S. Fig, Amino-acid alignments of ACR-26 and ACR-27 AChR subunit partial sequences from parasitic nematode species. Parasitic nematode species ACR-26 and ACR-27 partial amino-acid sequences (including the C-loop agonist binding site and the first transmembrane domain (TM1)) were aligned using the MUSCLE algorithm [36] and further processed using GeneDoc. Amino acids conserved between ACR-26 and ACR-27 sequences are highlighted in red. Amino acids specifically shared by ACR-26 homologs are highlighted in dark blue, Amino acids specifically shared by ACR-27 homologs are highlighted in light blue. The ACR-26

. Ovo, Onchocerca volvulus; Wba: Wuchereria bancrofti; Ptr: Parastrongyloides trichosuri; Spa: Strongyloides papillosus; Sra: Strongyloides ratti; Sst: Strongyloides stercoralis; Svz: Strongyloides venezuelensis; Bxy: Bursaphelenchus xylophilus

S. Fig, A and B) Representative recording traces from a single oocyte expressing Hco-L-AChR-1 or Hco-L-AChR-2 challenged with 100 ?M ACh and 100 ?M of different anthelmintic compounds including levamisole (Lev), nicotine (Nic), pyrantel (Pyr) and morantel (Mor) The bars indicate the time period of the agonist application. Functional expression of Hco-L-AChR-1 requires the coexpression of Hco-UNC-38; Hco-UNC-63; Hco-UNC-29, and Hco-ACR-8 AChR subunits with the ancillary proteins Hco-RIC-3.1; Hco-UNC-50 and Hco-UNC-74 whereas Hco- L-AChR-2 requires the co-expression of Hco-UNC-38; Hco-UNC-63 and Hco-UNC-29

S. Fig, ACR-27 from H. contortus or P. equorum in C. elegans increases its sensitivity to pyrantel (50 ?M) but does not modulate its sensitivity to levamisole (5 ?M) Thrashing assays were performed during 30 minutes with t0 corresponding to basal movements. For each C. elegans co-expressing ACR-26 and ACR-27 from H. contortus (A and B) or P. equorum (C and D), two independent lines were used with >12 worms per lines, Thrashing assays performed with 50 ?M Pyr or 5 ?M Lev on N2 (WT) and transformed worms co-expressing ACR-26 and ACR-27 subunits. All results are expressed as mean ± SEM

S. Table, Summary of Hco-acr-26 and Hco-acr-27 homologs identified in genomic databases from nematodes Nematode clades as determined by Life style abbreviations: VP: vertebrate parasite; IP: Insect parasite; FL: free-living.; WBP: Worm BaseParasite. Database abbreviations: SI: Sanger Institute (www.sanger.ac.uk); NN: Nematode Net V4, WBP: WormBase Parasitewormbase.org/). Ã complete or partial cDNA sequence available. (DOCX)

S. Table, Ratio modulation of Hco-acr-26 and Hco-acr-27 cRNAs injected in Xenopus oocytes in combination with ancillary proteins. The relative maximal currents (Imax) have been normalized to those elicited by 100 ?M acetylcholine on oocytes expressing Hco-ACR-26 and Hco-ACR-27 with different ratios. Responses from each oocyte were normalized to References 1. Kaplan RM. Drug resistance in nematodes of veterinary importance: a status report, Trends Parasitol, vol.20, issue.10, pp.477-81, 2004.

J. Peter and P. Chandrawathani, Haemonchus contortus: parasite problem No. 1 from tropics?Polar Circle . Problems and prospects for control based on epidemiology, Tropical Biomed, vol.22, issue.2, pp.131-138, 2005.

