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Abstract

Correspondence results for substructural logics are proved and a series of correspondence al-
gorithms are introduced for relating analytic inference rules of display calculi and first-order
frame conditions. These results and algorithms are obtained thanks to update logic, which is
a generalization of the non-associative Lambek calculus. We characterize all the properly dis-
playable logics without (truth) constant extending update logic (and thus the Lambek calculus).
Our characterization tells us that a logic without constant extending update logic is properly dis-
playable if, and only if, the class of pointed substructural frames on which the logic is based can
be defined by some finite set of specific primitive first-order formulas called prototypic formu-
las. In that case, we provide algorithms to compute the prototypic formulas defining the class of
pointed substructural frames that correspond to the analytic inference rules of the proper display
calculus and, vice versa, we also provide algorithms to compute the analytic inference rules of
the display calculus that correspond to the prototypic formulas defining the class of substruc-
tural frames. Our proofs and algorithms resort to a specific multi-modal tense logic and they use
extensively Sahlqvist’s as well as Kracht’s results and techniques developed for tense logics.
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1 Introduction

Update logic [2] is both a generalization and an extension of the Lambek calculus. The devel-
opment of update logic is motivated by the intention to capture within the logical framework of
substructural logics various logic-based formalisms dealing with common sense reasoning and
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logical dynamics. This initiative is based on the key observation that an update can be repre-
sented abstractly by the ternary relation of the substructural framework: the first argument of the
ternary relation represents an initial situation, the second an informative event and the third the
resulting situation after the occurrence of the informative event. In [2], a sound and complete
display calculus was introduced for update logic and we imported some of the correspondence
results obtained for substructural logics to obtain new display calculi for substructural logics,
and in particular for (modal) bi-intuitionistic logic.

In general, correspondence theory investigates to what extent specific properties of accessi-
bility relations can be reformulated in terms of the validity of specific (modal or tense) formulas.
The following kinds of questions are addressed: when does the truth of a given (modal or tense)
formula in a frame corresponds to a first-order property in this frame ? (Sahlqvist correspon-
dence theorem); when does the validity of a (modal or tense) formula on a class of frames
corresponds to the fact that this class of frames satisfies a specific first-order property (and vice
versa) ? (Sahlqvist and Kracht theorems). We refer the reader to [11] for more details on cor-
respondence theory for modal and tense logic, even if the basics of this theory will be recalled
in this report. Given the general and generic nature of update logic, it seems relevant to develop
a correspondence theory for logics extending update logic. Naturally, we expect this correspon-
dence theory to address the same questions as the correspondence theory that has been developed
for modal and tense logic. Update logic and tense logic both have a relationnal semantics. The
only major difference is that update logic deals moreover with (substructural) binary connec-
tives, whereas modal and tense logics only deal with (modal and tense) unary connectives. At
the semantic level, this difference is reflected by the addition of a ternary relation to provide a
semantics to the (substructural) binary connectives.

In this report, we develop a correspondence theory for logics extending update logic. From a
methodological point of view, we resort to a specific multi-modal tense logic which turns out to
be as expressive as update logic. This multi-modal tense logic plays the role of a lingua franca
and we use the correspondence results already obtained for display calculi of tense logics to
obtain our correspondence results for display calculi of substructural logics (more precisely of
logics extending update logic). In fact, our proofs and algorithms rely extensively on Sahlqvist’s
[45] as well as Kracht’s [21, 22] results and techniques developed for tense logics. Independently
from our work, Palmigiano & Al [20] have recently applied the tools of unified correspondence
[13] to address the identification of the syntactic shape of axioms which can be translated into
analytic structural rules of a display calculus, and the definition of an effective procedure for
transforming axioms into such rules.

Our main contribution is to provide a characterization of all the properly displayable logics
extending update logic (and thus also the Lambek calculus). Our characterization shows that
a logic extending update logic is properly displayable if, and only if, it is sound and complete
with respect to a class of substructural frames defined by some finite set of prototypic first-order
formulas (a subclass of primitive first-order formulas). In that case, we provide algorithms to
compute the prototypic first-order formulas defining the class of frames that correspond to the
structural rules of the proper display calculus and, vice versa, we also provide algorithms to
compute the structural rules of the display calculus that correspond to the prototypic first-order
formulas defining the class of substructural frames.
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Weakening: Contraction: Permutation:

U V

X, U V
WA

X, X, U V

X, U V
CA

U , Y , X, V W

U , X, Y , V W
PA

U V

U V , X
WK

U V , X, X

U V , X
CK

U V , Y , X, W

U V , X, Y , W
PK

Figure 1: Structural Rules of Classical Logic

Organization of the report. In Section 2.1, we recall the framework of substructural logics
based on the relational semantics. In Section 2.2, we discuss to what extent the ternary relation
of substructural logics can be interpreted dynamically as a sort of update. In Section 3, after
some preliminary definitions, we motivate and (re)introduce the syntax and semantics of update
logic. In Section 4, we provide a display calculus for update logic. Then, in Section 5.1, we
define our specific tense logic for which we provide a Hilbert as well as a display calculus.
In Section 5.2, we show that our tense logic is as expressive as update logic and we provide
translation back and forth between update logic and our tense logic. In Sections 6.2 and 6.2,
we recall some results about correspondence theory for tense logic adapted to our substructural
framework. In Section 7, we provide correspondence result for inference rules, from analytic
inference rules to first-order frames conditions (Section 7.1), and vice versa (Section 7.2). Our
main result is Theorem 23, it is stated in Section 7.3. In Section 8, we give some examples of
correspondence translations from inference rules to first-order frame conditions (Section 8.1)
and vice versa (Section 8.2). Some of these examples of correspondence are already known
from the literature, but we will rediscover them by different means.

2 Substructural Logics and Updates

Substructural logics are a family of logics lacking some of the structural rules of classical logic.
A structural rule is a rule of inference which is closed under substitution of formulas [39, Def-
inition 2.23]. In a certain sense, a structural rule allows to manipulate the structure(s) of the
sequent/consecution without altering its logical content. The structural rules for classical logic
introduced by Gentzen [18] are given in Figure 1. The comma in these sequents has to be inter-
preted as a conjunction in an antecedent and as a disjunction in a consequent. While Weakening
(WA,WK) and Contraction (CA, CK) are often dropped as in relevance logic and linear logic,
the rule of Permutation (PA, PK) is often preserved. When some of these rules are dropped,
the comma ceases to behave as a conjunction (in the antecedent) or a disjunction (in the con-
sequent). In that case the comma corresponds to other substructural connectives and we often
introduce new punctuation marks which do not fulfill all these structural rules to deal with these
new substructural connectives.
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2.1 Substructural Logics

Our exposition of substructural logics is based on [39, 40, 14] (see also [33] for a general in-
troduction).1 The logical framework presented in [39] is more general and studies a wide range
of substructural logics: relevant logic, linear logic, Lambek calculus, arrow logic, etc. We will
only introduce a fragment of this general framework in order to highlight the main new ideas.
In particular, we will not consider truth sets and we will assume that our logics do not reject
distribution. These other features can be added and our framework can be adapted, following
the exposition of Restall [39]. We will moreover assume that we have multiple modalities (one
for each agent j ∈ G).

The semantics of substructural logics is based on the ternary relation of the frame semantics
for relevant logic originally introduced by Routley and Meyer [41, 42, 43, 44]. Another seman-
tics proposed independently by Urquhart [46, 47, 48] at about the same time will be discussed
at the end of this section.

In the sequel we consider the following set of logical connectives:

Sub :=
{
>,⊥,�j ,3−j ,¬,∨,∧,⊗,⊃,⊂,⇒| j ∈ G

}
We also define the set of connectives Sub− := Sub − {⇒} (the connective⇒ corresponds to
the intuitionistic implication).

Definition 1 (Languages L(P,Sub) and L(P,Sub−)). The language L(P,Sub) is the language
associated to Sub, that is, the language built compositionally from the connectives of Sub and
the set of propositional letters P. More formally, it is the set of formulas defined inductively by
the following grammar in BNF, where p ranges over P and j ranges over G:

L(P,Sub) : ϕ ::= > | ⊥ | p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ⇒ ϕ) |
�jϕ | 3−j ϕ | (ϕ⊗ ϕ) | (ϕ ⊂ ϕ) | (ϕ ⊃ ϕ)

The language L(P,Sub−) is the language L(P,Sub) without the (intuitionistic) connective
⇒. �

Definition 2 (Point set, accessibility relation). A point set P = (P,v) is a non-empty set P
together with a partial order v on P . The set Prop(P) of propositions on P is the set of all
subsets X of P which are closed upwards: that is, if x ∈ X and x v x′ then x′ ∈ X . When v
is the identity relation =, we say that P is flat. We abusively write x ∈ P for x ∈ P .

• A binary relation S is a positive two–place accessibility relation on the point set P if, and
only if, for any x, y ∈ P where xSy, if x′ v x then there is a y′ w y such that x′Sy′.
Similarly, if xSy and y v y′ then there is some x′ v x such that x′Sy′.

• A binary relation S is a plump positive two-place accessibility relation on the point set P
if, and only if, for any w, v, w′, v′ ∈ P , where wSv, w′ v w and v v v′ it follows that
w′Sv′.

1We very slightly change the definitions of frames and models as they are defined in [39] (we give the details of
these differences in the sequel). The definitions remain equivalent nevertheless.
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• A ternary relation R is a three–place accessibility relation on the point set P if, and only
if, whenever Rxyz and z v z′ then there are y′ w y and x′ w x such that Rx′y′z′.
Similarly, if x′ v x then there are y′ v y and z′ w z such thatRx′y′z′, and if y′ v y then
there are x′ v x and z′ w z, such thatRx′y′z′.

• A ternary relationR is a plump three-place accessibility relation on the point set P if, and
only if, for any w, v, u, w′, v′, u′ ∈ P such that Rwvu, if w′ v w, v′ v v and u v u′,
thenRw′v′u′.

We say that Q is an accessibility relation if, and only if, it is either a (positive or negative)
two-place accessibility relation or a three-place accessibility relation. �

Note that plump accessibility relations are accessibility relations. The definitions of acces-
sibility relations relate S,C,R with v. They are set in such a way that condition (Persistence)
can be lifted to arbitrary formulas of L(P,Sub) and holds not only for the propositional letters
of P.

Definition 3 (substructural model). A (multi-modal) substructural model is a tupleM = (P, S1,
. . . Sm,R, I) where:

• P = (P,v) is a point set;

• Sj ⊆ P × P is a (binary) accessibility relation on P , for each j ∈ G;

• R ⊆ P × P × P is a (ternary) accessibility relation on P;

• I : P → 2P is a function called the interpretation function satisfying moreover the con-
dition {w ∈ M | w ∈ I(p)} ∈ Prop(P), which can be reformulated as follows: for all
w, v ∈ P and all p ∈ P,

if p ∈ I(w) and w v v then p ∈ I(v). (Persistence)

We abusively write w ∈ M for w ∈ P and (M, w) is called a pointed substructural model.
The class of all pointed substructural models is denoted Ev. A (pointed) substructural frame is a
(pointed) substructural model without interpretation function. The class of all pointed substruc-
tural frames is denoted Fv. The class of all pointed substructural models (frames) where point
sets are flat is denoted E (resp. F). �

Definition 4 (Evaluation relation). We define the evaluation relation ⊆ Ev ×L(P,Sub) as
follows. LetM be a substructural model, w ∈ M and ϕ,ψ ∈ L(P,Sub). The truth conditions

5



for the atomic facts and the connectives of Sub are defined as follows:

M, w > always;
M, w ⊥ never;
M, w p iff p ∈ I(w);
M, w ϕ ∧ ψ iff M, w ϕ andM, w ψ;
M, w ϕ ∨ ψ iff M, w ϕ orM, w ψ;
M, w �jϕ iff for all v ∈ P, such that wSjv,M, v ϕ;
M, w 3−j ϕ iff there is v ∈ P such that vSjw andM, v ϕ;

M, w ϕ⊗ ψ iff there are v, u ∈ P such thatRvuw,
M, v ϕ andM, u ψ;

M, w ϕ ⊃ ψ iff for all v, u ∈ P such thatRwvu,
ifM, v ϕ thenM, u ψ;

M, w ψ ⊂ ϕ iff for all v, u ∈ P such thatRvwu,
ifM, v ϕ thenM, u ψ;

M, w ϕ⇒ ψ iff for all v ∈ P, if w v v then notM, v ϕ orM, v ψ.

We extend these definitions to the class of pointed substructural frames. We define the
evaluation relation ⊆ Fv × L(P,Sub) as follows. Let (F,w) be a pointed frame and let
ϕ ∈ L(P,Sub). Then, we have that

F,w ϕ iff for all interpretation functions I such that (F, I) satisfies Persistence,
(F, I), w ϕ

�

A substructural model stripped out from its interpretation function corresponds to a frame as
defined in [39, Definition 11.8] and without truth sets. In [39], a model is a frame together with
an evaluation relation.

Urquhart’s semantics. The Urquhart’s semantics for relevance logic was developed indepen-
dently from the Routley–Meyer’s semantics in the early 1970’s. An operational frame is a set
of points P together with a function which gives us a new point from a pair of points:

t : P × P → P. (1)

An operational model is then an operational frame together with a relation which in-
dicates what formulas are true at what points. The truth conditions for the implication ⊃ are
defined as follows:

w ϕ ⊃ ψ iff for each v, if v ϕ then w t v ψ (2)

As one can easily notice, an operational frame is a Routley-Meyer frame whereRwvu holds
if and only if w t v = u. Hence, the ternary relation R of the Routley–Meyer semantics is a
generalization of the function t of the Urquhart’s semantics. Because it is a relation, it allows
moreover to apply w to v and yield either a set of outcomes or no outcome at all.
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2.2 Updates as Ternary Relations

The ternary relation of the Routley and Meyer semantics was introduced originally for technical
reasons: any 2-ary (n-ary) connective of a logical language can be given a semantics by resorting
to a 3-ary (resp. n+ 1-ary) relation on worlds. In fact, this may be the most general and abstract
way of providing a semantics for two-ary conditionals of the form ϕ ⊃ ψ. Subsequently, a
number of philosophical interpretations of this ternary relation have been proposed and we will
briefly recall some of them at the end of this section (see [9, 40, 29] for more details). However,
one has to admit that providing a non-circular and conceptually grounded interpretation of this
relation remains problematic [9]. In this article we propose a new dynamic interpretation.

Our proposal is based on the key observation that an update can be represented abstractly as
a ternary relation: the first argument of the ternary relation represents the initial situation/state,
the second the event that occurs in this initial situation (the informative input) and the third
the resulting situation/state after the occurrence of the event. With this interpretation in mind,
Rxyz reads as ‘the occurrence of event y in world x results in the world z’ and the corresponding
conditional χ ⊃ ϕ reads as ‘the occurrence in the current world of an event satisfying property
χ results in a world satisfying ϕ’.

This interpretation is coherent with a number of interpretations of the ternary relation pro-
posed in substructural logic. In substructural logics, points are sometimes also called worlds,
states, situations, set-ups, and as explained by Restall:

“We have a class of points (over which w and v vary), and a function t which gives
us new points from old. The point w t v is supposed, on Urquhart’s interpretation,
to be the body of information given by combining w with v.” [40, p. 363]

and also, keeping in mind the truth conditions for the connective ⊃ of Expression (2):

“To be committed to A ⊃ B is to be committed to B whenever we gain the infor-
mation that A. To put it another way, a body of information warrants A ⊃ B if and
only if whenever you update that information with new information which warrants
A, the resulting (perhaps new) body of information warrants B.” (emphasis added)
[40, p. 362]

Moreover, as explained by Restall, this substructural “update” can be nonmonotonic and
may correspond to some sort of revision:

“[C]ombination is sometimes nonmonotonic in a natural sense. Sometimes when
a body of information is combined with another body of information, some of the
original body of information might be lost. This is simplest to see in the case mo-
tivating the failure of A B ⊃ A. A body of information might tell us that A.
However, when we combine it with something which tells us B, the resulting body
of information might no longer warrantA (asAmight withB). Combination might
not simply result in the addition of information. It may well warrant its revision.”
(emphasis added) [40, p. 363]
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Our dynamic interpretation of the ternary relation is consistent with the above considera-
tions: sometimes updating beliefs amounts to revise beliefs.

The dynamic reading of the ternary relation and its corresponding conditional is very much in
line with the so-called “Ramsey Test” of conditional logic. The Ramsey test can be viewed as the
very first modern contribution to the logical study of conditionals and much of the contemporary
work on conditional logic can be traced back to the famous footnote of Ramsey [37].2 Roughly,
it consists in defining a counterfactual conditional in terms of belief revision: an agent currently
believes that ϕ would be true if ψ were true (i.e. ψ ⊃ ϕ) if and only if he should believe ϕ
after learning ψ. A first attempt to provide truth conditions for conditionals, based on Ramsey’s
ideas, was proposed by Stalnaker. He defined his semantics by means of selection functions over
possible worlds f : W × 2W → W . As one can easily notice, Stalnaker’s selection functions
could also be considered from a formal point of view as a special kind of ternary relation, since a
relationRf ⊆W×2W ×W can be canonically associated to each selection function f .3 So, the
dynamic reading of the ternary semantics is consistent with the dynamic reading of conditionals
proposed by Ramsey.

