.t. (i) σxu(x) = u; and (ii) σxu(x

′) = σ(x′) for
every x′ different from x. Also, σ(c) = c for all c ∈ Con.
Definition 9 (Semantics of FO-CTLKx) We define whether
an OMAS P satisfies a formula ϕ in a state s according to as-
signment σ, or (P, s, σ) |= ϕ, as follows (clauses for propo-
sitional connectives are omitted as straightforward):
(P, s, σ) |= P (~t) iff 〈σ(t1), . . . , σ(tq)〉 ∈ Ds(P)
(P, s, σ) |= t = t′ iff σ(t) = σ(t′)
(P, s, σ) |= ∀xϕ iff for all u ∈ adom(s) ∪ ag(s), (P, s, σxu) |= ϕ
(P, s, σ) |= AXϕ iff for all s-runs r, (P, r(1), σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all s-runs r, (P, r(k), σ) |= ϕ′

for some k ≥ 0, and for all j,
0 ≤ j < k implies (P, r(j), σ) |= ϕ

(P, s, σ) |= EϕUϕ′iff for some s-run r, for some k ≥ 0,
(P, r(k), σ) |= ϕ′, and for all j,
0 ≤ j < k implies (P, r(j), σ) |= ϕ

(P, s, σ) |= Kaϕ iff for all s′ ∈ S, s ∼a s′⇒ (P, s′, σ) |= ϕ
(P, s, σ) |= Kzϕ iff for all s′ ∈ S, s ∼σ(z) s′⇒ (P, s′, σ) |= ϕ

A formula ϕ is true at s, or (P, s) |= ϕ, if (P, s, σ) |=
ϕ for all assignments σ; ϕ is true in P , or P |= ϕ, if
(P, s0) |= ϕ for all s0 ∈ I . We remark that Def. 9 adopts
an active domain semantics, where quantifiers range over
the set adom(s) ∪ ag(s) of active individuals and agents.
This is an extension to agents of the standard assumption
in database theory, also used in data-aware systems [?;
?]. Also, notice that the active domain may vary at each state.
Furthermore, by definition of epistemic indistinguishability,
if a /∈ ag(s) then (P, s, σ) |= Kaϕ, for all formulas ϕ, as for
no s′ ∈ S , s′ ∼a s. In other words, epistemic formulas are
vacuously true for agents not in the active domain of the state
considered. So, for an epistemic formula not to be satisfied, it
is required that an agent in the active domain does not know
the fact in question.

Finally, we state the model checking problem for OMAS
with respect to the specification language FO-CTLKx.
Definition 10 (Model Checking Problem) Given an OMAS
P and an FO-CTLKx formula ϕ, determine whether for every
initial state s0 ∈ I , (P, s0, σ0) |= ϕ for some assignment σ0.

Def. 10 assumes that the transition function τ is given as
a computable function, and that we have finitary descriptions
for the set I of initial states and the domain X . These re-
quirements are normally fulfilled in cases of interest (see Sec-
tion 2.3). Moreover, the specification ϕ is typically an FO-
CTLKx sentence, with no free variables. Hence, the model
checking problem reduces to determine whether P |= ϕ.
Model checking general data-aware systems is known to be
undecidable [?]. In [?; ?] this problem is proved decidable
for bounded and uniform systems. However, all these contri-
butions assume that the set of agents is fixed at design time.
In [?] preliminary results on the verification of a particular
class of OMAS are presented, but without considering the
epistemic dimension.

2.3 Use Case: Knowledge in open MAS networks
We now illustrate the formalism introduced by means of an
example on agent networks. In [?] it is shown how a non-
probabilistic variant of the SIR network diffusion model (see
[?, Ch. 7]) can be formally verified against first-order, purely
temporal specifications. In the SIR model a group of agents
connected in a network structure goes through three differ-
ent stages during an ‘epidemic’ involving the spread of dis-
eases, ideas, information, or similar social phenomena. First,
each agent is susceptible to be infected; she may actually
get infected at a certain point depending on whether any of
her neighbors in the network are also infected; then an agent
will eventually recover. OMAS can be used to encode open
and dynamic SIR models, also incorporating the epistemic
aspects of diffusion. The specification language FO-CTLKx
allows us to express properties of SIR models concerning: (i)
how knowledge influences diffusion through the network; and
(ii) how knowledge itself spreads within the system.