J. Matthews, Anthelmintic resistance in equine nematodes, International Journal for Parasitology: Drugs and Drug Resistance, vol.4, issue.3, pp.310-315, 2014.
DOI : 10.1016/j.ijpddr.2014.10.003

S. Kopp, A. Kotze, J. Mccarthy, and G. Coleman, High-level pyrantel resistance in the hookworm Ancylostoma caninum, Veterinary Parasitology, vol.143, issue.3-4, pp.3-4299, 2007.
DOI : 10.1016/j.vetpar.2006.08.036

C. Bourguinat, K. Keller, A. Bhan, A. Peregrine, T. Geary et al., Macrocyclic lactone resistance in Dirofilaria immitis, Veterinary Parasitology, vol.181, issue.2-4, pp.2-4388, 2011.
DOI : 10.1016/j.vetpar.2011.04.012

A. Wolstenholme and R. Kaplan, Resistance to Macrocyclic Lactones, Current Pharmaceutical Biotechnology, vol.13, issue.6, pp.873-87, 2012.
DOI : 10.2174/138920112800399239

C. Bourguinat, A. Lee, R. Lizundia, B. Blagburn, J. Liotta et al., Macrocyclic lactone resistance in Dirofilaria immitis: Failure of heartworm preventives and investigation of genetic markers for resistance, Veterinary Parasitology, vol.210, issue.3-4
DOI : 10.1016/j.vetpar.2015.04.002

D. Clercq, D. Sacko, M. Behnke, J. Gilbert, F. Dorny et al., Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali, Am J Trop Med Hyg, vol.57, issue.1, pp.25-30, 1997.

J. Reynoldson, J. Behnke, L. Pallant, M. Macnish, F. Gilbert et al., Failure of pyrantel in treatment of human hookworm infections (Ancylostoma duodenale) in the Kimberley region of North West Australia, Acta Tropica, vol.68, issue.3, pp.301-313, 1997.
DOI : 10.1016/S0001-706X(97)00106-X

M. Ali, M. Mukhtar, O. Baraka, M. Homeida, M. Kheir et al., Immunocompetence may be important in the effectiveness of Mectizan?? (ivermectin) in the treatment of human onchocerciasis, Acta Tropica, vol.84, issue.1, pp.49-53, 2002.
DOI : 10.1016/S0001-706X(02)00117-1

K. Awadzi, D. Boakye, G. Edwards, N. Opoku, S. Attah et al., An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana, Annals of Tropical Medicine & Parasitology, vol.37, issue.3, pp.231-280, 2004.
DOI : 10.1016/0035-9203(92)90528-K

M. Osei-atweneboana, J. Eng, D. Boakye, J. Gyapong, and R. Prichard, Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study, The Lancet, vol.369, issue.9578, pp.2021-2030, 2007.
DOI : 10.1016/S0140-6736(07)60942-8

T. Geary, J. Sakanari, and C. Caffrey, Anthelmintic drug discovery: Into the future, J Parasitol, vol.12, issue.70, pp.125-158, 2015.
DOI : 10.1002/9781118884799.ch15

R. Martin, A. Robertson, and H. Bjorn, Target sites of anthelmintics, Parasitology, vol.114, pp.111-135, 1997.

L. Brown, A. Jones, S. Buckingham, C. Mee, and D. Sattelle, Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: Nicotinic acetylcholine receptors, a case study, International Journal for Parasitology, vol.36, issue.6, pp.617-641, 2006.
DOI : 10.1016/j.ijpara.2006.01.016

J. Aceves, D. Erlij, and R. Martinez-maranon, The mechanism of the paralysing action of tetramisole on Ascaris somatic muscle, British Journal of Pharmacology, vol.209, issue.3, pp.602-609, 1970.
DOI : 10.1111/j.1476-5381.1970.tb10601.x

M. Aubry, P. Cowell, M. Davey, and S. Shevde, Aspects of the pharmacology of a new anthelmintic: pyrantel, British Journal of Pharmacology, vol.6, issue.2, pp.332-376, 1970.
DOI : 10.1111/j.1476-5381.1970.tb08521.x

L. Colquhoun, L. Holden-dye, and R. Walker, The pharmacology of cholinoceptors on the somatic muscle cells of the parasitic nematode Ascaris suum, J Exp Biol, vol.158, pp.509-539, 1991.