This dynamic reading was not really considered or investigated by substructural logicians
when they connected the substructural ternary semantics with conditional logic [9]. On the other
hand, the dynamic reading of inferences has been stressed to a large extent by van Benthem [50,
51] and also by Baltag & Smets [4, 5, 6]. Our dynamic interpretation of the ternary semantics
of substructural logics is consistent with the interpretations proposed by substructural logicians.
In fact, our point of view is also very much in line with the claim of Gärdenfors and Makinson
[17, 27] that non-monotonic reasoning and belief revision are “two sides of the same coin”: as
a matter of fact, non-monotonic reasoning is a reasoning style and belief revision is a sort of
update. The formal connection in this case also relies on a similar idea based on the Ramsey
test.

To summarize our discussion, our dynamic interpretation of the ternary relation of substruc-
tural logic is intuitive and consistent, in the sense that the intuitions underlying this dynamic
interpretation are coherent with those underlying the ternary semantics of substructural logics,
as witnessed by our quotes and citations from the substructural literature.

Other interpretations of the ternary relation. One interpretation, due to Barwise [8] and
developed by Restall [38], takes worlds to be ‘sites’ or ‘channels’, a site being possibly a channel
and a channel being possibly a site. If x, y and z are sites,Rxyz reads as ‘x is a channel between
y and z’. Hence, ifϕ ⊃ ψ is true at channel x, it means that all sites y and z connected by channel
x are such that if ϕ is information available in y, then ψ is information available in z. Another
similar interpretation due to Mares [28] adapts Israel and Perry’s theory of information [34] to

2Here is Ramsey’s footnote: “If two people are arguing ‘If p, then q?’ and are both in doubt as to p, they are
adding p hypothetically to their stock of knowledge and arguing on that basis about q; so that in a sense ‘If p, q’
and ‘If p, ¬q’ are contradictories. We can say that they are fixing their degree of belief in q given p. If p turns out
false, these degrees of belief are rendered void. If either party believes not p for certain, the question ceases to mean
anything to him except as a question about what follows from certain laws or hypotheses.”[37, 154–155]

3Note that Burgess [12] already proposed a ternary semantics for conditionals, but his truth conditions and his
interpretation of the ternary relation were quite different from ours.
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the relational semantics. In this interpretation, worlds are situations in the sense of Barwise and
Perry’s situation semantics [7] and pieces of information – called infons – can carry information
about other infons: an infon might carry the information that a red light on a mobile phone
carries the information that the battery of the mobile phone is low. In this interpretation, the
ternary relation R represents the informational links in situations: if there is an informational
link in situation x that says that an infon σ carries the information that the infon π also holds,
then ifRxyz holds and y contains the infon σ, then z contains the infon π. Other interpretations
of the ternary relation have been proposed by Beall & Al. [9], with a particular focus on their
relation to conditionality. For more information on this topic the reader is invited to consult [30]
which covers the material briefly reviewed in this paragraph.

3 Update Logic

In this section, we define update logic. After introducing some mathematical definitions in
Section 3.1, we motivate in Section 3.2 the introduction of three triples of logical connectives.
These connectives generalize the triple (⊗,⊃,⊂) of substructural logics and will be given a
semantics based on cyclic permutations in Section 3.3.

3.1 Preliminary Definitions

The general definitions of this section will be used in the rest of the article.

Definition 5 (Logic). A logic is a triple L := (L (P,F) , E, ) where

• L (P,F) is a logical language defined as a set of well-formed expressions built from a set
of logical (and structural) connectives F and a set of propositional letters P;

• E is a class of pointed models or frames;

• is a satisfaction relation which relates in a compositional manner elements of L (P,F)
to models of E by means of so-called truth conditions. �

Note that the above semantically–based definition of a logic is also used by French et Al.
[16].

Example 1. The triples (L(P,Sub), E , ) and (L(P,Sub−), E , ) are logics. We list in
Figure 2 logics that we deem to be ‘classical’. �

Definition 6 (Expressiveness). Let two logics L = (L, E, ) and L′ = (L′, E, ′) be given
(interpreted over the same class of models E). Let ϕ ∈ L and ϕ′ ∈ L′. We say that ϕ is as
expressive as ϕ′ when {M ∈ E | M ϕ} = {M ∈ E | M ϕ′}. We say that L has at least
the same expressive power as L′, denoted L ≥ L′, when for all ϕ′ ∈ L′, there is ϕ ∈ L such that
ϕ is as expressive as ϕ′. When L has at least the same expressive power as L′ and vice versa, we
say that L and L′ have the same expressive power and we write it L ≡ L′. Otherwise, L is strictly
more expressive than L′ and we write it L > L′. �

Example 2. It holds that (L(P,Sub), Ev, ) > (L(P,Sub−), Ev, ). �
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Models E
Connectives F Logic (L (P,F) , E, )v S R

= ¬ ∧ Propositional Logic
= • ¬ ∧ �j Modal Logic
= • ⊗ ⊃ ⊂ Lambek Calculus
= • • ¬ ∧ �j ⊗ ⊃ ⊂ Modal Lambek Calculus

Figure 2: ‘Classical’ Logics

3.2 Talking about Ternary Relations

If we want to reason about updates, we must be able to express properties of updates. In other
words, we need a language for talking about updates. Since we represent them by ternary rela-
tions, it seems natural to require that our language be able to express properties that relate what
is true at each point of the ternary relations, that is, what is true at: 1. the initial situation (ex-
pressed by a formula ϕ), 2. the event occurring in this situation (expressed by a second formula
χ), 3. the resulting situation after the event has occurred (expressed by a third formula ψ):

1, ϕ // 2, χ // 3, ψ

This leads us to the following general question: assume that we stand in one of these three
time points x (be it 1, 2 or 3), what kind of property can we express and infer about the other
time points y and z? Here is a non-exhaustive list of the possible and most natural expressions
that we would want to state:

(a) For all y, if y satisfies ϕ then for all z, z satisfies ψ: “x ∀y∀z(ϕ(y)→ ψ(z))”.

For example, in the initial state 1, is it the case that any event satisfying χ will always lead
to a state 3 satisfying ψ? Or, in state 3, is it the case that before the occurrence of any
event satisfying χ, ϕ held in all initial states 1?

(b) There exist y and z such that y satisfies ϕ and z satisfies ψ: “x ∃y∃z(ϕ(y) ∧ ψ(z))”.

For example, in state 1, is it the case that there exists an event satisfying χ that may lead
to a state where ψ holds ? Or, in state 3, is it possible that our current state might have
been the result of an event satisfying χ in an initial state where ϕ held?

(c) For all y satisfying ϕ, there exists z satisfying ψ: “x ∀y∃z(ϕ(y)→ ψ(z))”.

For example, in state 1, is it the case that any events satisfying χ may lead possibly to a
state where ψ holds ? Or, in state 3, is it the case that an event satisfying χ might have
occurred so that any former situation before this event satisfied ϕ?

This list of expressions is obviously non-exhaustive. Providing formal tools that answer
these kinds of questions leads to applications in artificial intelligence and theoretical computer

10



science, and as it turns out, some of these questions have already been addressed in dynamic
epistemic logic and other logical formalisms (see the companion article [3, Sect. 7.2] for more
details and examples). Typically, most of the works about conditionals and belief dynamics deal
with the first kind of statements (a) or (b). In fact, the conditionals ⊃ and ⊂ of substructural
and relevance logics of the previous section are of the form (a), whereas the substructural con-
nective ⊗ is of the form (b). The language that we will define will only deal with the first two
kinds of expressions (a) and (b) (Section 3.3). This language is intended to capture the various
conditionals and belief change operators which have been introduced in the philosophical and
artificial intelligence literature. As shown in [3], it captures very well the operators of Dynamic
Epistemic Logic.

3.3 Syntax and Semantics of Update Logic

We define formally formulas, structures and then consecutions (sometimes called sequents in
the literature). This is an incremental definition and each of these objects is defined on the basis
of the previous one. Moreover, in the sequel, we will view sets of formulas, sets of structures
and sets of consecutions as logical languages.

Notation 1. In the rest of this article, we will use the following logical connectives Form and
structural connectives Struc:

Form :=
{
�j ,3−j ,3j ,�

−
j ,¬,∨,∧,→,⊗i,⊃i,⊂i,�i,�i,�i | i ∈ {1, 2, 3} , j ∈ G

}
Struc := {∗, •j, ,i | i ∈ {0, 1, 2, 3} , j ∈ G}

The connectives ∨,∧,→,⊗i,⊃i,⊂i,�i,�i,�i, , 0, ,i (where i ranges over {1, 2, 3}) are binary
connectives and �j ,3−j ,3j ,�

−
j ,¬, ∗, •j are unary connectives (where j ranges over G). The

structural connective , 0 will often simply be denoted , .

Definition 7 (Formula, structure and consecution).

• Let F ⊆ Form be a non-empty set of logical connectives. The language associated to
F, denoted L (P,F), is the language built compositionally from the connectives of F and
the set of propositional letters P. Elements of the language L (P,F) are called L (P,F)–
formulas and are generally denoted ϕ, χ, ψ, . . .

• Let S ⊆ Struc and F ⊆ Form be non-empty sets of structural connectives and logical
connectives. The set of structures associated to F and S, denoted S (P,F,S), is the
language built compositionally from the structural connectives of S and the set L (P,F).
Elements of the language S (P,F,S) are called S (P,F,S)–structures and are generally
denoted X,Y, Z, . . .

The structural connectives associated to F, denoted Struc(F), is the set of structural con-
nectives {∗, ,0 } together with { ,1 , ,2 , ,3 } if F∩ {⊗i,⊃i,⊂i,�i,�i,�i | i ∈ {1, 2, 3}} 6=
∅ and with {•j} if F ∩

{
�j ,3−j ,3j ,�

−
j | j ∈ G

}
6= ∅. We denote by S (P,F) the set of

all S (P,F,Struc(F))–structures.
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• Let S ⊆ Struc and F ⊆ Form be non-empty sets of structural connectives and logical
connectives. A S (P,F,S)–consecution is an expression of the form X Y , X or
Y , where X,Y ∈ S (P,F,S). The S (P,F,S)–structure X is called the antecedent and

the S (P,F,S)–structure Y is called the consequent. We denote by C (P,F) the set of all
S (P,F,Struc(F))–consecutions.

To avoid any ambiguity, every occurence of any binary connective is surrounded by brackets.
�

Example 3. If F = {¬,∧,⊗3,⊃1,⊂2}, then the language L (P,F) is defined by the following
grammar in BNF, where p ranges over P:

L (P,F) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ⊗3 ϕ) | (ϕ ⊃1 ϕ) | (ϕ ⊂2 ϕ)

Then, we have that Struc(F) = {∗, ,0 , ,i | i ∈ {1, 2, 3}}. So, the language S (P,F) := S (P,F,Struc(F))
is defined by the following grammar in BNF, where ϕ ranges over L (P,F) and i ranges over
{1, 2, 3}:

S (P,F) : X ::= ϕ | ∗X | (X ,0 X) | (X ,i X)

�

Notation 2. To save parenthesis, we use the following ranking of binding strength: ⊗i,⊃i,⊂i

,∧,∨,→ (where i ranges over {1, 2, 3}). For example, �1¬p ∧ q → ¬r ⊗3 s stands for
((�1(¬p)) ∧ q) → ((¬r) ⊗3 s) (additional brackets have been added for the unary connec-
tives �1 and ¬, even if they are not needed and will not appear in any formula anyway). For
every binary connective ?, we use the following notation: X1 ? . . . ? Xn := ((. . . (X1 ? . . . ?
Xn−2) ? Xn−1) ? Xn). For example, ϕ1 ∨ . . . ∨ ϕn := ((. . . (ϕ1 ∨ . . . ∨ ϕn−2) ∨ ϕn−1) ∨ ϕn)
and X1 , . . . , Xn := ((. . . (X1 , . . . , Xn−2), Xn−1), Xn). Moreover, if Γ := {ϕ1, . . . , ϕn} is a
finite set of formulas and ? is a binary connective over formulas, we use the following notation:
?Γ := ϕ1 ? . . . ? ϕn. For example,

∨
Γ := ϕ1 ∨ . . . ∨ ϕn and

∧
Γ := ϕ1 ∧ . . . ∧ ϕn.

In the sequel, we assume that the point sets of all substructural models and frames are flat,
i.e. v is the equality relation =. So, the class of pointed substructural models and frames that
we consider are E and F respectively. This entails that we will not consider the connective⇒
of substructural logics.

Definition 8 (Update logic). Let E be an arbitrary set of three elements. For each i ∈ {1, 2, 3},
we define the cyclical permutations σi : E3 7→ E3 as follows: for all x, y, z ∈ E,

σ1(x, y, z) = (x, y, z) σ2(x, y, z) = (z, x, y) σ3(x, y, z) = (y, z, x).

• We define the evaluation relation ⊆ E × L (P,Form) inductively as follows. Let
(M, w) ∈ E be a pointed substructural model and let ϕ ∈ L (P,Form). The truth condi-
tions for the connectives�j ,3−j ,∧,∨ are defined like in Definition 4. The truth condition
for the Boolean negation is defined as follows:

M, w ¬ϕ iff it is not the case thatM, w ϕ.
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The truth conditions for the connectives ⊗i,⊃i,⊂i are defined as follows: for all i ∈
{1, 2, 3}, we have that

M, w ϕ⊗i ψ iff there are v, u ∈ P such that σi(w, v, u) ∈ R,
M, v ϕ andM, u ψ;

M, w ϕ ⊃i ψ iff for all v, u ∈ P such that σi(w, v, u) ∈ R,
ifM, v ϕ thenM, u ψ;

M, w ϕ ⊂i ψ iff for all v, u ∈ P such that σi(w, v, u) ∈ R,
ifM, u ψ thenM, v ϕ.

The truth conditions for the connectives �i,�i,�i are defined as follows: for all i ∈
{1, 2, 3}, we have that

M, w ϕ�i ψ iff for all v, u ∈ P such that σi(w, v, u) ∈ R,
M, v ϕ orM, u ψ;

M, w ϕ �i ψ iff there are v, u ∈ P such that σi(w, v, u) ∈ R,
M, u ϕ and notM, v ψ;

M, w ϕ �i ψ iff there are v, u ∈ P such that σi(w, v, u) ∈ R,
M, v ψ and notM, u ϕ.

The truth conditions for the connectives 3j ,�
−
j are defined as follows:

M, w 3jϕ iff there is v ∈ P such that wRv andM, v ϕ;
M, w �−j ϕ iff for all v ∈ P such that vSw,M, v ϕ.

• We extend the scope of the evaluation relation simultaneously in two different ways in
order to also relate points to S (P,Form)–structures. The antecedent evaluation relation
A ⊆ E × S (P,Form) is defined inductively as follows: for all i ∈ {1, 2, 3},

M, w A ϕ iff M, w ϕ;
M, w A ∗X iff it is not the case thatM, w K X;
M, w A •j X iff there is v ∈M such that vSjw

and it holds thatM, v A X;
M, w A X, Y iff M, w A X andM, w A Y ;
M, w A X ,i Y iff there are v, u ∈M such that σi(w, v, u) ∈ S,

M, v A X andM, u A Y.

The consequent evaluation relation K ⊆ E × S (P,Form) is defined inductively as
follows: for all i ∈ {1, 2, 3},

M, w K ϕ iff M, w ϕ;
M, w K ∗X iff it is not the case thatM, w A X;
M, w K •j X iff for all v ∈M such that wSjv,

it holds thatM, v K X;
M, w K X, Y iff M, w K X orM, w K Y ;
M, w K X ,i Y iff for all v, u ∈M such that σi(w, v, u) ∈ R,

M, v K X orM, u K Y.
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M, w χ⊗1 ψ iff there are v, u ∈ P such thatRwvu,
M, v χ andM, u ψ;

M, w χ ⊃1 ψ iff for all v, u ∈ P such thatRwvu,
ifM, v χ thenM, u ψ;

M, w χ ⊂1 ψ iff for all v, u ∈ P such thatRwvu,
ifM, u ψ thenM, v χ;

M, w ψ ⊗2 ϕ iff there are v, u ∈ P such thatRuwv,
M, u ϕ andM, v ψ;

M, w ψ ⊃2 ϕ iff for all v, u ∈ P such thatRuwv,
ifM, v ψ thenM, u ϕ;

M, w ψ ⊂2 ϕ iff for all v, u ∈ P such thatRuwv,
ifM, u ϕ thenM, v ψ;

M, w ϕ⊗3 χ iff there are v, u ∈ P such thatRvuw,
M, v ϕ andM, u χ;

M, w ϕ ⊃3 χ iff for all v, u ∈ P such thatRvuw,
ifM, v ϕ thenM, u χ;

M, w ϕ ⊂3 χ iff for all v, u ∈ P such thatRvuw,
ifM, u χ thenM, v ϕ.

Figure 3: Spelling out the Truth Conditions

• We extend the scope of the relation to also relate points to S (P,Form)–consecutions.
Depending on the form of the S (P,Form)–consecution, that is, whether it is of the form
X Y , Y or X , we have:

M, w X Y iff ifM, w A X , thenM, w K Y ;
M, w Y iff M, w K Y ;
M, w X iff it is not the case thatM, w A X .