Let a binary predicate N denote the network structure, so
N(x, y) means that agents x and y are connected; while the
unary predicates Sus, Inf and Rec denote the properties of be-
ing susceptible, infected, and recovered respectively. As ex-
amples of the first group of properties consider the following
formulas:

AG ∀x, y(Kx(Inf(y) ∧N(x, y))→ AF¬N(x, y)) (2)
AG ∀x(KxSus(x)→ AFAG∀y(N(x, y)→ Rec(y))) (3)

Formula (2) states that it is always the case that if an agent x
knows that she is connected to an infected agent y, then she
will part at some point in the future. Formula (3) states that
it is always the case that if an agent x knows she is suscep-
tible, then eventually she will always be connected only to
recovered agents.

We stress the fundamental difference between a quantified
formula ∀xKxφ, which express dynamically the joint knowl-
edge of φ for all active agents in a given state s, and the stan-
dard, static epistemic formula Eφ =

∧
a∈AgKaφ. Actually,

for Eφ to be a formula, the set Ag of agents has to be finite
and specified at design time. Moreover, a formula such as
AG ∀xKxφ refers to the knowledge of a possibly different
group of active agents at each time.

As examples of the second group of properties above con-
sider the following formulas:

AG ∀x(Rec(x)→ AF ∃yKyRec(x)) (4)
AG ∀y(Inf (y)→ (AF ∀x(N(x, y)→ KxInf (y)))) (5)

Formula (4) states that it is always the case that if an agent is
recovered, then this fact won’t be ignored, i.e., someone will
know it. Formula (5) states that it is always the case that if
some agent y is infected, then all agents that are connected to
y will eventually know this fact. We stress once more that to
express epistemic properties, such as (2)-(5) above, in open
MAS we do need epistemic modalities indexed by terms and
quantification, as the set Ag of agents is infinite in general.

In the next section we develop techniques to model check
OMAS against such first-order temporal-epistemic specifica-
tions.

3 Bisimulation
In Section 2 we stated that model checking OMAS against
FO-CTLKx specifications is undecidable in general. To sin-
gle out semantical fragments with a decidable model check-
ing problem, we first introduce a notion of bisimulation and
show that bisimilar OMAS satisfy the same FO-CTLKx for-
mulas. The results presented in this section build upon previ-
ous work in the literature [?; ?; ?]. However, the present set-
ting differs, as we consider open MAS, where agents can join
and leave at run time, and our specification language contains
term-indexed epistemic modalities.

In the rest of the paper we let P = 〈Ag,U, I, τ〉 and
P ′ = 〈Ag′, U ′, I ′, τ ′〉 be OMAS and assume that s =
〈l0, . . . , ln〉 ∈ S and s′ = 〈l′0, . . . , l′n〉 ∈ S ′. According to
Def. 7 isomorphic states have the same relational structure,
but to account also for values assigned to free variables we
introduce the following notion.

Definition 11 (Equivalent assignments) Given states s ∈ S
and s′ ∈ S ′, and a formula φ, assignments σ : Var 7→ X and
σ′ : Var 7→ X ′ are equivalent for φ (w.r.t. s and s′) iff for
some bijection γ : adom(s) ∪ ag(s) ∪ Con ∪ σ(fr(ϕ)) 7→
adom(s′) ∪ ag(s′) ∪ Con ∪ σ′(fr(ϕ)), (i) the restriction
γ|adom(s)∪ag(s)∪Con is a witness for s ' s′; and (ii) σ′|fr(ϕ) =
γ ◦ σ|fr(ϕ).

Equivalent assignments preserve agent types, the
(in)equalities in ϕ, as well as the active elements in s
and s′, modulo renaming.

Bisimulations are known to preserve the satisfaction of
modal formulas in a propositional setting [?, Ch. 2]. We
now investigate under which conditions this is true of OMAS
as well.