R. Martin, C. Clark, S. Trailovic, and A. Robertson, Oxantel is an N-type (methyridine and nicotine) agonist not an L-type (levamisole and pyrantel) agonist: classification of cholinergic anthelmintics in Ascaris, International Journal for Parasitology, vol.34, issue.9, pp.1083-90, 2004.
DOI : 10.1016/j.ijpara.2004.04.014

L. Holden-dye, M. Joyner, O. Connor, V. Walker, and R. , Nicotinic acetylcholine receptors: A comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes, Parasitology International, vol.62, issue.6, pp.606-621, 2013.
DOI : 10.1016/j.parint.2013.03.004

M. Ballivet, C. Alliod, S. Bertrand, and D. Bertrand, Nicotinic Acetylcholine Receptors in the NematodeCaenorhabditis elegans, Journal of Molecular Biology, vol.258, issue.2, pp.261-270, 1996.
DOI : 10.1006/jmbi.1996.0248

M. Treinin, B. Gillo, L. Liebman, and M. Chalfie, Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon, Proceedings of the National Academy of Sciences, vol.95, issue.26, p.9860996, 1998.
DOI : 10.1073/pnas.95.26.15492

T. Boulin, M. Gielen, J. Richmond, D. Williams, P. Paoletti et al., Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor, Proceedings of the National Academy of Sciences, vol.105, issue.47, pp.18590-18595, 2008.
DOI : 10.1073/pnas.0806933105

T. Boulin, A. Fauvin, C. Charvet, J. Cortet, J. Cabaret et al., Functional reconstitution of Haemonchus contortus acetylcholine receptors in Xenopus oocytes provides mechanistic insights into levamisole resistance, British Journal of Pharmacology, vol.5, issue.1, pp.1421-1453, 2011.
DOI : 10.1111/j.1476-5381.2011.01420.x

M. Jospin, Y. Qi, T. Stawicki, T. Boulin, K. Schuske et al., A Neuronal Acetylcholine Receptor Regulates the Balance of Muscle Excitation and Inhibition in Caenorhabditis elegans, PLoS Biology, vol.270, issue.12, 2009.
DOI : 10.1371/journal.pbio.1000265.s011

URL : https://hal.archives-ouvertes.fr/inserm-00707610

S. Williamson, A. Robertson, L. Brown, T. Williams, D. Woods et al., The Nicotinic Acetylcholine Receptors of the Parasitic Nematode Ascaris suum: Formation of Two Distinct Drug Targets by Varying the Relative Expression Levels of Two Subunits, PLoS Pathogens, vol.22, issue.7, 2009.
DOI : 10.1371/journal.ppat.1000517.t002

H. Bennett, S. Williamson, T. Walsh, D. Woods, and A. Wolstenholme, ACR-26: A novel nicotinic receptor subunit of parasitic nematodes, Molecular and Biochemical Parasitology, vol.183, issue.2, pp.151-158, 2012.
DOI : 10.1016/j.molbiopara.2012.02.010

L. Rufener, N. Bedoni, R. Baur, S. Rey, D. Glauser et al., acr-23 Encodes a Monepantel-Sensitive Channel in Caenorhabditis elegans, PLoS Pathogens, vol.21, issue.8
DOI : 10.1371/journal.ppat.1003524.g005

S. Buxton, C. Charvet, C. Neveu, J. Cabaret, J. Cortet et al., Investigation of Acetylcholine Receptor Diversity in a Nematode Parasite Leads to Characterization of Tribendimidine- and Derquantel-Sensitive nAChRs, PLoS Pathogens, vol.26, issue.6098, p.24497826, 2014.
DOI : 10.1371/journal.ppat.1003870.s005

R. Baur, R. Beech, E. Sigel, and L. Rufener, Monepantel Irreversibly Binds to and Opens Haemonchus contortus MPTL-1 and Caenorhabditis elegans ACR-20 Receptors, Molecular Pharmacology, vol.87, issue.1, pp.96-102, 2015.
DOI : 10.1124/mol.114.095653