So, for all F ⊆ Form, the triples (L (P,F) , E , ), (S (P,F) , E , A ), (S (P,F) , E , K ) and
(C (P,F) , E , ) are logics (as defined in Definition 5). The triple (L (P,Form) ,F , ) is
also a logic, called update logic. �

Spelling out the truth conditions for the connectives ⊗i,⊃i and ⊂i for i ∈ {1, 2, 3}, we
obtain the expressions of Figure 3. The indices 1, 2 and 3 of our connectives indicate when
formulas are evaluated. The connectives ⊃1,⊂1 and ⊗1 express properties of updates before
the event, the connectives ⊂2,⊃2 and ⊗2 properties during the event and the connectives ⊃3,⊂3

and ⊗3 properties after the event. Typically, the formula ϕ deals with the initial situation, the
formula χ deals with the event and the formula ψ deals with the final situation. The direction
of the arrow (⊂ or ⊃) indicates the conditional direction in which the formula should be read.
For example, the formula ψ ⊃2 ϕ tells us that it should be evaluated during an event (2) and
reads as “if the final situation will satisfy ψ then the initial situation must necessarily satisfy
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ϕ”, whereas ψ ⊂2 ϕ reads as “if the initial situation satisfies ϕ then the final situation will
necessarily satisfy ψ”. The formula χ ⊃1 ψ reads as “ψ will hold after the occurrence of any
events satisfying χ” and the formula ϕ ⊂3 χ reads as “ϕ held before the occurrence of any events
satisfying χ”. The connectives ⊗1,⊗2,⊗3 are of the form (b) and the connectives ⊃1,⊂1,⊃2,⊂2

,⊃3,⊂3 are of the form (a) (see page 10). Note that the classical substructural connectives ⊗,⊃
and ⊂ of the previous section correspond to our connectives ⊗3,⊃1 and ⊂2. So, our language
L (P,Form) extends the language L(P,Sub−) of substructural logics presented in Section 2.1
and the logic (L (P,Form) , E , ) is therefore at least as expressive as (L(P,Sub−), E , ).
In fact, (L (P,Form) , E , ) is strictly more expressive than (L(P,Sub−), E , ), as proved
in [2].

4 Display Calculus for Update Logic

Extending Gentzen’s original sequent calculi with modalities has turned out over the years to be
difficult. Many of the interesting theoretical properties of sequent calculi are lost when one adds
modalities (see for example [35, Chapter 1] for more details). A number of methods have been
proposed to overcome these difficulties: display calculi, labelled sequents, tree hypersequents
(see [36] for an accessible introduction to these different sorts of calculi). In this section, we
provide a display calculus for our update logic. This display calculus is a generalization of the
display calculus for modal logic introduced by Wansing [52] and the sequent calculus will be a
generalization of the non-associative Lambek calculus NL [25, 26].

4.1 Preliminary Definitions

The general definitions of this section will be used in the rest of the article. Our definition of a
proof system and of an inference rule is taken from [31].

Definition 9 (Proof system and sequent calculus). Let L = (L, E, ) be a logic. A proof system
P for L is a set of elements of L called axioms and a set of inference rules. Most often, one can
effectively decide whether a given element of L is an axiom. To be more precise, an inference
rule R in L is a relation among elements of L such that there is a unique l ∈ N∗ such that, for
all ϕ,ϕ1, . . . , ϕl ∈ L, one can effectively decide whether (ϕ1, . . . , ϕl, ϕ) ∈ R. The elements
ϕ1, . . . , ϕl are called the premises and ϕ is called the conclusion and we say that ϕ is a direct
consequence of ϕ1, . . . , ϕl by virtue of R. Let Γ ⊆ L and let ϕ ∈ L. We say that ϕ is provable
(from Γ) in P or a theorem of P , denoted `P ϕ (resp. Γ `P ϕ), when there is a proof of ϕ (from
Γ) in P , that is, a finite sequence of formulas ending in ϕ such that each of these formulas is:

1. either an instance of an axiom of P (or a formula of Γ);

2. or the direct consequence of preceding formulas by virtue of an inference rule R.

If S is a set of L–consecutions, this set S can be viewed as a logical language. Then, we call
sequent calculus for S a proof system for S. �
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Definition 10 (Truth, validity, logical consequence). Let L = (L, E, ) be a logic. LetM∈ E,
ϕ ∈ L andR,R′ inference rule in L. If Γ is a set of formulas or inference rules, we writeM Γ
when for all x ∈ Γ, we haveM x. Then, we say that

• ϕ is true (satisfied) atM orM is a model of ϕ whenM ϕ;

• ϕ is a logical consequence of Γ, denoted Γ Lϕ, when for allM ∈ E, ifM Γ then
M ϕ;

• ϕ is valid, denoted Lϕ, when for all modelsM∈ E, we haveM ϕ;

• R is true (satisfied) atM orM is a model ofR, denotedM R, when for all (ϕ1, . . . , ϕl, ϕ) ∈
R, ifM ϕi for all i ∈ {1, . . . , l}, thenM ϕ.

• R is equivalent to R′, denoted R ≡ R′, when for all M ∈ E, M R if, and only if,
M R′. �

Definition 11 (Soundness and completeness). Let L = (L, E, ) be a logic. Let P be a proof
system for L. Then,

• P is sound for the logic L when for all ϕ ∈ L, if `P ϕ, then Lϕ.

• P is (strongly) complete for the logic L when for all ϕ ∈ L (and all Γ ⊆ L), if Lϕ, then
`P ϕ (resp. if Γ Lϕ, then Γ `P ϕ). �

Definition 12 (Parameter, congruent parameter and principal formula). A parameter in an infer-
ence rule is a structure (or formula) which is either held constant from premises to conclusion or
which is introduced with no regard to its particular (formulas introduced by weakening are also
parameters). A principal formulas in an inference rule is a non–parametric formula occurring
in the conclusion. Congruent parameters in an inference rules are parameters that occur both
in the premise(s) and the conclusion of that inference rule and that correspond to the same for-
mula/structure. In our display calculi (like the display calulus UL of Figures 4 and 6), principal
formulas are represented by Greek formulas ϕ,ψ and parameters are denoted by the Latin letters
X,Y, Z. Congruent parameters are denoted by the same Latin letter (be it X,Y or Z). �

See [10, 53] for more detailed explanations of the conditions (C1)− (C8) listed below.

Definition 13 (Proper display calculus and analytic inference rule). An inference rule is analytic
when it satisfies the following eight conditions (C1) − (C8). A sequent calculus is a proper
display calculus when each of its inference rules satisfies the following eight conditions (C1)−
(C8):

(C1) Preservation of formulas. Each formula occurring in a premise of a rule is the subformula
of some formula in the conclusion of that rule.

(C2) Shape-alikeness of parameters. Congruent parameters in a rule are occurrences of the
same structures.
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(C3) Non-proliferation of parameters. Each parameter of any rule is congruent to at most one
parameter in the conclusion of that rule.

(C4) Position-alikeness of parameters. Congruent parameters are either all antecedent or all
consequent parts of their respective consecutions.

(C5) Display of principal constituents. A principal formula of any rule is either the entire
antecedent or the entire consequent of the conclusion of this rule.

(C6) Closure under substitution for consequent parts. Each rule is closed under simultaneous
substitution of arbitrary structures for congruent formulas which are consequent parts.

(C7) Closure under substitution for antecedent parts. Each rule is closed under simultaneous
substitution of arbitrary structures for congruent formulas which are antecedent parts.

(C8) Eliminability of matching principal formulas. If there are inferences inf1 and inf2 with
respective conclusions (1) X ϕ and (2) ϕ Y with ϕ principal in both inferences, and
if cut is applied to obtain (3) X Y , then either (3) is identical to (1) or (2), or there
is a proof of (3) from the premises of inf1 and inf2 in which every cut-formula of any
application of cut is a proper formula of ϕ. �

Definition 14 (Displayable logic). A logic L = (L, E, ) is (properly) displayable when there
is a (proper) display calculus P which is sound and complete for L. �

4.2 A Generalized Modal Display Calculus

In this section, we introduce a display calculus for our update logic. It generalizes the modal
display calculus of Wansing [52].

Definition 15 (Display calculus UL(F)). Let F ⊆ Form. The display calculus for C (P,F),
denoted UL(F), is the display calculus containing the rules of Figure 6 mentioning the logical
connectives of F and the rules of Figure 4 mentioning the structural connectives of Struc(F) (a
double line means that the rule holds in both directions). When F = Form, the display calculus
UL(F) is denoted UL. In these rules, U and V can be empty structures and in that case U , X
denotes X . Moreover, in rule ⊗i

K (for i ∈ {1, 2, 3}), the consequent of one of the premises
can also be empty and in that case the consequent of the conclusion is also empty. For better
readability, the brackets for binary connectives are omitted. �

Admissibility of the Cut Rule. Theorem 1 below shows that UL is a display calculus: each
antecedent (consequent) part of a consecution can be ‘displayed’ as the sole antecedent (resp.
consequent) of a structurally equivalent consecution.

Definition 16 (Antecedent and consequent part). Let X be a S (P,Form)–structure and let Y
be a substructure of X . We say that Y occurs positively in X if it is in the scope of an even
number of ∗. Otherwise, if Y is in the scope of an odd number of ∗ in X , we say that Y occurs
negatively in X . If X Y is a S (P,Form)–consecution, then X is called the antecedent and
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Classical Rules:

U V

U , X V
K

X, X U

X U
WI

Y , X U

X, Y U
CI

(X, Y ), Z U

X, (Y , Z) U
Bc

U Y

U , ∗ Y
∗A

U , Y

U ∗ Y
∗K

Display Rules: Cut Rule:

X ,i Y Z

X ∗ Y ,j Z

Y Z ,k ∗X

Z X ,i Y

∗Y ,j Z X

Z ,k ∗X Y

X •j Y

•jX Y

U ϕ ϕ V

U V

(i, j, k) ∈ {(0, 0, 0), (1, 2, 3), (2, 3, 1), (3, 1, 2)} and j ∈ G

Figure 4: Display Calculus UL: Structural Rules

Y is called the consequent. Let Z be a substructure of X or Y . We say that Z is an antecedent
part of X Y if Z occurs positively in X or negatively in Y . We say that Z is a consequent
part of X Y if Z occurs positively in Y or negatively in X . �

Theorem 1 (Display Theorem [2]). For each S (P,Form)–consecution X Y and each an-
tecedent part (respectively consequent part)Z ofX Y , ifX Y then there exists aL (P,Form,Struc)–
structure W such that Z W (respectively W Z).

Theorem 2 (Strong cut elimination [2]). The display calculus UL is a proper display calculus.
Hence, UL enjoys strong cut-elimination and therefore the cut rule is an admissible rule of UL.

5 Tense Logic as a Lingua Franca

Our second language is a multi-modal language. We break down the ternary relation R into
two binary relations R1 and R2 and define modalities that allow us to quantify at each point of
the ternary relation over the next points or the previous ones. A similar approach was already
followed in [23, 24]. This increases the expressivity of our language since we have more flex-
ibility for combining the modal operators, in particular we can alternate existential modalities
∃1, ∃2,∃−1 , ∃

−
2 and universal modalities ∀1,∀2, ∀−1 ,∀

−
2 .

w
R1

// v
R2

// u
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Axiom:

p p
Id

Propositional Connectives:

X ∗ ϕ
X ¬ϕ

¬K
∗ϕ X

¬ϕ X
¬A

X ϕ

X ϕ ∨ ψ
∨1K

X ψ

X ϕ ∨ ψ
∨2K

ϕ X ψ X

ϕ ∨ ψ X
∨A

X ϕ X ψ

X ϕ ∧ ψ
∧K

ϕ X

ϕ ∧ ψ X
∧1A

ψ X

ϕ ∧ ψ X
∧2A

X, ϕ ψ

X ϕ→ ψ
→K

X ϕ ψ Y

ϕ→ ψ ∗X, Y
→A

Modal Connectives:

•jX ϕ

X �jϕ
�K

ϕ X

�jϕ •j X
�A

X ϕ

•jX 3−j ϕ
3−K

ϕ •j X

3−j ϕ X
3−A

Dual Modal Connectives:

U ∗ •j ∗ ϕ
U �−j ϕ

2−K
ϕ X

�−j ϕ ∗ •j ∗X
2−A

X ϕ

∗ •j ∗X 3jϕ
3K

∗ •j ∗ϕ U

3jϕ U
3A

where j ∈ G

Figure 5: Display Calculus UL: Logical Rules for Propositional and Modal Connectives
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Substructural Connectives:

X ϕ Y ψ

X ,i Y ϕ⊗i ψ
⊗i
K

ϕ ,i ψ X

ϕ⊗i ψ X
⊗i
A

X ,i ϕ ψ

X ϕ ⊃j ψ
⊃j
K

X ϕ ψ Y

ϕ ⊃j ψ ∗X ,j Y
⊃j
A

ϕ ,i X ψ

X ψ ⊂k ϕ
⊂k
K

ψ Y X ϕ

ψ ⊂k ϕ Y ,k ∗X
⊂k
A

Dual Substructural Connectives:

U ϕ ,i ψ

U ϕ�i ψ
�i
K

ϕ X ψ Y

ϕ�i ψ X ,i Y
�i
A

Y ψ ϕ X

∗X ,j Y ψ �j ϕ
�j
K

ψ ϕ ,k X

ψ �j ϕ X
�j
A

ϕ X Y ψ

Y ,k ∗X ϕ �k ψ
�k
K

ψ ϕ ,i X

ϕ �k ψ X
�k
A

where (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

Figure 6: Display Calculus UL: Logical Rules for Substructural Connectives
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Notation 3. Let Form0
t :=

{
¬,�j ,3j ,�

−
j ,3

−
j ,∨,∧ | j ∈ G

}
and Struc0t := {∗, •j, , 0 | j ∈ G}.

We will use the following logical connectives:

Formt := Form0
t ∪
{
∀i,∃i, ∀−i ,∃

−
i | i ∈ {0, 1, 2}

}
Struct := Struc0t ∪ {•i | i ∈ {0, 1, 2}}

If F ⊆ Formt, the structural connectives associated to F, denoted Struc(F), is the set of
structural connectives {∗, ,0 } together with {•j} if F ∩

{
�j ,3−j ,3j ,�

−
j | j ∈ G

}
6= ∅ and

with {•i} if F ∩
{
∀i,∃i, ∀−i ,∃

−
i | i ∈ {0, 1, 2}

}
6= ∅. We denote by S (P,F) the set of all

S (P,F,Struc(F))–structures.

5.1 Substructural and Restricted Tense Logics

In this section, we define substructural and restricted tense logics. Their semantics are based on
the class of pointed substructural frames viewed as Kripke frames. The core idea is to break the
ternary relation into two binary relations and to consider the relation v as a binary relation as
well. Then, any substructural frame can be viewed as a multi-modal Kripke frame whose three
of its binary relations satisfy specific properties.

Notation 4. For all substructural frames F = (P, S1, . . . Sm,R), we introduce the following
notations:

R1 := {(x, y) ∈ P × P | there is z ∈ P such that (x, y, z) ∈ R}
R2 := {(x, y) ∈ P × P | there is z ∈ P such that (z, x, y) ∈ R} .

Substructural Tense Logic

Definition 17 (Substructural tense logic). If F = (P, S1, . . . Sm,R) is a substructural frame, a
valuation for F is a function V : P→ 2P . A pointed multi-modal substructural model is a pair
((F, V ), w), where (F,w) is a pointed substructural frame and V is a valuation for F . It is also
denoted (M, w) whereM = (F, V ). The class of all pointed multi-modal substructural models
is denoted E−. We define a (canonical) tense logic based on E−.

• The valuation relation ⊆ E− × L (P,Formt) is defined inductively as follows. Let
(M, w) ∈ F be a pointed multi-modal substructural model and let ϕ ∈ L (P,Formt). The
truth conditions for the connectives ¬,∧,∨ are defined like in Definition 4. We define the
truth conditions for the other connectives of Formt as follows: for all j ∈ G and all
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i ∈ {1, 2},

M, w p iff p ∈ V (w)
M, w �jϕ iff for all v ∈ P such that wSjv,M, v ϕ
M, w 3jϕ iff there is v ∈ P such that wSjv andM, v ϕ
M, w �−j ϕ iff for all v ∈ P such that vSjw,M, v ϕ

M, w 3−j ϕ iff there is v ∈ P such that vSjw andM, v ϕ

M, w ∀iϕ iff for all v ∈ P such thatRiwv,M, v ϕ
M, w ∃iϕ iff there is v ∈ P such thatRiwv andM, v ϕ
M, w ∀−i ϕ iff for all v ∈ P such thatRivw,M, v ϕ
M, w ∃−i ϕ iff there is v ∈ P such thatRivw andM, v ϕ
M, w ∀0ϕ iff for all v ∈ P such that w v v,M, v ϕ
M, w ∃0ϕ iff there is v ∈ P such that w v v andM, v ϕ
M, w ∀−0 ϕ iff for all v ∈ P such that v v w,M, v ϕ
M, w ∃−0 ϕ iff there is v ∈ P such that v v w andM, v ϕ

• We extend the scope of the evaluation relation simultaneously in two different ways in
order to also relate points to S (P,Formt)–structures. The antecedent evaluation relation
A ⊆ E−×S (P,Formt) and the consequent evaluation relation K ⊆ E−×S (P,Formt)
are defined inductively as follows. The truth conditions for the formulas, the structural
connectives ∗, •j and ,i (where j ∈ G and i ∈ {0, 1, 2, 3}) are defined like in Definition
8. The truth conditions for the connectives •i are defined as follows: for all i ∈ {1, 2},

M, w
A •i X iff there is v ∈M such thatRivw

and it holds thatM, v
A
X;

M, w
K •i X iff for all v ∈M such thatRiwv,

it holds thatM, v
K
X

M, w
A •0 X iff there is v ∈M such that v v w

and it holds thatM, v
A
X;

M, w
K •0 X iff for all v ∈M such that w v v,

it holds thatM, v
K
X.