Definition 12 (Simulation) A relation R ⊆ S × S ′ is a sim-
ulation iff R(s, s′) implies (i) s ' s′; (ii) for every t ∈ S, if
s → t then for some t′ ∈ S ′, s′ → t′, s ⊕ t ' s′ ⊕ t′, and
R(t, t′); and (iii) for every t ∈ S , a ∈ ag(s), if s ∼a t then
for some t′ ∈ S ′, s′ ∼a t′, s⊕ t ' s′ ⊕ t′, and R(t, t′).

A state s′ simulates s iff R(s, s′) holds for some simula-
tion R. In particular, similar states are isomorphic by condi-
tion 12.(i) above. Simulations can then be extended to bisim-
ulations.

Definition 13 (Bisimulation) A relation B ⊆ S × S ′ is a
bisimulation iff both B and B−1 = {〈s′, s〉 | 〈s, s′〉 ∈ B}
are simulations.

Two states s and s′ are bisimilar, or s ≈ s′, iff B(s, s′)
holds for some bisimulation B. Notice that ≈ is the largest
bisimulation and an equivalence relation on S ∪ S ′. Finally,
the OMASP andP ′ are bisimilar, orP ≈ P ′, iff (i) for every
s0 ∈ I , s0 ≈ s′0 for some s′0 ∈ I ′, and (ii) for every s′0 ∈ I ′,
s0 ≈ s′0 for some s0 ∈ I .

In [?] it is shown that, differently from the propositional
modal case, in data-aware systems bisimilarity does not pre-
serve first-order temporal-epistemic formulas. Nonetheless,
we prove that uniform OMAS admit FO-CTLKx-preserving
bisimulations.

Definition 14 (Uniformity) An OMAS P is uniform iff for
every s, t, s′ ∈ S, t′ ∈ G, (i) if s → t and s ⊕ t ' s′ ⊕ t′

then s′ → t′; and (ii) for every a ∈ ag(s), if s ∼a t and
s⊕ t ι' s′ ⊕ t′ then s′ ∼ι(a) t′.

Intuitively, uniformity expresses a fullness condition on
OMAS: a uniform OMAS allows all “isomorphic” transi-
tions. We discuss uniformity in more depth in Section 3.

We finally prove that FO-CTLKx formulas cannot distin-
guish between bisimilar and uniform OMAS, as longs as spe-
cific cardinality constraints on the interpretation domains are
satisfied.

Theorem 1 Consider bisimilar and uniform OMAS P and
P ′, bisimilar states s ∈ S and s′ ∈ S ′, an FO-CTLKx
formula ϕ, and assignments σ and σ′ equivalent for ϕ w.r.t. s
and s′. If

1. for every s-run r, for every k ≥ 0, (i) |X ′| ≥
|adom(r(k)) ∪ ag(r(k)) ∪ adom(r(k + 1)) ∪ ag(r(k +
1)) ∪ Con ∪ σ(fr(ϕ))| + |var(ϕ) \ fr(ϕ)|, and (ii)
|Ag′T | ≥ |agT (r(k))∪agT (r(k+1))∪Con∪σ(fr(ϕ))|+
|var(ϕ) \ fr(ϕ)| for every type T ;

2. for every s′-run r′, for every k ≥ 0, (i) |X| ≥
|adom(r′(k))∪ag(r′(k))∪adom(r′(k+1))∪ag(r′(k+
1)) ∪ Con ∪ σ′(fr(ϕ))| + |var(ϕ) \ fr(ϕ)|, and (ii)
|AgT | ≥ |agT (r′(k)) ∪ agT (r

′(k + 1)) ∪ Con ∪
σ′(fr(ϕ))|+ |var(ϕ) \ fr(ϕ)| for every type T ;

then (P, s, σ) |= ϕ iff (P ′, s′, σ′) |= ϕ.

As a consequence of Theorem 1, bisimilar states satisfy
the same FO-CTLKx formulas for equivalent assignments,
whenever cardinality constraints (1) and (2) are satisfied.

We now apply Theorem 1 to the model checking problem
for OMAS. First of all, we introduce bounded OMAS.

Definition 15 (Bounded OMAS) An OMAS P is b-
bounded, for b ∈ N, iff for all s ∈ S, |adom(s) ∪ ag(s)| ≤ b.

