Polytopes and simplexes in p-adic fields

Abstract : We introduce topological notions of polytopes and simplexes, the latter being expected to play in p-adically closed fields the role played by real simplexes in the classical results of triangulation of semi-algebraic sets over real closed fields. We prove that the faces of every p-adic polytope are polytopes and that they form a rooted tree with respect to specialisation. Simplexes are then defined as polytopes whose faces tree is a chain. Our main result is a construction allowing to divide every p-adic polytope in a complex of p-adic simplexes with prescribed faces and shapes.
Type de document :
Article dans une revue
Annals of Pure and Applied Logic, Elsevier Masson, 2016, 168 (6), pp.1284-1307
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01276748
Contributeur : Luck Darnière <>
Soumis le : samedi 22 octobre 2016 - 23:23:42
Dernière modification le : mercredi 10 octobre 2018 - 19:56:03

Fichiers

discrete.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01276748, version 2
  • ARXIV : 1602.07209

Collections

Citation

Luck Darnière. Polytopes and simplexes in p-adic fields. Annals of Pure and Applied Logic, Elsevier Masson, 2016, 168 (6), pp.1284-1307. 〈hal-01276748v2〉

Partager

Métriques

Consultations de la notice

116

Téléchargements de fichiers

33