• We extend the scope of the relation to also relate points to consecutions of C (P,Formt)
like in Definition 8.

We extend these definitions to the class of pointed substructural frames. We define the
valuation relation ⊆ F ×L (P,Formt) as follows: if (F,w) is a pointed substructural frame
and if ϕ ∈ L (P,Formt), then

F,w ϕ iff for all valuations V , it holds that (F, V ), w ϕ.

The triple
(
L (P,Formt) ,F ,

)
is a (multi-modal) logic, called substructural tense logic. �

Note that a valuation is a function V : P → 2P which does not necessarily fulfill the
Persistence condition of Definition 3.
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Propositional Logic
�(p→ q)→ (�p→ �q) Distributivity
p→ �3−p Converse
p→ �−3p Converse′

∀0p→ p T0

∀0p→ ∀0∀0p 40

∃−1 p→ ∃2∃
−
2 ∃
−
1 p 3

∃2p→ ∃−1 ∃1∃2p 3′

∃−1 ∃
−
0 p→ ∃

−
0 ∃
−
1 p 2-

∃1∃−0 p→ ∃
−
0 ∃1p 2-′

∃−2 ∃
−
0 p→ ∃0∃

−
2 p 2+

∃2∃0p→ ∃−0 ∃2p 2+′

3−j ∃
−
0 p→ ∃03

−
j p 2+j

3j∃0p→ ∃−0 3jp 2+′j

ϕ

�ϕ
ϕ

�−ϕ
Necessitation

where (�,3−) ∈
{

(�j ,3−j ), (∀i,∃−i ) | j ∈ G, i ∈ {0, 1, 2}
}

,

(�−,3) ∈
{

(�−j ,3j), (∀−i , ∃i) | j ∈ G, i ∈ {0, 1, 2}
}

,
and j ∈ G.

Figure 7: Hilbert Calculus Kt
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Structural Rules:

•0X U

X U
T0

•0X U

•0 •0 X U
40

∗ •2 ∗ •2 •1X U

•1X U
3

•1 ∗ •1 •2 ∗X U

∗ •2 ∗X U
3′

∗ •0 ∗ •k X U

•k •0 X U
2+

•0 ∗ •k ∗X U

∗ •k •0 ∗X U
2+’

•0 •1 X U

•1 •0 X U
2-

∗ •1 ∗ •0 X U

•0 ∗ •1 ∗X U
2-’

Display Rules:

X •i Y

•iX Y
•i

Modal Connectives:

•iX ϕ

X ∀iϕ
∀K

ϕ X

∀iϕ •i X
∀A

X ϕ

•iX ∃−i ϕ
∃−K

ϕ •i X

∃−i ϕ X
∃−A

Dual Modal Connectives:

U ∗ •i ∗ ϕ
U ∀−i ϕ

∀−K
ϕ X

∀−i ϕ ∗ •i ∗X
∀−A

X ϕ

∗ •i ∗X ∃iϕ
∃K

∗ •i ∗ϕ U

∃iϕ U
∃A

where i ∈ {0, 1, 2} and k ∈ G ∪ {2}

Figure 8: Additional Inference Rules Σ0 for the Display Calculus Dt
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Definition 18 (Hilbert and display calculi for tense logic). The Hilbert calculus forL (P,Formt),
denoted Kt, is defined in Figure 7. The display calculus for C (P,Formt), denoted Dt, is the
display calculus containing the rules of Figure 4, 5 and 8 which mention only the logical con-
nectives of Formt or the corresponding structural connectives. �

Definition 19. A pointed substructural Kripke model (M, w) = (W,v, S1, . . . Sm,R1,R2, V, w)
is a pointed Kripke model where S1, . . . Sm are binary accessibility relations (as defined in Def-
inition 2) and v,R1,R2 are binary relations over W that moreover satisfy the following condi-
tions: for all w, v ∈ P ,

1. ifR1wv then there is u ∈ P such thatR2vu;

2. ifR2vw then there is u ∈ P such thatR1uv;

3. R1 is a negative two-place accessibility relation;

4. R2 is a positive two-place accessibility relation;

5. v is a reflexive, transitive and antisymmetric binary relation on P .

A pointed substructural Kripke frame is a pointed Kripke frame without valuation. The class of
all pointed substructural Kripke frames is denotedK−. The class of pointed substructural Kripke
frames whose relation v is only reflexive and transitive (and not necessarily antisymmetric) is
denoted KS4. The language L (P,Formt) is interpreted canonically over K− by means of a
valuation relation, also denoted . �

Lemma 3. Let F0 be a class of pointed substructural frames and let K−0 be its (canonically) as-
sociated class of pointed substructural Kripke frames. Then, the sets of validities of (C (P,Formt) ,
K−0 , ) and (C (P,Formt) ,F0, ) are the same.

Proof. It is due to the fact that any pointed substructural Kripke model can be mapped to a
pointed substructural frame satisfying the same formulas of L (P,Formt), and vice versa.

Lemma 4. LetKS40 be a class of pointed substructural Kripke frames whose relationv is reflex-
ive and transitive but not necessarily antisymmetric and which is defined by a set St of primitive
formulas of L (P,Formt) or LFOL(R1,R2) (see Definition 32) or by a set of analytic inference
rules of Ct. Let K−0 be the subclass of frames of KS40 whose relation v is also antisymmet-
ric (and therefore a partial order). Then, the sets of validities of

(
C (P,Formt) ,KS40 ,

)
and(

C (P,Formt) ,K−0 ,
)

are the same.

Proof. Since the sets of validities with respect to pointed frames or pointed models coincide, it
suffices to prove that every pointed model of KS40 can be transfomed into a pointed model of K−0
that satisfy the same formulas of L (P,Formt). We resort to the techniques of unraveling [11,
Section 4.5] and product update. Because we deal with tense logics, we need to make explicit
the converse relations v−, S−1 , . . . , S

−
m,R−1 and R−2 . Adapted to our setting, the unraveling of

(M, w) = (W,v, S1, . . . Sm,R1,R2,v−, S−1 , . . . , S
−
m,R−1 ,R

−
2 , V, w) is the pointed Kripke

model
(
→
M,

→
w

)
:=

(
→
W,
→
v,
→
S1, . . .

→
Sm,

→
R1,

→
R2,

→
V ,
→
w

)
defined as follows:
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•
→
W is the set of sequences of points (w,w1, . . . , wn), denoted

→
w, such that w1, . . . , wn ∈

W and there areR1, . . . , Rn ∈
{
v, S1, . . . , Sm,R1,R2,v−, S−1 , . . . , S

−
m,R−1 ,R

−
2

}
such

that wR1w1R2 . . . Rnwn;

• for all R ∈
{
v, S1, . . . , Sm,R1,R2,v−, S−1 , . . . , S

−
m,R−1 ,R

−
2

}
, we set

→
R
→
w
→
v when

there is some v ∈W such that Rwnv (where
→
w = (w1, . . . , wn));

•
→
V (p) :=

{
(w,w1, . . . , wn) ∈

→
W | wn ∈ V (p)

}
;

• →w := (w).

We already know that (
→
M,

→
w) satisfies the same formulas of L (P,Formt) as (M, w) by [11,

Lemma 4.53] and [11, Proposition 2.14]. Yet, this is not over. On the one hand, the binary

relation
→
v of this unraveled model is reflexive, transitive and antisymmetric. On the other hand,

the other conditions of the other relations may not be necessarily preserved by the unraveling
(they are spelled out in Definition 19). However, these other conditions are satisfied by the
original pointed Kripke model (M, w). Hence, we define a third Kripke model (M′, w′) =
(W ′,v′, S′1, . . . S′m,R′1,R′2, V ′, w′) which combines all the desired conditions in a single model
by means of a product update, as follows:

• W ′ :=
{(

x,
→
x
)
| x ∈W,→x ∈

→
W and for all p ∈ P, x ∈ V (p) iff

→
x ∈

→
V (p)

}
;

• for all R ∈
{
v, S1, . . . , Sm,R1,R2,v−, S−1 , . . . , S

−
m,R−1 ,R

−
2

}
, we set R′(x,

→
x)(y,

→
y )

when Rxy and
→
R
→
x
→
y ;

• (x,
→
x) ∈ V ′(p) iff x ∈ V (p).

• w′ := (w,
→
w).

Now, we check that the conditions of Definition 19 are indeed fulfilled. Clearly, v′′ is a
partial order (reflexive, transitive and antisymmetric). LetR be a positive two-place accessibility

relation of {S1, . . . , Sm,R2}. Assume that R′(w,
→
w)(v,

→
v ) and (v,

→
v ) v′ (v′,

→
v′). Then we

have both that Rwv, v v v′ (∗) and
→
R
→
w
→
v ,
→
v
→
v
→
v′, by definition of R′ and v′. By definition

of (∗) and because R is positive, there is w′ ∈ W such that w′ v w and Rw′v′. Let us

define
→
w′ := (

→
w,w′) and let us consider the point (w′,

→
w′), which belongs to W ′ by definition.

Because Rw′v′, we have that
→
R
→
w′
→
v′ and therefore also that R′(w′,

→
w′)(v′,

→
v′) by definition of

R′. Moreover, because w′ v w, we have that
→
w′
→
v →w and therefore also that (w′,

→
w′) v′ (w,→w)

by definition ofv′. This partly proves thatR′ is positive, we need to prove the second part of the

definition. Assume that R′(w,
→
w)(v,

→
v ) and (w′,

→
w′) v′ (w,

→
w). Then we have both that Rwv,

w′ v w (∗) and
→
R
→
w
→
v ,
→
w′
→
v →w, by definition of R′ and v′. By definition of (∗) and because
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R is positive, there is v′ ∈ W such that v v v′ and Rw′v′. Let us define
→
v′ := (

→
v , v′) and let

us consider the point (v′,
→
v′), which belongs to W ′ by definition. Because Rw′v′, we have that

→
R′
→
w′
→
v′ and therefore also that R′(w′,

→
w′)(v′,

→
v′) by definition of R′. Moreover, because v v v′,

we have that
→
v
→
v
→
v′ and therefore also that (v,

→
v ) v′ (v′,

→
v′) by definition of v′. This proves

the second part of the definition of a positive two-place accessibility relation. The proof thatR′1
is a negative two-place accessiblity relation is completely similar.

Theorem 5 (Soundness and completeness). The proof systems Kt and Dt are sound and complete
for the logics

(
L (P,Formt) ,F ,

)
and (C (P,Formt) ,F , ) respectively.

Proof. The result follows from the fact that the additional axioms T0, 40, 3, 3’, 2+, 2+’, 2+j ,
2+j’, 2- and 2-’ are in fact primitive formulas of L (P,Formt). Their first-order translations
correspond to the conditions of Definition 19, except for the condition of antisymmetry. Their
corresponding inference rules obtained by applying Kracht’s algorithm are the structural rules
of Dt. Then, by [22, Theorems 16-17], DLMt + Σ0 is sound and complete for the logic
(C (P,Formt) ,KS4, ), where DLMt is the multi-modal version based on C (P,Formt) of
the display calculus DLM defined in [22]. However, by Lemma 4, the sets of validities of(
C (P,Formt) ,KS4,

)
and

(
C (P,Formt) ,K−,

)
are the same, and, by Lemma 3, the sets

of validities of (C (P,Formt) ,K−, ) and (C (P,Formt) ,F , ) are also the same. So,
DLMt + Σ0 is sound and complete for the logic (C (P,Formt) ,F , ). Since every infer-
ence rule of DLMt + Σ0 is derivable in Dt and vice versa, we have that Dt is also sound and
complete for the logic (C (P,Formt) ,F , ).

Restricted Tense Logic

Definition 20 (Restricted tense logic). The restricted tense language Lt and the restricted tense
sets of structures SAt and SKt are defined inductively by the following grammars in BNF:

Lt : ϕ ::= ∃−0 p | ¬ϕ | (ϕ ∧ ϕ) | 3jϕ | 3−j ϕ |
∃1(ϕ ∧ ∃2ϕ) | (∃−1 ϕ ∧ ∃2ϕ) | ∃−2 (ϕ ∧ ∃−1 ϕ)

SAt : X ::= ϕ | ∗X | (X, X) | •iX |
•2(•1X, X) | (•1X, ∗ •2 ∗X) | ∗ •1 ∗(X, ∗ •2 ∗X)

SKt : Y ::= ϕ | ∗Y | (Y , Y ) | •iX |
•1(Y , •2 Y ) | (∗ •1 ∗Y , •2 Y ) | ∗ •2 ∗(Y , ∗ •1 ∗ Y )

where j ranges over G and, in SAt and SKt , ϕ ranges over Lt and i ranges over G ∪ {0, 1, 2}.
We denote by Ct the set of consecutions of the form X Y , X or Y , where X ∈ SAt and
Y ∈ SKt . The triple (Ct,F , ) is a logic, called the restricted tense logic. �

5.2 Update Logic and Restricted Tense Logic: Equal Expressiveness

We will use extensively the following translations τ1 and τ−1 between update and tense formulas.
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Definition 21 (Translations τ1 and τ−1 : formulas). We define the mapping τ1 : L (P,Form) →
Lt inductively as follows:

τ1(p) := ∃−0 p

τ1(ϕ→ ψ) := ¬(τ1(ϕ) ∧ ¬τ1(ψ)) τ1(¬ϕ) := ¬τ1(ϕ)
τ1(ϕ ∧ ψ) := τ1(ϕ) ∧ τ1(ψ) τ1(ϕ ∨ ψ) := ¬(¬τ1(ϕ) ∧ ¬τ1(ψ))

τ1(�jϕ) := �jτ1(ϕ) τ1(3jϕ) := 3jτ1(ϕ)
τ1(3−j ϕ) := 3−j τ1(ϕ) τ1(�

−
j ϕ) := �−j τ1(ϕ)

τ1(χ⊗1 ψ) := ∃1(τ1(χ) ∧ ∃2τ1(ψ)) τ1(χ�1 ψ) := ¬∃1(¬τ1(χ) ∧ ∃2¬τ1(ψ))
τ1(χ ⊃1 ψ) := ¬∃1(τ1(χ) ∧ ∃2¬τ1(ψ)) τ1(χ �1 ψ) := ∃1(¬τ1(χ) ∧ ∃2τ1(ψ))
τ1(χ ⊂1 ψ) := ¬∃1(¬τ1(χ) ∧ ∃2τ1(ψ)) τ1(χ �1 ψ) := ∃1(τ1(χ) ∧ ∃2¬τ1(ψ))

τ1(ϕ⊗3 χ) := ∃−2 (τ1(χ) ∧ ∃−1 τ1(ϕ)) τ1(ϕ�3 χ) := ¬∃−2 (¬τ1(χ) ∧ ∃−1 ¬τ1(ϕ))
τ1(ϕ ⊂3 χ) := ¬∃−2 (τ1(χ) ∧ ∃−1 ¬τ1(ϕ)) τ1(ϕ �3 χ) := ∃−2 (¬τ1(χ) ∧ ∃−1 τ1(ϕ))
τ1(ϕ ⊃3 χ) := ¬∃−2 (¬τ1(χ) ∧ ∃−1 τ1(ϕ)) τ1(ϕ �3 χ) := ∃−2 (τ1(χ) ∧ ∃−1 ¬τ1(ϕ))

τ1(ψ ⊗2 ϕ) := ∃−1 τ1(ϕ) ∧ ∃2τ1(ψ) τ1(ψ �2 ϕ) := ¬(∃−1 ¬τ1(ϕ) ∧ ∃2¬τ1(ψ))
τ1(ψ ⊂2 ϕ) := ¬(∃−1 ¬τ1(ϕ) ∧ ∃2τ1(ψ)) τ1(ψ �2 ϕ) := ∃−1 τ1(ϕ) ∧ ∃2¬τ1(ψ)
τ1(ψ ⊃2 ϕ) := ¬(∃−1 τ1(ϕ) ∧ ∃2¬τ1(ψ)) τ1(ψ �2 ϕ) := ∃−1 ¬τ1(ϕ) ∧ ∃2τ1(ψ)

We define the mapping τ−1 : Lt → L (P,Form) inductively as follows:

τ−1 (∃−0 p) := p

τ−1 (ϕ ∧ ψ) := τ−1 (ϕ) ∧ τ−1 (ψ) τ−1 (¬ϕ) := ¬τ−1 (ϕ)

τ−1 (�jϕ) := �jτ
−
1 (ϕ) τ−1 (3−j ϕ) := 3−j τ

−
1 (ϕ)

τ−1 (∃1(ϕ ∧ ∃2ψ)) := τ−1 (ϕ)⊗1 τ
−
1 (ψ) τ−1 (∃−1 ϕ ∧ ∃2ψ) := τ−1 (ϕ)⊗2 τ

−
1 (ψ)

τ−1 (∃−2 (ϕ ∧ ∃−1 ϕ)) := τ−1 (ϕ)⊗3 τ
−
1 (ψ)

�

Remark 1. If we deal with flat point sets in substructural frames (that is with point sets of the
form (P,=)) then the translation τ1 for propositional letters is simply τ1(p) := p. In that case,
the tense modalities ∃0,∃−0 ,∀0,∀

−
0 can be removed from our translations.