An OMASP is bounded iff it is b-bounded for some b ∈ N.
We remark that bounded OMAS are still infinite-state systems
in general. Hereafter let sups∈S{|adom(s)∪ag(s)|} be equal
to ∞ whenever the OMAS P is unbounded. Similarly for
sups∈S{|agT (s)|}.
Corollary 2 Consider bisimilar and uniform OMAS P and
P ′, and an FO-CTLKx formula ϕ. If

1. |X ′| ≥ 2 sups∈S{|adom(s) ∪ ag(s)|} + |con(φ)| +
|var(ϕ)| and |Ag′T | ≥ 2 sups∈S{|agT (s)|}+|con(φ)|+
|var(ϕ)| for every type T ;

2. |X| ≥ 2 sups′∈S′{|adom(s′) ∪ ag(s′)|} + |con(φ)| +
|var(ϕ)| and |AgT | ≥ 2 sups′∈S′{|agT (s′)|} +
|con(φ)|+ |var(ϕ)| for every type T ;

then P |= ϕ iff P ′ |= ϕ.

Corollary 2 shows that an infinite-state OMAS P can in
principle be verified by model checking a bisimilar system
P ′, as long as X ′ is sufficiently large for P ′ to bisimulate P .

In the next section we show that finite abstractions can in-
deed be defined for bounded OMAS, thus allowing for the
verification of properties, such as (2)-(5) in Section 2.3, but
first we briefly discuss uniform OMAS.

Discussion: Uniformity The notion of uniformity was put
forward in [?] to prove the decidability of model checking

data-aware systems. In [?] uniformity is related to gener-
icity in databases [?]. Intuitively, in uniform systems tr-
asitions depend on the logical form of data, rather than
on the actual data content. It has been argued that the
class of uniform systems covers most cases of interest [?;
?].

We now analyse uniformity in the context of OMAS
through the following result.

Lemma 3 Suppose that an OMAS P satisfies the following:

for s0 ∈ S, s′0 ∈ S ′, s0 ' s′0 implies s0 ∈ I iff
s′0 ∈ I (?)

Then, P is uniform.

The proof of Lemma 3 makes essential use of conditions
(∗) and (+) on protocols and transition functions respectively.
Thus, requirements (i) and (ii) in Def. 14 can be substituted
by closure (?) of initial states under isomorphism. The latter
condition is quite natural, as we are mainly interested in the
relational structure of data, not the actual data content. In
the final section we assume that all OMAS satisfy (?) and are
therefore uniform.

3.1 Finite Abstraction
We now show that an infinite OMAS can in principle be ver-
ified by checking a finite abstraction. The main result is The-
orem 5, which ensures that boundedness and closure under
uniform initial states (?) are sufficient to obtain finite bisimi-
lar abstractions, thus preserving FO-CTLKx formulas.

We first define the notion of abstract agents.

Definition 16 (Abstract agents) Let a = 〈D,Act,Pr〉 ∈
AgT be an agent of type T defined on a domainX = U ∪Ag.
Given a set X ′ = U ′ ∪ Ag′ of elements, the abstract agent
a′ ∈ Ag′T is the tuple 〈D,Act,Pr′〉 on X ′ s.t. Pr′ is the
smallest function defined as
• if α(~u) ∈ Pr(l), l′ ∈ D′(X ′) and l′

ι' l, then α(ι(~u)) ∈
Pr′(l′).

Given a set AgT of agents, let Ag′T be the set of the corre-
sponding abstract agents. Notice that Ag and Ag′ are used to
denote both the set of agent names and of agents; the context
will disambiguate. The abstract agent a′ in Def. 16 is indeed
an agent of type T , as defined in Def. 4, since a and a′ share
the same database schema and actions. Moreover, protocol
Pr′ is well-defined whenever Pr is, and it satisfies condition
(∗) on protocols by definition. We now present abstractions.