R. Laing, T. Kikuchi, A. Martinelli, I. Tsai, R. Beech et al., The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery, Genome Biology, vol.14, issue.8, p.23985316, 2013.
DOI : 10.1186/gb-2010-11-10-r106

R. Beech, A. Wolstenholme, C. Neveu, and J. Dent, Nematode parasite genes: what's in a name?, Trends in Parasitology, vol.26, issue.7, pp.334-374, 2010.
DOI : 10.1016/j.pt.2010.04.003

M. Blaxter, D. Ley, P. Garey, J. Liu, L. Scheldeman et al., A molecular evolutionary framework for the phylum Nematoda, Nature, vol.392, issue.6671, pp.71-76, 1998.
DOI : 10.1038/32160

R. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1799, 2004.
DOI : 10.1093/nar/gkh340

N. Millar, Assembly and subunit diversity of nicotinic acetylcholine receptors, Biochemical Society Transactions, vol.31, issue.4, pp.869-74, 2003.
DOI : 10.1042/bst0310869

J. Sleigh, Functional analysis of nematode nicotinic receptors, Bioscience Horizons, vol.3, issue.1, pp.29-39, 2010.
DOI : 10.1093/biohorizons/hzq005

J. Richmond and E. Jorgensen, One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction, Nature Neuroscience, vol.2, issue.9, pp.791-798, 1999.
DOI : 10.1038/12160

J. Lewis, C. Wu, H. Berg, and J. Levine, The Genetics of Levamisole Resistance in the Nematode Caenorhabditis elegans, Genetics, vol.95, issue.4, pp.905-933, 1980.

J. Fleming, M. Squire, T. Barnes, C. Tornoe, K. Matsuda et al., Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits, Journal Neurosci, vol.17, issue.15, pp.5843-57, 1997.

E. Culetto, H. Baylis, J. Richmond, A. Jones, J. Fleming et al., The Caenorhabditis elegans unc-63 Gene Encodes a Levamisole-sensitive Nicotinic Acetylcholine Receptor ?? Subunit, Journal of Biological Chemistry, vol.279, issue.41, pp.42476-83, 2004.
DOI : 10.1074/jbc.M404370200

URL : https://hal.archives-ouvertes.fr/hal-00198541

P. Towers, B. Edwards, J. Richmond, and D. Sattelle, The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit, Journal of Neurochemistry, vol.19, issue.1, p.15773900, 2005.
DOI : 10.1038/nature00891

D. Rayes, M. Flamini, G. Hernando, and C. Bouzat, Activation of Single Nicotinic Receptor Channels from Caenorhabditis elegans Muscle, Molecular Pharmacology, vol.71, issue.5, pp.1407-1422, 2007.
DOI : 10.1124/mol.106.033514

D. Touroutine, R. Fox, V. Stetina, S. Burdina, A. Miller et al., acr-16 Encodes an Essential Subunit of the Levamisole-resistant Nicotinic Receptor at the Caenorhabditis elegans Neuromuscular Junction, Journal of Biological Chemistry, vol.280, issue.29, pp.27013-27034, 2005.
DOI : 10.1074/jbc.M502818200

A. Robertson, H. Bjorn, and R. Martin, Resistance to levamisole resolved at the single-channel level, FASEB J, vol.13, issue.6, pp.749-60, 1999.