Proposition 6 (Equal expressiveness of update logic and restricted tense logic: formulas). Re-
stricted tense logic is as expressive as update logic. More precisely, for all pointed substructural
frames (F,w) ∈ F and all ϕ ∈ L (P,Form), all ϕt ∈ Lt, it holds that

F,w ϕ iff F,w τ1(ϕ) F,w ϕt iff F,w τ−1 (ϕt) (3)
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Hence, for all ϕ ∈ L (P,Form) and all ϕt ∈ Lt,

τ−1 (τ1 (ϕ)) = ϕ τ1
(
τ−1 (ϕt)

)
= ϕt

Proof. We only prove Expression (3). Every valuation V of a substructural frame F can be
extended into an interpretation V v of that very substructural frame F such that for all ϕ ∈
L (P,Form), (F, V ), w τ1(ϕ) iff (F, V v), w τ1(ϕ) (∗). Indeed, if V is such a valua-
tion, it suffices to define V v(p) for all p ∈ P as follows: V v(p) := {w ∈ P | there is v ∈
P such that v v w and v ∈ V (p)}. Moreover, for all interpretation functions I of F (which is
also a valuation of F ), we can easily prove that for all ϕ ∈ L (P,Form), (F, I), w τ1(ϕ) iff
(F, I), w ϕ (∗∗). Thus, we have that F,w τ1(ϕ) iff for all valuations V , (F, V ), w τ1(ϕ)
by definition, iff for all interpretations I we have that (F, I), w τ1(ϕ) by (∗), iff for all inter-
pretations V v we have that (F, V v), w ϕ by (∗∗), iff F,w ϕ by definition. This proves the
first item of Expression (3), the second item being proved similarly.

Then, we lift these translations τ1 and τ−1 to structures and consecutions.

Definition 22 (Translations τ1 and τ−1 : structures and consecutions). We define the translations
t1 : S (P,Form)→ SAt and t2 : S (P,Form)→ SKt inductively as follows: for all j ∈ G,

t1(ϕ) := τ1(ϕ) t2(ϕ) := τ1(ϕ)
t1(•jX) := •jt1(X) t2(•jX) := •jt2(X)
t1(∗X) := ∗t2(X) t2(∗X) := ∗t1(X)
t1(X, Y ) := t1(X), t1(Y ) t2(X, Y ) := t2(X), t2(Y )
t1(X ,1 Y ) := ∗ •1 ∗(t1(X), ∗ •2 ∗ t1(Z)) t2(X ,1 Y ) := •1(t2(X), •2 t2(Y ))
t1(X ,2 Y ) := •1t1(X), ∗ •2 ∗ t1(Y ) t2(X ,2 Y ) := ∗ •1 ∗t2(X), •2 t2(Y )
t1(X ,3 Y ) := •2(•1t1(X), t1(Y )) t2(X ,3 Y ) := ∗ •2 ∗(t2(Y ), ∗ •1 ∗ t2(X))

We extend the translations to consecutions. We define the translation τ1 : C (P,Form) → Ct as
follows: for all X Y ∈ C (P,Form), we set

τ1(X Y ) := t1(X) t2(Y ).

We define the translations t−1 : SAt → S (P,Form) and t−2 : SKt → S (P,Form) inductively
as follows: for all j ∈ G,

t−1 (ϕ) := τ−1 (ϕ) t−2 (ϕ) := τ−1 (ϕ)
t−1 (∗X) := ∗t−2 (X) t−2 (∗X) := ∗t−1 (X)
t−1 (•jX) := •jt

−
1 (X) t−2 (•jX) := •jt

−
2 (X)

t−1 (X, Y ) := t−1 (X), t−1 (Y ) t−2 (X, Y ) := t−2 (X), t−2 (Y )
t−1 (•2(•1X, Y )) := t−1 (X) ,3 t

−
1 (Y ) t−2 (∗ •2 ∗(X, ∗ •1 ∗ Y )) := t−2 (X) ,3 t

−
2 (Y )

t−1 (•1X, ∗ •2 ∗ Y ) := t−1 (X) ,2 t
−
1 (Y ) t−2 (∗ •1 ∗X, •2 Y ) := t−2 (X) ,2 t

−
2 (Y )

t−1 (∗ •1 ∗(X, ∗ •2 ∗ Y )) := t−1 (X) ,1 t
−
1 (Y ) t−2 (•1(X, •2 Y )) := t−2 (X) ,1 t

−
2 (Y )

We extend the translations to consecutions. We define the translation τ−1 : Ct → C (P,Form) as
follows: for all X Y ∈ Ct, we set

τ−1 (X Y ) := t−1 (X) t−2 (Y ). �
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Proposition 7 (Equal expressiveness of update logic and restricted tense logic).

• We have that
(
SAt ,F ,

A ) ≡ (S(P,Form),F , A
)

and
(
SKt ,F ,

K ) ≡ (S(P,Form),F , K
)
.

More precisely, for all pointed substructural frames (F,w) and all X ∈ S(P,Form), all
Xt ∈ SAt , all Yt ∈ SKt , it holds that

F,w A X iff F,w
A
t1(X) F,w

A
Xt iff F,w A t−1 (Xt)

F,w K X iff F,w
K
t1(X) F,w

K
Yt iff F,w K t−1 (Yt)

• We have that
(
Ct,F ,

)
≡
(
C (P,Form) ,F ,

)
. More precisely, for all pointed sub-

structural frames (F,w) and all X Y ∈ C (P,Form), all Xt Yt ∈ C (P,Formt), it
holds that

F,w X Y iff F,w τ1(X Y ) F,w Xt Yt iff F,w τ−1 (Xt Yt)

Proof. By induction on the structures X ∈ S(P,Form) and Xt ∈ SAt , Yt ∈ SKt and on the
consecutionsX Y ∈ C (P,Form) andXt Yt ∈ Ct, using Proposition 6 for the base case.

Finally, we lift these translations τ1 and τ−1 to inference rules.

Definition 23 (Translations τ1 and τ−1 : inference rules). LetR be an inference rule in C (P,Form)
and letRt be an inference rule in C (P,Formt). We define the inference rules τ1(R) in C (P,Formt)
and τ1(R) in C (P,Form) as follow:

τ1(R) := {(τ1(C1), . . . , τ1(Cl), τ1(Cl+1)) | (C1, . . . , Cl, Cl+1) ∈ R}
τ−1 (Rt) :=

{(
τ−1 (C1), . . . , τ

−
1 (Cl), τ

−
1 (Cl+1)

)
| (C1, . . . , Cl, Cl+1) ∈ Rt

}
.

If Σ is a set of inference rules, then τ1(Σ) := {τ1(R) | R ∈ Σ} and τ−1 (Σ) :=
{
τ−1 (R) | R ∈ Σ

}
.
�

Example 4. Below are the display rules dr1,dr2,dr3,dr4 of UL, for (i, j, k) = (3, 1, 2), and
their respective translations τ1(dr1), τ1(dr2), τ1(dr3) and τ1(dr4) in Dt.

X ,3 Y Z

X ∗ Y ,1 Z
dr1

Y Z ,2 ∗X
dr2

Z X ,3 Y

∗Y ,1 Z X
dr3

Z ,2 ∗X Y
dr4

•2(•1X, Y ) Z

X •1 (∗Y , •2 Z)
τ1(dr1)

Y •2 Z, ∗ •1X
τ1(dr2)

Z ∗ •2 ∗ Y , ∗ •1 ∗X
∗ •1 ∗(∗Y , ∗ •2 ∗ Z) X

τ1(dr3)

•1 ∗X, ∗ •2 ∗ Z Y
τ1(dr4)

�

Proposition 8. Let R be an analytic inference rule in C (P,Form) and let Rt be an inference
rule in Ct, both in the special form of Expression (9). Then,

τ−1 (τ1 (R)) ≡ R τ1
(
τ−1 (Rt)

)
= Rt

Proof. It follows from Propositions 6 and 7.
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6 Correspondence Theory for Tense Logics

In this section, we recall the main results of correspondence theory adapted to our (restricted)
substructural tense logic. Roughly speaking, correspondence theory investigates to what extent
specific properties of accessibility relations can be reformulated in terms of the validity of spe-
cific formulas. Correspondence theory addresses the following kinds of questions: when does
the truth of a given (modal or tense) formula in a frame corresponds to a first-order property
in this frame ? (Sahlqvist correspondence theorem); and when does the validity of a (modal or
tense) formula on a class of frames corresponds to the fact that this class of frames satisfies a
specific first-order property (and vice versa) ? (Sahlqvist and Kracht theorems) (see [11, 49]
for more details on correspondence theory for modal and tense logic). Sahlqvist and inductive
formulas are modal formulas which have a first-order correspondent (every inductive formula
is equivalent to a Sahlqvist formula with converse tense modality). These first-order correspon-
dents are called Kracht formulas (see [11, Section 3.6] for a formal definition).

6.1 Preliminary Definitions

Definition 24 (Languages LFOL(R1,R2), LSOL(R1,R2) and LFOL(R), LSOL(R)).

• The (binary) first-order substructural frame language, denotedLFOL(R) (resp.LFOL(R1,R2)),
is the first-order language that has the identity symbol withm+1 binary relations S1, . . . ,
Sm,v and a ternary relation R (resp. with m + 3 binary relations S1, . . . , Sm, R1,R2

and v).

• The (binary) second-order substructural frame language, denotedLSOL(R) (resp.LSOL(R1,R2)),
is the second-order language obtained by augmenting LFOL(R) (resp. LFOL(R1,R2))
with a collection of monadic predicate variables P1, P2, . . . associated to each p1, p2, . . . ∈
P.

The satisfaction relations FOL and SOL for the languages LFOL(R1,R2), LFOL(R) and
LSOL(R1,R2), LSOL(R) respectively on the class of all substructural frames F− are defined as
usual (see [31] for example). �

Notation 5. Like in [22], we introduce the following abbreviations: for all k ∈ G ∪ {1, 2},

(∀y Bk x)α(y) := ∀y(Skxy → α(y)) (∀y Ck x)α(y) := ∀y(Skyx→ α(y))

(∃y Bk x)α(y) := ∃y(Skxy ∧ α(y)) (∃y Ck x)α(y) := ∃y(Skyx ∧ α(y))

(∀y B0 x)α(y) := ∀y(x v y → α(y)) (∀y C0 x)α(y) := ∀y(y v x→ α(y))

(∃y B0 x)α(y) := ∃y(x v y ∧ α(y)) (∃y C0 x)α(y) := ∃y(y v x ∧ α(y))

Besides, we also introduce the following abbreviations: for all i ∈ {1, 2, 3},

Rixyz iff σi(x, y, z) ∈ R (4)

(∀yz Bi x)α(y, z) := ∀yz(Rixyz → α(y, z)) (∃yz Bi x)α(y, z) := ∃yz(Rixyz ∧ α(y, z))

31



We call the constructs (∀y Bk x), (∀y Ck x), (∀yz Bi x) and (∃y Bk x), (∃y Ck x), (∃yz Bi
x) restricted universal (resp. existential) quantifiers (where k ∈ G ∪ {0, 1, 2} and i ∈ {1, 2, 3}).
They are generally denoted (∀y B x), (∀y C x), (∀yz B x), (∀yz C x) and (∃yz B x),
(∃y C x), (∃y B x), (∃yz C x).

Remark 2. The restricted quantifiers (∀y B x), (∀y C x) and (∃y B x), (∃y C x) of Notation
5 could be defined like our notations (∀yz B x), (∀yz C x) and (∃yz B x), (∃yz C x) if we
introduced the following notations: for all i ∈ {1, 2},

Sixy iff τi(x, y) ∈ S (5)

where τ1(x, y) = (x, y) and τ2(x, y) = (y, x). Expression 5 is the binary counterpart of Ex-
pression 4. Now, let us define for all i ∈ {1, 2},

(∀y Bi x)α(y) := ∀y(Sixy → α(y)) (∃y Bi x)α(y) := ∃y(Sixy ∧ α(y)).

Then we have that (∀y B1 x)α(y) = (∀y B x)α(y), (∀y B2 x)α(y) = (∀y C x)α(y) and
(∃y B1 x)α(y) = (∃y B x)α(y), (∃y B2 x)α(y) = (∃y C x)α(y).

Definition 25 (Definability and local substructural frame correspondence). Let (L,F0, ) be
a logic defined on a class F0 of substructural frames. Let ϕ ∈ L, let Σ be a set of inference
rules in L and let Θ(x) be a (set of) formula(s) of LFOL(R1,R2) (or of LFOL(R)) such that x
is supposed to be the only free variable of Θ.

• We say that Θ(x) defines a class of pointed substructural frames F0 or that F0 is defined
by Θ(x) when the following holds:

F0 =
{

(F,w) | (F,w) ∈ F and F FOLΘ[w]
}

• We say that ϕ (resp. Σ) and Θ(x) are local substructural frame correspondents when for
all pointed substructural frames (F,w) ∈ F ,

F,w ϕ iff F FOLΘ[w]

F,w Σ iff F FOLΘ[w]

where F FOLΘ[w] means that Θ(x) is interpreted in F with respect to an assignment that
assigns w to the free variable x. �

6.2 Correspondence Theory for Substructural Tense Logic

Correspondence for Axioms

In this section, we deal with the problem of how specific properties of accessibility relations
can be expressed in terms of the validity of specific kinds of formulas. Every formula of
L (P,Formt) can be translated in LSOL(R1,R2) by the standard translation:
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Definition 26 (Standard translation). For all (free) variables x, we define the standard transla-
tion STx : L (P,Formt)→ LSOL(R1,R2) inductively as follows:

STx(p) := P (x)
STx(ϕ ∧ ψ) := STx(ϕ) ∧ STx(ψ)
STx(¬ϕ) := ¬STx(ϕ)
STx(3ϕ) := (∃y B x)STy(ϕ)
STx(�ϕ) := (∀y B x)STy(ϕ)
STx(3−ϕ) := (∃y C x)STy(ϕ)
STx(�−ϕ) := (∀y C x)STy(ϕ)

where (�,3,B) ∈ {(�j ,3j ,Bj), (∀i,∃i,Bi) | j ∈ G, i ∈ {0, 1, 2}}, (�−,3−,C) ∈ {(�−j ,3
−
j ,Cj

), (∀−i ,∃
−
i ,Ci) | j ∈ G, i ∈ {0, 1, 2}} and P is a monadic predicate variable. �

Then, one can easily show that if ϕ ∈ L (P,Formt) holds in a pointed substructural frame
(F,w), then STx(ϕ) holds as well in (F,w):

Fact 1. Let (F,w) be a pointed substructural frame and let ϕ ∈ L (P,Formt). Then,

F,w ϕ iff F FOLSTx(ϕ)[w]

where F FOLSTx(ϕ)[w] means that STx(ϕ) is interpreted in F with respect to an assignment
that assigns w to the free variable x.

One would want instead to have an equivalent first-order formula of LFOL(R1,R2) and not
a second-order formula of LSOL(R1,R2). This cannot be the case in general and we therefore
introduce a fragment of the formulas of L (P,Formt) called the Sahlqvist fragment which con-
sists of formulas for which we can always find a first-order equivalent. Larger fragments exist,
such as the class of inductive formulas [19], but they will not be needed here.

Definition 27 (Boxed atom, positive and negative formula, Sahlqvist formula).

• A boxed atom is a formula of the form L1 . . . Lkp where L1, . . . , Lk ∈ {�j ,�−j , ∀i, ∀
−
i |

j ∈ G, i ∈ {0, 1, 2}} (they are not necessarily distinct). In the case where k = 0, the
boxed atom L1 . . . Lkp is just the proposition letter p.

• An occurrence of a proposition letter p in a formula of L (P,Formt) is a positive occur-
rence if it is in the scope of an even number of negation signs; it is a negative occurrence
if it is in the scope of an odd number of negation signs. A formula of L (P,Formt) is
positive in p (negative in p) if all occurrences of p in ϕ are positive (negative). A formula
of L (P,Formt) is positive (negative) if it is positive (negative) in all proposition letters
occurring in it.

• A Sahlqvist antecedent is a formula built up from boxed atoms, negative formulas and the
connectives

{
>,⊥,3j ,3−j , ∃i, ∃

−
i | j ∈ G, i ∈ {0, 1, 2}

}
of Formt. A Sahlqvist impli-

cation is an implication ϕ→ ψ in which ψ is a positive formula of L (P,Formt) and ϕ is
a Sahlqvist antecedent of L (P,Formt). A Sahlqvist formula of L (P,Formt) is a formula
built up from Sahlqvist implications by freely applying boxes and conjunctions, and by
applying disjunctions only between formulas that do not share any proposition letters. �
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Definition 28 (Translations τ3 and τ−3 ). The Sahlqvist algorithm for Sahlqvist formulas of the
form ϕ→ ψ, denoted τ3, is defined below. The Kracht algorithm, denoted τ−3 , can be found in
[11, p. 169–178].

Step 0: Translate the formula ϕ→ ψ in LSOL(R1,R2) (Definition 26).

Step 1: Pull out diamonds and pre-process.