Definition 17 (Abstractions) Let P = 〈Ag,U, I, τ〉 be an
OMAS, and Ag′ the set of abstract agents defined on X ′ as in
Def. 16. The OMAS P ′ = 〈Ag′, U ′, I ′, τ ′〉 is an abstraction
of P iff (i) I ′ = {s′0 ∈ G′ | s′0 ' s0 for some s0 ∈ I}, and
(ii) τ ′ is the smallest function defined as follows

• if s
α(~u)−−−→ t in P , s′, t′ ∈ G′, and s ⊕ t ' s′ ⊕ t′ for

some witness ι, then s′
α(ι(~u))−−−−→ t′.

The abstraction P ′ in Def. 17 is an OMAS as it complies
with Def. 6. Moreover, condition (+) on transition functions
is satisfied. Notice that, by varying X ′ we can obtain abstrac-
tions of different cardinalities, in particular finite abstractions.

Next, we explore the relationship between an OMAS and
its abstractions. By the next result every abstraction is uni-
form, independently from the concrete OMAS.

Lemma 4 Every abstraction P ′ of an OMAS P is uniform.
Moreover, if P is uniform and X ′ = X , then P ′ = P .

By the next result there exists a bisimilar abstraction for
every bounded OMAS, provided that the former is built over
a sufficiently large domain. Hereafter we suppose that, for
a bound b ∈ N, Nb is the maximum numbers of param-
eters contained in any parametric joint actions, i.e., Nb =
b ·max{α(~x)∈ActT ,type T}{|~x|}.
Theorem 5 Consider a bounded OMAS P over an infinite
domain X , an FO-CTLx formula ϕ, and a domain X ′ ⊇
con(ϕ). If (i) |X ′| ≥ 2b + |con(ϕ)| + max{|var(ϕ)|, Nb},
and (ii) for every type T , |Ag′T | ≥ 2b + |con(ϕ)| +
max{|var(ϕ)|, Nb}, then there exists a bisimilar abstraction
P ′ of P over X ′. In particular, P |= ϕ iff P ′ |= ϕ.

Notice that each Ag′T and X ′ in Theorem 5 might as well
be finite. So, by using a sufficient number of abstract agents
and values, we can in principle reduce the model checking
problem for infinite-state OMAS to the verification of a finite
abstraction. Specifically, we obtain the following corollary to
Theorem 5.

Corollary 6 Given a bounded OMAS P over an infinite do-
mainX , and an FO-CTLx formula ϕ, there exists an abstract
OMAS P ′ over a finite domainX ′ s.t. ϕ holds in P iff it holds
in P ′.

As a consequence of Corollary 6, we can in principle ver-
ify an infinite-state, bounded OMAS, by model checking its
finite, bisimilar abstraction.

4 Conclusions
In this paper we addressed the formal verification of MAS
where an infinite number of agents may in principle be
present and may be entering and leaving the system at run
time. A notable feature of our proposal concerns the specifi-
cation language FO-CTLKx, which includes epistemic oper-
ators indexed by individual terms. As we discussed, the latter
are key to express relevant properties of OMAS. We analysed
the model checking problem in this setting and showed that it
can be addressed through finite bisimilar abstractions, under
some natural conditions.

An open problem not tackled in the present contribution
and left for future work is the development of methodolo-
gies for generating finite abstractions, so that effective model
checking procedures can be provided. This is a major chal-
lenge for the verification of open MAS.

Acknowledgements The research described in this paper
was partly funded by the EPSRC Research Project “Trusted
Autonomous Systems” (grant No. EP/I00520X/1).

References
[Abiteboul et al., 1995] S. Abiteboul, R. Hull, and V. Vianu.

Foundations of Databases. Addison-Wesley, 1995.

[Belardinelli and Grossi, 2015] F. Belardinelli and
D. Grossi. On the Formal Verification of Diffusion
Phenomena in Open Dynamic Agent Networks. In
Proc. of the 14th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS15),
2015.

[Belardinelli and Lomuscio, 2012] F. Belardinelli and
A. Lomuscio. Interactions between Knowledge and
Time in a First-Order Logic for Multi-Agent Systems:
Completeness Results. Journal of Artificial Intelligence
Research, 45:1–45, 2012.