H. Qian, R. Martin, and A. Robertson, Pharmacology of N-, L-, and B-subtypes of nematode nAChR resolved at the single-channel level in Ascaris suum, The FASEB Journal, vol.20, issue.14, pp.2606-2614, 2006.
DOI : 10.1096/fj.06-6264fje

R. Martin, A. Robertson, S. Buxton, R. Beech, C. Charvet et al., Levamisole receptors: a second awakening, Trends in Parasitology, vol.28, issue.7, pp.289-96, 2012.
DOI : 10.1016/j.pt.2012.04.003

M. Blaxter and G. Koutsovoulos, The evolution of parasitism in Nematoda, Parasitology, vol.6, issue.S1, pp.26-39, 2015.
DOI : 10.1016/j.chom.2007.09.008

M. Dorris, M. Viney, and M. Blaxter, Molecular phylogenetic analysis of the genus Strongyloides and related nematodes, International Journal for Parasitology, vol.32, issue.12, pp.1507-1524, 2002.
DOI : 10.1016/S0020-7519(02)00156-X

L. Rufener, R. Baur, R. Kaminsky, P. Maser, and E. Sigel, Monepantel Allosterically Activates DEG-3/DES-2 Channels of the Gastrointestinal Nematode Haemonchus contortus, Molecular Pharmacology, vol.78, issue.5, pp.895-902, 2010.
DOI : 10.1124/mol.110.066498

S. Halevi, J. Mckay, M. Palfreyman, L. Yassin, M. Eshel et al., The C.elegansric-3 gene is required for maturation of nicotinic acetylcholine receptors, The EMBO Journal, vol.21, issue.5, pp.1012-1032, 2002.
DOI : 10.1093/emboj/21.5.1012

S. Halevi, L. Yassin, M. Eshel, F. Sala, S. Sala et al., Conservation within the RIC-3 Gene Family: EFFECTORS OF MAMMALIAN NICOTINIC ACETYLCHOLINE RECEPTOR EXPRESSION, M300170200 PMID, pp.34411-34418, 2003.
DOI : 10.1074/jbc.M300170200

N. Millar, RIC-3: a nicotinic acetylcholine receptor chaperone, British Journal of Pharmacology, vol.6, issue.044, pp.177-83, 2008.
DOI : 10.1038/sj.bjp.0707661

J. Haugstetter, T. Blicher, and L. Ellgaard, Identification and Characterization of a Novel Thioredoxin-related Transmembrane Protein of the Endoplasmic Reticulum, Journal of Biological Chemistry, vol.280, issue.9, pp.8371-80, 2005.
DOI : 10.1074/jbc.M413924200

S. Eimer, A. Gottschalk, M. Hengartner, H. Horvitz, R. J. Schafer et al., Regulation of nicotinic receptor trafficking by the transmembrane Golgi protein UNC-50, The EMBO Journal, vol.119, issue.20, pp.4313-4336, 2007.
DOI : 10.1038/sj.emboj.7601858

W. Grant, S. Skinner, J. Newton-howes, K. Grant, G. Shuttleworth et al., Heritable transgenesis of Parastrongyloides trichosuri: A nematode parasite of mammals, International Journal for Parasitology, vol.36, issue.4, pp.475-83, 2006.
DOI : 10.1016/j.ijpara.2005.12.002

X. Li, H. Massey, . Jr, T. Nolan, G. Schad et al., Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements, International Journal for Parasitology, vol.36, issue.6, pp.671-680, 2006.
DOI : 10.1016/j.ijpara.2005.12.007

H. Shao, X. Li, T. Nolan, H. Massey, . Jr et al., Transposon-mediated Chromosomal Integration of Transgenes in the Parasitic Nematode Strongyloides ratti and Establishment of Stable Transgenic Lines, PLoS Pathogens, vol.8, issue.8, p.22912584, 2012.
DOI : 10.1371/journal.ppat.1002871.t003

T. Higazi, A. Merriweather, L. Shu, R. Davis, and T. Unnasch, Brugia malayi: transient transfection by microinjection and particle bombardment, Experimental Parasitology, vol.100, issue.2, pp.95-102, 2002.
DOI : 10.1016/S0014-4894(02)00004-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.590.356

S. Xu, C. Liu, G. Tzertzinis, E. Ghedin, C. Evans et al., In vivo transfection of developmentally competent Brugia malayi infective larvae, International Journal for Parasitology, vol.41, issue.3-4, pp.3-4355, 2011.
DOI : 10.1016/j.ijpara.2010.10.005