We can rewrite the second-order translation of ϕ → ψ into a conjonction of formulas of
the form

∀P1 . . . ∀Pn∀x1 . . . ∀xm(REL ∧BOXAT ∧NEG→ STx(ψ)) (6)

whereREL is a conjunction of atomic first-order statements of the formRxy correspond-
ing to occurrences of diamonds and other existential modalities,BOXAT is a conjunction
of (translations of) boxed atoms, and NEG is a conjunction of (translation of) negative
formulas. We must show that each formula of the form displayed in Formula (6) has a
first-order equivalent. This is done by using the equivalence

((α ∧NEG)→ β)↔ (α→ (β ∨ ¬NEG))

where ¬NEG is the positive formula that arises by negating the negative formula NEG.
Using this equivalence we can rewrite Formula (6) to obtain a formula of the form

∀P1 . . . ∀Pn∀x1 . . . ∀xm(REL ∧BOXAT → POS) (7)

Step 2: Read off instances.

Let P be a unary predicate occurring in Formula (7), and let π1(xi1), . . . , πk(xik) be
all the (translations of the) boxed atoms in the antecedent of Formula (7) in which the
predicate P occurs: πj(xij ) := �j1 . . .�jlp. Observe that every πj(xij ) is of the form
∀y(Rβjxijy → Py), where βj := j1 . . . jl and Rβjxy is an abbreviation for

∃yj1(Rj1xyj1 ∧ ∃yj2(Rj2yj1yj2 ∧ . . . ∧ ∃yjl−1(Rjl−1yjl−2yjl−1 ∧Rjlyjl−1y) . . .))

If l = 0, β is the empty sequence ε; in this case the formula Rεxijy should be read
as xij = y. Let Pyik+1

, . . . , Pyik+l
be all the occurrences of the predicate P in the

antecedent of Formula (7). Define

σ(P ) := λu.(Rβ1xi1u ∨ . . . ∨Rβkxiku ∨ yik+1
= u ∨ . . . ∨ yk+l = u)

σ(P1), . . . , σ(Pn) form the minimal instances making the antecedent BOXAT true.

We can assume that every unary predicate P that occurs in the consequent of Formula (7)
also occurs in the antecedent of Formula (7). Otherwise Formula (7) is positive and we
can substitute λu.u 6= u for P : we will obtain an equivalent formula without occurrences
of P .
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Step 3: Instantiating.

We now use the formulas of the form σ(P ) found in Step 2 as instantiations; we substitute
σ(P ) for each occurrence of P in the first-order matrix of Formula (7). This results in a
formula of the form

[σ(P1)/P1, . . . , σ(Pn)/Pn]∀x1 . . . ∀xm(REL ∧BOXAT → POS).

Now, there are no occurrences of monadic second-order variables in REL. Furthermore,
observe that by our choice of the substitution instances σ(P ), the formula [σ(P1)/P1], . . . ,
σ(Pn)/Pn]BOXAT will be trivially true. So after carrying out these substitutions we end
up with a formula that is equivalent to one of the form

∀x1 . . . ∀xm(REL→ [σ(P1)/P1, . . . , σ(Pn)/Pn]POS). (8)

Formula (8) is a first-order formula involving only = and the relation symbol S. It remains
to show that Formula (8) is equivalent to Formula (6). The implication from Formula
(6) to Formula (8) is simply an instantiation. For the implication from Formula (8) to
Formula (6), letM be a substructural model and assume thatM ∀x1 . . . ∀xm(REL→
[σ(P1)/P1, . . . , σ(Pn)/Pn]POS) andM REL ∧BOXAT [ww1 . . . wm]. We need to
show thatM POS[ww1 . . . wm]. First of all, it follows from the above assumptions that
M [σ(P1)/P1, . . . , σ(Pn)/Pn]POS[ww1 . . . wm]. As POS is positive, it is upwards
monotone in all unary predicates occurring in it, so it suffices to show that for all P ∈
{P1, . . . , Pn}, it holds that M ∀y(σ(P )(y) → Py)[ww1 . . . wm]. If M σ(P )(y),
then either (1)M Rβjxijy or (2)M yij = y, and we have to show thatM Py.
In the first case (1), this entails thatM ∀y(Rβjxijy → Py) also holds. Hence, we can
conclude thatM Py. In the second case (2), becauseM Pyij , yij = y andM is a
substructural model, we have thatM Py. �

Theorem 9 (Correspondence). Let ϕ ∈ L (P,Formt) be a Sahlqvist formula. Then, ϕ and
τ3 (ϕ) are local substructural frame correspondents.

Proof. It suffices to apply the Sahlqvist algorithm to ϕ. The result then follows from [11,
Th. 3.54].

Theorem 10 (Canonicity). Let S ⊆ L (P,Formt) be a set of Sahlqvist formulas. Then, the proof
system Kt + Σ is sound and strongly complete for the logic

(
L (P,Formt) ,F0,

)
, where F0

is the class of pointed substructural frames defined by the set of first-order formulas τ3 (S) :=
{τ3 (ϕ) | ϕ ∈ S}.

Proof. The result follows from [11, Th. 4.42].

Example 5. We did not impose any particular restriction upon the accessibility relation Sj .
So, there is no reason that it captures the notion of knowledge and belief as they are usually
represented in epistemic and doxastic logics [1, 15, 32]. Usually, the notion of knowledge is
captured by the fact that the epistemic accessibility relations Sj are (at least) reflexive and tran-
sitive. We say that a substructural frame F is transitive when for all accessibility relations Sj ,
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for all w, v, u ∈ F , if Sjwv and Sjvu then Sjwu. We say that F is reflexive when for all acces-
sibility relations Sj , for all w ∈ F , Sjww. We denote by F4 (resp. FT) the class of transitive
(resp. reflexive and transitive) pointed substructural frames. Let us consider the following axiom
schemata: for all j ∈ G,

3j3jϕ→ 3jϕ 4 ϕ→ 3jϕ T

Axiom schemata 4 and T are Sahlqvist axioms. Their first-order translations are ∀w∀v∀u(Sjwv∧
Sjvu→ Sjwu) and ∀wSjww. So, by Theorem 10, the Hilbert calculus Kt+{4} (resp. Kt+{T})
is sound and strongly complete for

(
L (P,Formt) ,F4,

)
(resp.

(
L (P,Formt) ,FT,

)
). �

Correspondence for Inference Rules

We recall the main results of Kracht [22], adapted to our substructural tense logic.

Definition 29 (Primitive formulas of L (P,Formt)). A primitive formula of L (P,Formt) is a
formula ofL (P,Formt) of the formϕ→ ψ, whereϕ,ψ ∈ L (P,F) with F :=

{
>,∧,∨,3j ,3−j ,

∃i,∃−i | j ∈ G, i ∈ {1, 2}
}

and such that ϕ contains each propositional variable at most once.
�

Note that a primitive tense formula is a Sahlqvist formula.

Definition 30 (Translations τ2 and τ−2 ). Let R be an analytic inference rule in C (P,Form). It
can be represented in this special form (U, V, U1, . . . , Un can be empty structures):

U1 V . . . Un V

U V
R

(9)

We define the primitive formula of L (P,Formt) associated toR as follows where each structure
variable in U,U1, . . . , Un has been uniformly replaced by a propositional letter:

τ2 (R) := t1(U)→ t1 (U1) ∨ . . . ∨ t1 (Un)

The converse algorithm τ−2 can be found in [22, p. 106-107]. It transforms any primitive
formula of L (P,Formt) into an analytic inference rule in C (P,Form) which has the same de-
ductive power as the formula. �

Definition 31 (Inherently universal variable). We say that an occurrence of a variable y in a
formula α is inherently universal if either y is free, or else y is bound by a restricted universal
quantifier which is not in the scope of a (restricted) existential quantifier. �

Definition 32 (Primitive formulas of LFOL(R1,R2)).

• A Kracht formula of LFOL(R1,R2) is built up from atomic formulas of the form x = y,
x v y, Sjxy (where j ∈ G), R1xy or R2xy with the help of ∧,∨ and the restricted
quantifiers in such a way that in a subformula x = y, x v y, Sjxy,R1xy orR2xy at least
one of x or y is hereditary universal.
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• A primitive formula of LFOL(R1,R2) is a Kracht formula of LFOL(R1,R2) in which no
universal quantifier is in the scope of an existential quantifier. �

Theorem 11. Let F0 be a class of pointed substructural frames. There exists a finite set
of analytic inference rules Σt in Ct such that Dt + Σt is sound and complete for the logic
(C (P,Formt) ,F0, ) if, and only if, there exists a finite set Θ(x) of primitive formulas
of LFOL(R1,R2) with one free variable x that defines F0. Moreover, Σt is effectively com-
putable from Θ(x) and, vice versa, Θ(x) is effectively computable from Σt, as follows: Θ(x) :=
τ3 (τ2 (Σt)) and Σt := τ−2

(
τ−3 (Θ(x))

)
.

Proof. As shown in the proof of Theorem 5, DLMt + Σ0 is sound and complete for the logic
(C (P,Formt) ,F , ), where DLMt is the multi-modal version based on C (P,Formt) of the
display calculus DLM defined in [22]. Moreover, by Theorem 5, Dt is also sound and complete
for the same logic (C (P,Formt) ,F , ). Thus, for any class of substructural framesF0, it holds
that Dt + Σt is sound and complete for the logic (C (P,Formt) ,F0, ) iff DLMt + Σ0 + Σt is
sound and complete for the logic (C (P,Formt) ,F0, ). So, by Lemma 3, Dt +Σt is sound and
complete for the logic (C (P,Formt) ,F0, ) iff DLMt + Σ0 + Σt is sound and complete for
the logic (C (P,Formt) ,K−0 , ) (we recall that K−0 is the class of pointed substructural Kripke
frames associated to F0). The result then follows from [22, Theorems 16-17].

Proposition 12 ([22]). Let R be an analytic inference rule in C (P,Formt), let ϕ be a primi-
tive formula of L (P,Formt) and let (F,w) be a pointed substructural frame. Then, we have
F,w R if, and only if, F,w τ2(R), and, vice versa, we have F,w ϕ if, and only if,
F,w τ−2 (ϕ). Moreover,

τ2
(
τ−2 (ϕ)

)
↔ ϕ τ−2 (τ2 (R)) = R

6.3 Correspondence Theory for Restricted Tense Logic

In this section, we adapt the results of the previous section (in particular Theorem 11) to our
restricted tense logic. We proceed in two steps. In Section 6.3, we provide a translation between
primitive formulas of Lt and specific first-order formulas of LFOL(R1,R2) based only on binary
relations. In Section 6.3, we provide a translation between the formulas of LFOL(R1,R2) and
other first-order formulas where the two binary relations R1 and R2 have been combined and
replaced by the ternary relationR. We show in Theorem 17 that these two translations preserve
the expected properties.

Translations between Prototypic Formulas of L (P,Formt) and LFOL(R1,R2)

Definition 33 (Prototypic formula of L (P,Formt)). A prototypic formula of L (P,Formt) is a
primitive formula of L (P,Formt) which belongs moreover to Lt. �

Definition 34 (Inherently universal variable). We say that an occurrence of a variable y in a
formula α is inherently universal if either y is free, or else y is bound by a restricted universal
quantifier which is not in the scope of a restricted existential quantifier. �
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Definition 35 (Prototypic formulas of LFOL(R1,R2) and LFOL(R)).

• A Kracht formula of LFOL(R) is built up from atomic formulas of the form x = y, x v y,
Sjxy (where j ∈ G), Rxyz with the help of ∧,∨ and the restricted quantifiers in such a
way that in a subformula x = y, x v y, Sjxy at least one of x and y is hereditary universal
and in a subformula Rxyz either y is hereditary universal or x and z are both hereditary
universal (inclusive or).

• A prototypic formula of LFOL(R) is a Kracht formula of LFOL(R) in which no universal
quantifier is in the scope of an existential quantifier.

The set of prototypic formulas of LFOL(R) is denoted LP (R).

• A Kracht formula of LFOL(R1,R2) is built up from atomic formulas of the form x = y,
x v y, Sjxy (where j ∈ G), R1xy, R2xy with the help of ∧,∨ and the restricted
quantifiers in such a way that in a subformula x v y, R1xy, R2xy, Sjxy or x = y, at
least one of x and y is hereditary universal.

• A prototypic formula of LFOL(R1,R2) is a primitive formula of LFOL(R1,R2) such that:

(P1) Every (∀y B1 x) is immediately followed by a (∀z B2 y);

(P2) Every (∀x C1 y) is immediately preceded by a (∀y C2 z) or immediately preceded
or followed by a (∀z B2 y) (exclusive or);

(P3) Every (∀z B2 y) is immediately preceded by a (∀y B1 x) or immediately preceded
or followed by a (∀x C1 y) (exclusive or);

(P4) Every (∀y C2 z) is immediately followed by a (∀x C1 y);

(P5) Every (∃y B1 x) is immediately followed by a (∃z B2 y);

(P6) Every (∃x C1 y) is either immediately preceded by a (∃y C2 z) or immediately
followed or preceded by a (∃z B2 y) (exclusive or);

(P7) Every (∃z B2 y) is either immediately preceded by a (∃y B1 x) or immediately
followed or preceded by a (∃x C1 y) (exclusive or);

(P8) Every (∃y C2 z) is immediately followed by a (∃x C1 y).

(R) Every atomic formula R1xy or R2xy which is not in a restricted quantifer appears
under the formR1xy ∧R2yz orR1zx ∧R2xy (for some z) respectively.

The set of prototypic formulas of LFOL(R1,R2) is denoted LP (R1,R2). �

If R1xy and R2yz are two atomic formulas of a primitive formula of LFOL(R1,R2), then,
by definition of a primitive formula, if y is not hereditary universal, both x and z must be
hereditary universal. Now, every atomic formula Rxyz in a formula of LFOL(R) translates
into such a pair of atomic formulas R1xy and R2yz in a prototypic formula of LP (R). So,
this explains why in the definition of a Kracht formula, in every subformula Rxyz, either y is
hereditary universal or x and z are both hereditary universal.
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Lemma 13. If ϕ is a prototypic formula of L (P,Formt), then τ3 (ϕ) is equivalent on the class
of pointed substructural frames to a prototypic formula of LFOL(R1,R2). Vice versa, if Θ(x) is
a prototypic formula of LFOL(R1,R2), then τ−3 (Θ(x)) is a prototypic formula of L (P,Formt).

Proof. A prototypic formula of L (P,Formt) is a specific instance of primitive formulas of
L (P,Formt). So, τ3 (ϕ) is a primitive formula of LFOL(R1,R2). Moreover, because ϕ ∈ Lt,
its standard translation STx(ϕ) is such that it fulfills the 8 conditions P1–P8. It turns out that
the Sahlqvist algorithm preserves these conditions P1–P8. Hence the formula τ3(ϕ) fulfills the
8 conditions P1–P8 as well, and τ3(ϕ) is a prototypic formula of LFOL(R1,R2). Vice versa, the
version of the algorithm τ−3 that we use in Section 8.2 is such that the formula τ−3 (ϕ) obtained
from a prototypic formula ϕ of LFOL(R1,R2) via this algorithm belongs to Lt, besides being a
primitive formula of L (P,Formt). Hence, τ−3 (ϕ) is a prototypic tense formula.

Proposition 14 ([11, 22]). Let ϕ be a prototypic formula of L (P,Formt) and let Θ(x) be a
prototypic formula of LFOL(R1,R2). Then,

τ3
(
τ−3 (Θ(x))

)
↔ Θ(x) τ−3 (τ3 (ϕ))↔ ϕ

Translations between Prototypic Formulas of LFOL(R1,R2) and LFOL(R)

Definition 36 (Translations τ4 and τ−4 ). We define the translation τ4 : LP (R1,R2) → LP (R)
and its converse τ−4 : LP (R) → LP (R1,R2) by the following correspondence, which relates
atomic formulas and each restricted quantifer of LFOL(R) to one or two pairs of restricted
quantifiers of LFOL(R1,R2), and vice versa.

(∃yz B1 x) :=: (∃y B1 x)(∃z B2 y)

(∃yz B2 x) :=:

{
(∃y B2 x)(∃z C1 x)

(∃z C1 x)(∃y B2 x)

(∃yz B3 x) :=: (∃z C2 x)(∃y C1 z)

(∀yz B1 x) :=: (∀y B1 x)(∀z B2 y)

(∀yz B2 x) :=:

{
(∀y B2 x)(∀z C1 x)

(∀z C1 x)(∀y B2 x)

(∀yz B3 x) :=: (∀z C2 x)(∀y C1 z)
Rxyz :=: R1xy ∧R2yz

For the restricted quantifiers (∃yz B2 x) and (∀yz B2 x), note that two translations are possible.
�

Proposition 15. The logics (LP (R1,R2),F , FOL) and (LP (R),F , FOL) are equally
expressive. More precisely, for all ϕ ∈ LP (R1,R2) and all (F,w) ∈ F , we have F,w ϕ if,
and only if, F,w τ4(ϕ), and, vice versa, for all ψ ∈ LP (R), we have F,w ψ if, and only if,
M, w τ−4 (ψ). Hence,

τ4
(
τ−4 (ψ)

)
↔ ψ τ−4 (τ4 (ϕ))↔ ϕ
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Proof. By induction on the number of restricted quantifiers in the given formula of LP (R1,R2)
or LP (R).