[Belardinelli and Lomuscio, 2013] F. Belardinelli and
A. Lomuscio. Decidability of Model Checking Non-
Uniform Artifact-Centric Quantified Interpreted Systems.
In Proc. of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI13), 2013.

[Belardinelli et al., 2012] F. Belardinelli, A. Lomuscio, and
F. Patrizi. An Abstraction Technique for the Verification
of Artifact-Centric Systems. In Proc. of the 13th Interna-
tional Conference on Principles of Knowledge Represen-
tation and Reasoning (KR12), pages 319 – 328, 2012.

[Belardinelli et al., 2014] F. Belardinelli, F. Patrizi, and
A. Lomuscio. Verification of Agent-Based Artifact Sys-
tems. Journal of Artificial Intelligence Research, 51:333–
77, 2014.

[Blackburn et al., 2001] P. Blackburn, M. de Rijke, and
Y. Venema. Modal Logic. Cambridge University Press,
2001.

[Deutsch et al., 2007] A. Deutsch, L. Sui, and V. Vianu.
Specification and Verification of Data-Driven Web Ap-
plications. Journal of Computer and System Science,
73(3):442–474, 2007.

[Fagin et al., 1995] R. Fagin, J. Halpern, Y. Moses, and
M. Vardi. Reasoning About Knowledge. The MIT Press,
1995.

[Gammie and van der Meyden, 2004] P. Gammie and
R. van der Meyden. MCK: Model Checking the Logic of
Knowledge. In Proc. of 16th International Conference
on Computer Aided Verification (CAV04), pages 479–483.
Springer-Verlag, 2004.

[Hariri et al., 2013] B. Bagheri Hariri, D. Calvanese, G. De
Giacomo, A. Deutsch, and M. Montali. Verification of
Relational Data-centric Dynamic Systems with External
Services. In Proc. of the Symposium on Principles of
Database Systems (PODS13), pages 163–174, 2013.

[Jackson, 2008] M. O. Jackson. Social and Economic Net-
works. Princeton University Press, 2008.

[Kouvaros and Lomuscio, 2013a] P. Kouvaros and A. Lo-
muscio. A Cutoff Technique for the Verification of Param-
eterised Interpreted Systems with Parameterised Environ-
ments. In Proc. of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI13), 2013.

[Kouvaros and Lomuscio, 2013b] P. Kouvaros and A. Lo-
muscio. Automatic Verification of Parameterised Multi-
agent Systems. In Proc. International conference on Au-

tonomous Agents and Multi-Agent Systems (AAMAS13),
pages 861–868, 2013.

[Lomuscio and Colombetti, 1996] Alessio Lomuscio and
Marco Colombetti. QLB: A Quantified Logic for Belief.
In Intelligent Agents III, Agent Theories, Architectures,
and Languages, ECAI96 Workshop (ATAL), Proceedings,
pages 71–85, 1996.

[Lomuscio et al., 2009] A. Lomuscio, H. Qu, and F. Rai-
mondi. MCMAS: A Model Checker for the Verification of
Multi-Agent Systems. In Proc. of the International Con-
ference on Computer-Aided Verification (CAV09), pages
682–688, 2009.

[Montali et al., 2014] M. Montali, D. Calvanese, and G. De
Giacomo. Verification of Data-aware Commitment-based
Multiagent System. In International conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS14),
pages 157–164, 2014.

[Parikh and Ramanujam, 1985] R. Parikh and R. Ramanu-
jam. Distributed Processes and the Logic of Knowledge.
In Logic of Programs, pages 256–268, 1985.

[Penczek and Lomuscio, 2003] W. Penczek and A. Lomus-
cio. Verifying Epistemic Properties of Multi-agent Sys-
tems via Bounded Model Checking. Fundamenta Infor-
maticae, 55(2):167–185, 2003.

[Rodrı́guez-Aguilar et al., 1998] J. Rodrı́guez-Aguilar,
F. Martı́n, P. Noriega, P. Garcia, and C. Sierra. Towards
a Test-Bed for Trading Agents in Electronic Auction
Markets. AI Communications, 11(1):5–19, 1998.

[Wooldridge, 2001] M. Wooldridge. Introduction to Multia-
gent Systems. John Wiley & Sons, Inc., 2001.