Theorem 16. Let R be an analytic inference rule in Ct. Then, R and τ4 (τ3 (τ2 (R))) are local
substructural frame correspondents.

Proof. It follows from Theorem 9 and Propositions 12 and 15.

Theorem 17. Let F0 be a a class of pointed substructural frames. There exists a finite set
of analytic inference rules Σt in Ct such that Dt + Σt is sound and complete for the logic
(C (P,Formt) ,F0, ) if, and only if, there exists a finite set Θ(x) of prototypic formulas of
LFOL(R) that defines F0. Moreover, Σt is effectively computable from Θ(x) and, vice versa,
Θ(x) is effectively computable from Σt, as follows: Θ(x) := τ4 (τ3 (τ2 (Σt))) and Σt :=
τ−2
(
τ−3
(
τ−4 (Θ(x))

))
.

Proof. Let Σt be a finite set of analytic inference rules in Ct. Then, by Theorem 11, Dt + Σt is
sound and complete for (C (P,Formt) ,F0, ) if, and only if, F0 can be defined by some finite
set Θ0(x) of primitive formulas ofLFOL(R1,R2) computable as follows: Θ0(x) := τ3 (τ2(Σt)).
However, by Proposition 15, Θ0(x) is equivalent on the class of pointed substructural frames to
a finite set of prototypic formulas Θ(x) := τ4 (Θ0(x)) of LFOL(R). Hence, Dt +Σt is sound and
complete for (C (P,Formt) ,F0, ) if, and only if, F0 can be defined by some finite set Θ(x)
of prototypic formulas of LFOL(R). Moreover, again using Proposition 15, Σt is effectively
computable from Θ(x) and, vice versa, Θ(x) is effectively computable from Σt, as follows:
Θ(x) := τ4 (τ3 (τ2 (Σt))) and Σt := τ−2

(
τ−3
(
τ−4 (Θ(x))

))
.

7 Correspondence Theory for Update Logic

The shape of update logic combined with correspondence results for tense logics will allow us
to characterize the class of properly displayable logics which extend update logic. Update logic
being a generalization of the non-associative Lambek calculus, this will subsequently provide
a characterization of all properly displayable logics without (truth) constants that extend the
non-associative Lambek calculus.

7.1 From Inference Rules to First-order Frame Conditions

Lemma 18. An inference rule R in C (P,Form) (resp. Ct) is analytic if, and only if, τ1(R) (resp.
τ−1 (R)) is analytic in Ct (resp. C (P,Form)).

Proof. It suffices to observe that the inductive steps in the translations τ1 and τ−1 in Definition
22, when viewed as inference rules (the input is viewed as the premise and the output is viewed
as the conclusion of the rule, and vice versa), fulfill conditions (C1)− (C8).

Lemma 19. Let Σ be a set of analytic inference rules in C (P,Form) and let X Y ∈
C (P,Form). If X Y is provable in UL + Σ then τ1(X Y ) is provable in Dt + τ1(Σ).
Moreover, the proof of τ1(X Y ) in Dt + τ1(Σ) is effectively computable from the proof of
X Y in UL + Σ.
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Proof. We first prove the left to right direction. If X Y is provable in UL + Σ, then X Y is
valid in (C (P,Form) ,F0, ), where F0 is the class of pointed substructural frames defined by
the inference rules of Σ. Therefore, by Proposition 7, τ1(X Y ) is valid in (C (P,Formt) ,F0, ),
where F0 is also the class of pointed substructural frames defined by the inference rules of
τ1(Σ). Moreover, by Lemma 18, τ1(Σ) is a set of analytic inference rules and, by Theorem 16,
it locally corresponds to the set of prototypic formulas τ4 (τ3 (τ2 (τ1(Σ)))) of LFOL(R). So,
F0 is also the class of pointed substructural frames defined by the set of prototypic formulas
τ4 (τ3 (τ2 (τ1(Σ)))) of LFOL(R). Hence, by Theorem 17, τ1(X Y ) is provable in Dt + τ1(Σ).

For the left to right direction, it suffices to prove that every inference rule R of UL is such
that τ1(R) is derivable in Dt. We only prove it for the display rules for the case where (i, j, k) =
(3, 1, 2). In the derivations below, we write csr when one or more classical (structural) rules are
applied.

τ1(X ,3 Y Z)

•2(•1t1(X), t1(Y )) t2(Z)
Def

•1t1(X), t1(Y ) •2 t2(Z)
•2

•1t1(X) ∗ t1(Y ), •2 t2(Z)
∗K

t1(X) •1 (∗t1(Y ), •2 t2(Z))
•1

τ1(X ∗ Y ,1 Z)
Def

τ1(X ,3 Y Z)

•2(•1t1(X), t1(Y )) t2(Z)
Def

•1t1(X), t1(Y ) •2 t2(Z)
•2

t1(Y ) •2 t2(Z), ∗ •1t1(X)
∗K

t1(Y ) •2 t2(Z), ∗ •1 ∗ t2(∗X)
csr

τ1(Y Z ,2 ∗X)
Def

τ1(Z X ,3 Y )

t1(Z) ∗ •2 ∗ (t2(Y ), ∗ •1 ∗ t2(X))
Def

•2 ∗ (t2(Y ), ∗ •1 ∗ t2(X)) ∗ t1(Z)
∗A, ∗K

∗(t2(Y ), ∗ •1 ∗ t2(X)) •2 ∗τ1(Z)
•2

∗ •2 ∗t1(Z) t2(Y ), ∗ •1 ∗ t2(X)
csr

•1 ∗ t2(X), ∗ •2 ∗ t1(Z) t2(Y )
csr

•1t1(∗X), ∗ •2 ∗ t1(Z) t2(Y )
csr

τ1(Z ,2 ∗X Y )
Def

τ1(Z X ,3 Y )

t1(Z) ∗ •2 ∗ (t2(Y ), ∗ •1 ∗ t2(X))
Def

•2 ∗ (t2(Y ), ∗ •1 ∗ t2(X)) ∗ t1(Z)
∗A, ∗K

∗(t2(Y ), ∗ •1 ∗ t2(X)) •2 ∗τ1(Z)
•2

∗ •2 ∗t1(Z) t2(Y ), ∗ •1 ∗ t2(X)
csr

∗t2(Y ), ∗ •2 ∗ t1(Z) ∗ •1 ∗ t2(X)
csr

•1 ∗ t2(X) ∗ (∗t2(Y ), ∗ •2 ∗ t1(Z))
•1

∗t2(X) •1 ∗(∗t2(Y ), ∗ •2 ∗ t1(Z))
csr

∗ •1 ∗(∗t2(Y ), ∗ •2 ∗ t1(Z)) t2(X)
csr

τ1(∗Y ,2 Z X)
Def

Theorem 20 (Correspondence for inference rules). Let Σ be a finite set of analytic inference
rules in C (P,Form). Then, Σ and Θ(x) := τ3 (τ2(τ1(Σ))) are local substructural frame corre-
spondents.

Proof. From Theorem 9 and Propositions 6 and 12, it follows directly that if Σ is a finite set of
analytic inference rules in C (P,Form), then Σ and Θ(x) := τ3 (τ2(τ1(Σ))) are local substruc-
tural frame correspondents.
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Theorem 21 (Canonicity for inference rules). Let F ⊆ Form and let Σ be a finite set of
analytic inference rules in C (P,F). Then, UL(F) + Σ is sound and complete for the logic(
C (P,F) ,F0,

)
, where F0 is the class of pointed substructural frames defined by the set of

prototypic formulas Θ(x) := τ4 (τ3 (τ2(τ1(Σ)))) of LFOL(R).

Proof. We first prove completeness. Let X Y ∈ C (P,F) and assume that X Y is valid
in
(
C (P,F) ,F0,

)
. Then, τ1(X Y ) is valid in

(
C (P,Formt) ,F0,

)
by Proposition

7. Moreover, τ1(Σ) is a set of analytic inference rules by Lemma 18. So, by Theorem 17,
τ1(X Y ) is provable in Dt + τ1(Σ). Thus, X Y is provable in UL + Σ by Lemma 19, and
therefore also in UL(F) + Σ (we recall that UL + Σ admits the cut rule and therefore any proof
of X Y in UL + Σ will resort to logical rules where only the connectives of X Y occur).
Now, we prove soundness. Assume that X Y is provable in UL(F) + Σ. Then, by Lemma
19, τ1(X Y ) is provable in Dt + τ1(Σ). Moreover, τ1(Σ) is a set of analytic inference rules
by Lemma 18. So, by Theorem 17, τ1(X Y ) is valid in

(
C (P,Formt) ,F0,

)
. And finally,

X Y is valid in
(
C (P,F) ,F0,

)
by Proposition 7.

Corollary 1. The display calculus UL is sound and complete for the logic
(
C (P,Form) ,F ,

)
.

On the one hand, a more general result than Corollary 1 is proved in [2], namely the strong
completeness of UL and some of its extension with respect to substructural models (which im-
plies completeness with respect to frames). On the other hand, Theorem 21 extends the (weak)
completeness result to all the extensions of UL with analytic inference rules and this result is
systematic, whereas the completeness result of [2] was proved on a case by case basis from the
completeness results of [39].

7.2 From First-order Frame Conditions to Inference Rules

Theorem 22. Let F0 be a class of pointed substructural frames defined by a set Θ(x) of pro-
totypic formulas of LFOL(R) with one free variable x. Then, the logic (C (P,Form) ,F0, )
is properly displayable. Moreover, the set of analytic inference rules Σ of the proper display
calculus which is sound and complete for (C (P,Form) ,F0, ) is effectively computable from
Θ(x) as follows: Σ := τ−1

(
τ−2
(
τ−3
(
τ−4 (Θ(x))

)))
.

Proof. By Theorem 17, Dt + Σt is sound and complete for (C (P,Formt) ,F0, ), where Σt :=
τ−2
(
τ−3
(
τ−4 (Θ(x))

))
. Now, Σt = τ1

(
τ−1 (Σt)

)
by Lemma 8, and τ−1 (Σt) is a set of analytic

inference rules in C (P,Form). So, by Theorem 21, UL + τ−1 (Σt) is sound and complete for the
logic

(
C (P,Form) ,F0,

)
, where F0 is the class of pointed substructural frames defined by

the following set of prototypic formulas of LFOL(R):

τ4
(
τ3
(
τ2
(
τ1
(
τ−1
(
τ−2
(
τ−3
(
τ−4 (Θ(x))

)))))))
which is equivalent to Θ(x) on the class of pointed substructural frames, by Propositions 8, 12,
14, 15.
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7.3 Characterization Theorem

Here is the main theorem of this report.

Theorem 23. Let F ⊆ Form. A logic (C (P,F) ,F0, ) based on a class F0 of pointed
substructural frames is properly displayable by a set of analytic inference rules Σ if, and only if,
F0 is defined by some finite set Θ(x) of prototypic formulas of LFOL(R) with one free variable.
Moreover, Σ is effectively computable from Θ(x) and, vice versa, Θ(x) is effectively computable
from Σ, as follows: Θ(x) := τ4 (τ3 (τ2 (τ1 (Σ)))) and Σ := τ−1

(
τ−2
(
τ−3
(
τ−4 (Θ(x))

)))
(see

Figure 9).

Proof. It follows straightforwardly from Theorems 21 and 22.

Theorem 23 shows that a logic extending update logic is properly displayable if, and only
if, the class of pointed substructural frames on which it is defined can be defined by some finite
set of prototypic first-order formulas. In that case, we have at our disposal algorithms to com-
pute the prototypic first-order formulas defining the class of pointed substructural frames that
correspond to the structural rules of the proper display calculus and, vice versa, we also have at
our disposal algorithms to compute the structural rules of the display calculus that correspond
to the prototypic first-order formulas defining the class of pointed substructural frames. These
different algorithms are listed in Figure 9.
Remark 3. Our results also hold if we consider ‘plain’ substructural frames instead of pointed
substructural frames and if validity is defined with respect to classes of (plain) substructural
frames instead of classes of pointed substructural frames. This is because Sahlqvist’s and
Kracht’s results hold both with respect to the so-called global and local correspondence.

8 Examples of Correspondence Translations

In this section, we provide examples of correspondence translations that use the algorithms
τ4, τ3, τ2, τ1 and τ−4 , τ

−
3 , τ

−
2 , τ

−
1 defined in the previous sections. The algorithm τ−3 that we use

is different from Kracht’s algorithm and has been defined specifically for the kind of prototypic
(in fact primitive) formulas that we consider.

In the rules below, we use the structural connective ,3 because its semantics corresponds to
the semantics of the usual structural connective of substructural logic, often denoted “;” [39].
This obviously does not preclude ourselves to apply our algorithms to the other structural con-
nectives like ,1 and ,2 .

8.1 From Inference Rules to First-order Frame Conditions

We execute the algorithms τ4, τ3, τ2, τ1 on three classical inference rules: K, WI and CI.

Inference Rule K

X U

X ,3 Y U
K
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Analytic inference rules in C (P,Form) [Def. 13]

Analytic inference rules in C (P,Formt) [Def. 13]

Prototypic formulas of L (P,Formt) [Def. 33]

Prototypic formulas of LFOL(R1,R2) [Def. 35]

Prototypic formulas of LFOL(R) [Def. 35]

τ1 [Def. 21,23]

τ2 [Def. 30], [22, p. 107-109]

τ3 [Def. 28], [45][Def. 28], [21] τ−3

[Def. 30], [22, p. 106-107] τ−2

[Def. 21,23] τ−1

τ4 [Def. 36][Def. 36] τ−4

Figure 9: Translations from analytic inference rules to first-order frame conditions, and vice
versa
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Algorithm τ1:

1.
τ1
(
X U

)
τ1
(
X ,3 Y U

)
2.

X U

•2(•1X, Y ) U

Algorithm τ2:

1. t1(•2(•1p, q))→ t1(p)

2. ∃−2 ((∃−1 ∃
−p) ∧ ∃−q)→ ∃−p

Algorithm τ3:

1. ∀PQ
((
∃y
(
R2yx ∧

(
∃y′
(
y′ v y ∧Q(y′)

)
∧ ∃z

(
R1zy ∧ ∃z′

(
z′ v z ∧ P (z′)

)))))
→

∃x′
(
x′ v x ∧ P (x′)

))
2. ∀PQ

((
∃yzy′z′

(
R2yx ∧R1zy ∧ y′ v y ∧ z′ v z ∧Q(y′) ∧ P (z′)

))
→

∃x′
(
x′ v x ∧ P (x′)

))
3. We take σ(P ) := λu.z′ = u and σ(Q) := λu.y′ = u

4.
(
∃yzy′z′

(
R2yx ∧R1zy ∧ y′ v y ∧ z′ v z ∧ y′ = y′ ∧ z′ = z′

))
→(

∃x′
(
x′ v x ∧ z′ = x′

))
5.
(
∃yzy′z′

(
R2yx ∧R1zy ∧ y′ v y ∧ z′ v z

))
→ z′ v x

6. ∀yzy′z′
((
R2yx ∧R1zy ∧ y′ v y ∧ z′ v z

)
→ z′ v x

)
7. (∀y C2 x)(∀z C1 y)(∀y′ C0 y)(∀z′ C0 z)z

′ v x

Algorithm τ4:

1. (∀yz B3 x)(∀y′ C0 y)(∀z′ C0 z)z
′ v x

Finally, translated into plain LFOL(R), we obtain:

∀yzy′z′
(
Rzyx ∧ y′ v y ∧ z′ v z → z′ v x

)
(10)

If R is plump, then Expression (10) is equivalent to Expression (11) (for the direction (10)
to (11), it suffices to take y′ = y and z′ = z and the direction (11) to (10) holds because we have
Rz′y′x sinceR is plump)

∀yz (Rzyx→ z v x) (11)

Condition (11) is indeed the condition given in [39, Table 11.1, p. 250].
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Inference Rule WI

X ,3 X U

X U
WI

Algorithm τ1:

1.
τ1
(
X ,3 X U

)
τ1
(
X U

)
2.
•2(•1X, X) U

X U

Algorithm τ2:

1. t1(X)→ t1(•2(•1X,X))

2. ∃−p→ ∃−2 (∃−1 ∃
−p ∧ ∃−p)

Algorithm τ3:

1. ∀P
(
∃x′
(
x′ v x ∧ P (x′)

)
→

∃y
(
R2yx ∧

(
∃y′
(
y′ v y ∧ P (y′)

)
∧ ∃z

(
R1zy ∧ ∃z′

(
z′ v z ∧ P (z′)

)))))
2. ∀P

(
∃x′
(
x′ v x ∧ P (x′)

)
→

∃yzy′z′
(
R2yx ∧R1zy ∧ y′ v y ∧ z′ v z ∧ P (y′) ∧ P (z′)

))
3. ∀P

(
∀x′
(
x′ v x ∧ P (x′)→

∃yzy′z′
(
R2yx ∧R1zy ∧ y′ v y ∧ z′ v z ∧ P (y′) ∧ P (z′)

)))
4. We take σ(P ) := λu.x′ = u

5. ∀x′
(
x′ v x→ ∃yzy′z′

(
R2yx ∧R1zy ∧ y′ v y ∧ z′ v z ∧ x′ = y′ ∧ x′ = z′

))
6. (∀x′ C0 x)(∃y C2 x)(∃z C1 y)(x′ v y ∧ x′ v z)

Algorithm τ4:

1. (∀x′ C0 x)(∃yz B3 x)(x′ v y ∧ x′ v z)

Finally, translated into plain LFOL(R), we obtain:

∀x′
(
x′ v x→ ∃yz

(
Rzyx ∧ x′ v y ∧ x′ v z

))
(12)

If R is plump, then Expression (12) is equivalent to Expression (13) (for the direction (12)
to (13), take x′ = x and we obtain Rzyx ∧ x v z ∧ x v y, so Rxxx because R is plump; for
the direction (13) to (12), take y = x′ and z = x′):

∀x′(x′ v x→ Rx′x′x) (13)
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Condition (13) is slightly different from the condition given in [39, Table 11.1, p. 250], which is
the following:

Rxxx (14)

This difference can be explained by the fact that our first-order correspondents are local first-
order correspondent, which means that they have to be evaluated on pointed substructural frames,
whereas the first-order correspondent in [39] are global, which means that they have to be eval-
uated on all the points of the substructural frames. As noted in Remark 3, all our results also
hold if we consider global correspondence and plain substructural frames instead of pointed
substructural frames. In that case, we do have that Expression 13 is equivalent to Expression
(14), because ∀x

(
∀x′(x′ v x→ Rx′x′x)

)
is equivalent to ∀xRxxx.

Inference Rule CI

Y ,3 X U

X ,3 Y U
CI

Algorithm τ1:

1.
τ1
(
Y ,3 X U

)
τ1
(
X ,3 Y U

)
2.
•2(•1Y , X) U

•2(•1X, Y ) U

Algorithm τ2:

1. t1(•2(•1X, Y ))→ t1(•2(•1Y , X))

2. ∃−2 (∃−1 ∃
−p ∧ ∃−q)→ ∃−2 (∃−1 ∃

−q ∧ ∃−p)

Algorithm τ3:

1. ∀PQ
(
∃y
(
R2yx ∧ ∃y′

(
y′ v y ∧Q(y′)

)
∧ ∃z

(
R1zy ∧ ∃z′

(
z′ v z ∧ P (z′)

)))
→

∃
(
R2tx ∧ ∃t′

(
t′ v t ∧ P (t′)

)
∧ ∃u

(
R1ut ∧ ∃u′

(
u′ v u ∧Q(u)

))))
2. ∀PQ

(
∃yzy′z′

(
R2yx ∧R1zy ∧ y′ v y ∧ z′ v z ∧Q(y′) ∧ P (z′)

)
→

∃tut′u′
(
R2tx ∧R1ut ∧ t′ v t ∧ u′ v u ∧ P (t′) ∧Q(u′)

))
3. ∀PQ∀yzy′z′

(((
R2yx ∧R1zy ∧ y′ v y ∧ z′ v z ∧Q(y′) ∧ P (z′)

))
→

∃tut′u′
(
R2tx ∧R1ut ∧ t′ v t ∧ u′ v u ∧ P (t′) ∧Q(u′)

))
4. We take σ(P ) := λu.z′ = u and σ(Q) := λu.y′ = u

5. ∀yzy′z′
(((
R2yx ∧R1zy ∧ y′ v y ∧ z′ v z

))
→

∃tut′u′
(
R2tx ∧R1ut ∧ t′ v t ∧ u′ v u ∧ z′ = t′ ∧ y′ = u′

))
6. ∀yzy′z′

(((
R2yx ∧R1zy ∧ y′ v y ∧ z′ v z

))
→ ∃tu

(
R2tx ∧R1ut ∧ z′ v t ∧ y′ v u

))
7. (∀y C2 x)(∀z C1 y)(∀y′ C0 y)(∀z′ C0 z)(∃t C2 x)(∃u C1 t)(z

′ v t ∧ y′ v u)
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Algorithm τ4:

1. (∀yz B3 x)(∀y′ C0 y)(∀z′ C0 z)(∃tu B3 x)(z′ v t ∧ y′ v u)

Finally, translated into plain LFOL(R), we obtain:

∀yzy′z′
(((
Rzyx ∧ y′ v y ∧ z′ v z

))
→ ∃tu

(
Rutx ∧ z′ v t ∧ y′ v u

))
(15)

IfR is plump, then Expression (15) is equivalent to Expression (16) (for the direction (15)
to (16), take y′ = y and z′ = z; for the direction (16) to (15), take u = y and t = z′)

∀yz (Rzyx→ Ryzx) (16)

Condition (11) is indeed the condition given in [39, Table 11.1, p. 250].

8.2 From First-order Frame Conditions to Inference Rules

We execute the algorithms τ−4 , τ
−
3 , τ

−
2 , τ

−
1 on the corresponding first-order conditions of the

inference rules mMP, mWI and Bc. These first-order conditions are taken from [39, Table 11.1,
p. 250] and it will turn out that our algorithms yield the same inference rules as the ones given
in [39, Table 11.1, p. 250]. The algorithm τ−3 that we use is different from Kracht’s algorithm
and has been defined specifically for the kind of prototypic (in fact primitive) formulas that we
consider.

First-order Frame Condition of Inference Rule Bc

∀yzwu ((Ryzu ∧Rxuw)→ ∃t (Rxyt ∧Rtzw)) (Bc)

Algorithm τ−4 :

1. (∀wu B3 x)(∀yz B3 u)(∃tz′ B3 x)(Rwyt ∧ z′ = z)

2. (∀u C2 x)(∀w C1 u)(∀z C2 u)(∀y C1 z)(∃z′ C2 x)(∃t C1 z
′) (R1wy ∧R2yt

∧z′ = z
)

Algorithm τ−3 :

1. ∀PQR ((∀u C2 x)(∀w C1 u)(∀z C2 u)(∀y C1 z) ((P (w) ∧Q(y) ∧R(z))→
(∃z′ C2 x)(∃t C1 z

′)(∃y′ C2 t)(∃w′ C1 y
′)
(
P (w′) ∧Q(y′) ∧R(z′)

)))
2. ∀PQR ((∀u C2 x)(∀w C1 u)(∀z C2 u)(∀y C1 z) ((P (w) ∧Q(y) ∧R(z))→

(∃z′ C2 x)
(
R(z′) ∧ (∃t C1 z

′)(∃y′ C2 t)
(
Q(y′) ∧ (∃w′ C1 y

′) ∧ P (w′)
))))

3. ∀PQR ((∀u C2 x)(∀w C1 u)(∀z C2 u)(∀y C1 z) ((P (w) ∧Q(y) ∧R(z))→
(∃z′ C2 x)

(
R(z′) ∧ (∃t C1 z

′)(∃y′ C2 t)
(
Q(y′) ∧ (∃w′ C1 y

′) ∧ P (w′)
))))

4. ∀PQR ((∀u C2 x)(∀w C1 u)(∀z C2 u)(∀y C1 z) ((P (w) ∧Q(y) ∧R(z))→
STx

(
∃−2
(
r ∧ ∃−1

(
∃−2
(
q ∧ ∃−1 p

))))))
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5. ∀PQR (((∃u C2 x) ((∃z C2 u) (R(z) ∧ (∃y C1 z)Q(y)) ∧ (∃w C1 u)P (w)))→
STx

(
∃−2
(
r ∧ ∃−1

(
∃−2
(
q ∧ ∃−1 p

)))))
6. ∀PQR

(
STx

(
∃−2
((
∃−2
(
r ∧ ∃−1 q

))
∧ ∃−1 p

))
→

STx
(
∃−2
(
r ∧ ∃−1

(
∃−2
(
q ∧ ∃−1 p

)))))
7. ∀PQR

(
STx

(
∃−2
((
∃−2
(
r ∧ ∃−1 q

))
∧ ∃−1 p

)
→ ∃−2

(
r ∧ ∃−1

(
∃−2
(
q ∧ ∃−1 p

)))))
8. ∃−2

((
∃−2
(
r ∧ ∃−1 q

))
∧ ∃−1 p

)
→ ∃−2

(
r ∧ ∃−1

(
∃−2
(
q ∧ ∃−1 p

)))
Algorithm τ−2 :

1.
∃−2
(
r ∧ ∃−1

(
∃−2
(
q ∧ ∃−1 p

)))
U

∃−2
((
∃−2
(
r ∧ ∃−1 q

))
∧ ∃−1 p

)
U

2.
•2 (Z, •1 (•2 (Y , •1 X))) U

•2 ((•2 (Z, •1 Y )) , •1 X) U

Algorithm τ−1 :

1.
τ−1
(
•2 (Z, •1 (•2 (Y , •1 X))) U

)
τ−1
(
•2 ((•2 (Z, •1 Y )) , •1 X) U

)
2.

(X ,3 Y ) ,3 Z U

X ,3 (Y ,3 Z) U
Bc

First-order Frame Condition of Inference Rule mMP

∀x′y′z′(Sjx′x ∧Rz′y′x′ → ∃zy(Rzyx ∧ Sjz′z ∧ Sjy′y) (mMP)

Algorithm τ−4 :

1. (∀x′ Cj x)(∀z′y′ B3 x′)(∃zy B3 x)(Sjz
′z ∧ Sjy′y)

2. (∀x′ Cj x)(∀y′ C2 x
′)(∀z′ C1 y

′)(∃y C2 x)(∃z C1 y)(Sjz
′z ∧ Sjy′y)

Algorithm τ−3 :

1. ∀PQ
(
(∀x′ Cj x)(∀y′ C2 x

′)(∀z′ C1 y
′)
(
P (y′) ∧Q(z′)→

(∃y C2 x)(∃z C1 y)(∃t Cj y)(∃u Cj z)(P (t) ∧Q(u))))

2. ∀PQ
(
(∀x′ Cj x)(∀y′ C2 x

′)(∀z′ C1 y
′)
(
P (y′) ∧Q(z′)→

(∃y C2 x)(∃z C1 y) ((∃u Cj z)P (t) ∧ (∃t Cj y)Q(u))))

3. ∀PQ
(
(∀x′ Cj x)(∀y′ C2 x

′)(∀z′ C1 y
′)
(
P (y′) ∧Q(z′)→

(∃y C2 x)(∃z C1 y) ((∃u Cj z)P (t) ∧ (∃t Cj y)Q(u))))

4. ∀PQ
(
(∀x′ Cj x)(∀y′ C2 x

′)(∀z′ C1 y
′)
(
P (y′) ∧Q(z′)→

STx

(
∃−2 (3−j p ∧ ∃

−
1 3−j q)

)))
5. ∀PQ

(
(∃x′ Cj x)(∃y′ C2 x

′)(∃z′ C1 y
′)(P (y′) ∧Q(z′))→

STx

(
∃−2 (3−j p ∧ ∃

−
1 3−j q)

))
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6. ∀PQ
(
(∃x′ Cj x)(∃y′ C2 x

′)
(
P (y′) ∧ (∃z′ C1 y

′)Q(z′)
)
→

STx

(
∃−2 (3−j p ∧ ∃

−
1 3−j q)

))
7. ∀PQ

(
STx

(
3−j ∃

−
2

(
p ∧ ∃−1 q

))
→ STx

(
∃−2 (3−j p ∧ ∃

−
1 3−j q)

))
8. ∀PQ

(
STx

(
3−j ∃

−
2

(
p ∧ ∃−1 q

)
→ ∃−2 (3−j p ∧ ∃

−
1 3−j q)

))
9. 3−j ∃

−
2

(
p ∧ ∃−1 q

)
→ ∃−2 (3−j p ∧ ∃

−
1 3−j q).

Algorithm τ−2 :

1.
∃−2 (3−j p ∧ ∃

−
1 3−j p) U

3−j ∃
−
2

(
p ∧ ∃−1 q

)
U

2.
•2 (•jY , •1 •jX) U

•j •2 (Y , •1 X) U

Algorithm τ−1 :

1.
τ−1
(
•2 (•jY , •1 •jX) U

)
τ−1
(
•j •2 (Y , •1 X) U

)
2.
•jX ,3 •j Y U

•j (X ,3 Y ) U
mMP

First-order Frame Condition of Inference Rule mWI

∀y (Sjyx→ ∃x1x2 (Rx1x2x ∧ Sjyx1 ∧ Sjyx2)) (mWI)

Algorithm τ−4 :

1. (∀y Cj x)(∃x1x2 B3 x)(Sjyx1 ∧ Sjyx2)
2. (∀y Cj x)(∃x1 C2 x)(∃x2 C1 x1)(Sjyx1 ∧Rjyx2)

Algorithm τ−3 :

1. ∀P ((∀y Cj x) (P (y)→
(∃x1 C2 x)(∃x2 C1 x1) ((∃y1 Cj x1)P (y1) ∧ (∃y2 Cj x2)P (y2))))

2. ∀P ((∀y Cj x) (P (y)→
(∃x1 C2 x) ((∃y1 Cj x1)P (y1) ∧ (∃x2 C1 x1)(∃y2 Cj x2)P (y2))))

3. ∀P
(

(∀y Cj x)
(
P (y)→ STx

(
∃−2
(
3−j p ∧ ∃

−
1 3−j p

))))
4. ∀P

(
(∃y Cj x)P (y)→ STx

(
∃−2
(
3−j p ∧ ∃

−
1 3−j p

)))
5. ∀P

(
STx(3−j p)→ STx

(
∃−2
(
3−j p ∧ ∃

−
1 3−j p

)))
50



6. ∀P
(
STx

(
3−j p→ ∃

−
2

(
3−j p ∧ ∃

−
1 3−j p

)))
7. 3−j p→ ∃

−
2

(
3−j p ∧ ∃

−
1 3−j p

)
Algorithm τ−2 :

1.
∃−2
(
3−j p ∧ ∃

−
1 3−j p

)
U

3−j p U

2.
•2 (•jX, •1 •jX) U

•jX U

Algorithm τ−1 :

1.
τ−1
(
•2 (•jX, •1 •jX) U

)
τ−1
(
•jX U

)
2.
•jX ,3 •j X U

•jX U
mWI
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and nonmonotonic logic. In André Fuhrmann and Michael Morreau, editors, The Logic
of Theory Change, volume 465 of Lecture Notes in Computer Science, pages 185–205.
Springer, 1989.

[28] Edwin D Mares. Relevant logic and the theory of information. Synthese, 109(3):345–360,
1996.

[29] Edwin D. Mares and Robert K. Meyer. The Blackwell guide to philosophical logic, chapter
Relevant Logics. Wiley-Blackwell, 2001.

[30] Maricarmen Martinez and Sebastian Sequoiah-Grayson. Logic and information. In Ed-
ward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Summer 2014 edition,
2014.

[31] Elliott Mendelson. Introduction to mathematical logic. CRC press, 1997.

[32] John-Jules Ch. Meyer and Wiebe van der Hoek. Epistemic Logic for AI and Computer
Science. Cambridge University Press, Cambridge, 1995.

[33] Hiroakira Ono. Proof-theoretic methods in nonclassical logic –an introduction. In Masako
Takahashi, Mitsuhiro Okada, and Mariangiola Dezani-Ciancaglini, editors, Theories of
Types and Proofs, volume Volume 2 of MSJ Memoirs, pages 207–254. The Mathematical
Society of Japan, Tokyo, Japan, 1998.

[34] John Perry and David Israel. What is information? Information, Language, and Cognition,
1, 1990.

[35] Francesca Poggiolesi. Gentzen calculi for modal propositional logic, volume 32. Springer,
2010.

[36] Francesca Poggiolesi and Greg Restall. Interpreting and applying proof theories for modal
logic. In New Waves in Philosophical Logic. Palgrave Macmillan, 2012.

[37] Frank P. Ramsey. General propositions and causality. In H.A. Mellor, editor, Philosophical
Papers. Cambridge University Press, Cambridge, 1929.

[38] Greg Restall. Information flow and relevant logics. In Logic, Language and Computation:
The 1994 Moraga Proceedings. CSLI, pages 463–477. csli Publications, 1996.

[39] Greg Restall. An Introduction to Substructural Logics. Routledge, 2000.

[40] Greg Restall. Relevant and substructural logics. Handbook of the History of Logic, 7:289–
398, 2006.

[41] Richard Routley and Robert K Meyer. The semantics of entailment—ii. Journal of Philo-
sophical Logic, 1(1):53–73, 1972.

54



[42] Richard Routley and Robert K Meyer. The semantics of entailment—iii. Journal of philo-
sophical logic, 1(2):192–208, 1972.

[43] Richard Routley and Robert K Meyer. The semantics of entailment. Studies in Logic and
the Foundations of Mathematics, 68:199–243, 1973.

[44] Richard Routley, Val Plumwood, and Robert K Meyer. Relevant logics and their rivals.
Ridgeview Publishing Company, 1982.

[45] Henrik Sahlqvist. Completeness and correspondence in the first and second order seman-
tics for modal logics. In Stig Kanger, editor, Proceedings of the 3rd Scandinavian Logic
Symposium 1973, number 82 in Studies in Logic. North Holland, 1975.

[46] Alasdair Urquhart. Completeness of weak implication. Theoria, 37(3):274–282, 1971.

[47] Alasdair Urquhart. A general theory of implication. Journal of Symbolic Logic,
37(443):270, 1972.

[48] Alasdair Urquhart. Semantics for relevant logics. Journal of Symbolic Logic, pages 159–
169, 1972.

[49] Johan van Benthem. Correspondence theory. In Handbook of philosophical logic, vol-
ume 3, pages 325–408. Kluwer Academic Publisher, 2001.

[50] Johan van Benthem. Inference in action. Publications de l’Institut Mathématique-Nouvelle
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