T. Dutta, P. Banakar, and U. Rao, The status of RNAi-based transgenic research in plant nematology, Frontiers in Microbiology, vol.8, p.25628609, 2015.
DOI : 10.1371/journal.pone.0069463

M. Selkirk, S. Huang, D. Knox, and C. Britton, The development of RNA interference (RNAi) in gastrointestinal nematodes, Parasitology, vol.15, issue.05, pp.605-617, 2012.
DOI : 10.1371/journal.pone.0006622

C. Britton and L. Murray, Using Caenorhabditis elegans for functional analysis of genes of parasitic nematodes, International Journal for Parasitology, vol.36, issue.6, pp.651-660, 2006.
DOI : 10.1016/j.ijpara.2006.02.010

M. Kwa, J. Veenstra, M. Vandijk, and M. Roos, ?-Tubulin Genes from the Parasitic Nematode Haemonchus contortus Modulate Drug-Resistance in Caenorhabditis elegans, J Mol Biol, vol.246, issue.4, p.7877171, 1995.

A. Cook, N. Aptel, V. Portillo, E. Siney, R. Sihota et al., Caenorhabditis elegans ivermectin receptors regulate locomotor behaviour and are functional orthologues of Haemonchus contortus receptors, Molecular and Biochemical Parasitology, vol.147, issue.1, pp.118-143, 2006.
DOI : 10.1016/j.molbiopara.2006.02.003

S. Glendinning, S. Buckingham, D. Sattelle, S. Wonnacott, and A. Wolstenholme, Glutamate-Gated Chloride Channels of Haemonchus contortus Restore Drug Sensitivity to Ivermectin Resistant Caenorhabditis elegans, PLoS ONE, vol.67, issue.7, p.21818319, 2011.
DOI : 10.1371/journal.pone.0022390.t001

M. Guest, K. Bull, R. Walker, K. Amliwala, O. Connor et al., The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans, International Journal for Parasitology, vol.37, issue.14, pp.1577-88, 2007.
DOI : 10.1016/j.ijpara.2007.05.006

C. Welz, N. Kruger, M. Schniederjans, S. Miltsch, J. Krucken et al., SLO-1-Channels of Parasitic Nematodes Reconstitute Locomotor Behaviour and Emodepside Sensitivity in Caenorhabditis elegans slo-1 Loss of Function Mutants, PLoS Pathogens, vol.7, issue.4, p.21490955, 2011.
DOI : 10.1371/journal.ppat.1001330.s003

T. Gibson and . Anthelmintics, Helminth diseases of cattle, sheep and horses in Europe, pp.50-52, 1973.

R. Cornwell, R. Jones, and J. Pott, Critical trials with morantel tartrate against Parascaris eguorum, Res Vet Sci, vol.14, issue.1, pp.134-140, 1973.
DOI : 10.1136/vr.93.4.94

URL : http://veterinaryrecord.bmj.com/cgi/content/short/93/4/94

B. Storey, C. Marcellino, M. Miller, M. Maclean, E. Mostafa et al., Utilization of computer processed high definition video imaging for measuring motility of microscopic nematode stages on a quantitative scale: ???The Worminator???, International Journal for Parasitology: Drugs and Drug Resistance, vol.4, issue.3, pp.233-276, 2014.
DOI : 10.1016/j.ijpddr.2014.08.003

L. Jambre, L. Martin, and P. , Effectiveness of morantel tartrate and naphthalophos against levamisole resistantOstertagia in sheep, Veterinary Science Communications, vol.29, issue.1, pp.153-161, 1979.
DOI : 10.1007/BF02268962

N. Sangster, H. Whitlock, I. Russ, M. Gunawan, D. Griffin et al., Trichostrongylus colubriformis and Ostertagia circumcincta Resistant to Levamisole, Morantel Tartrate and Thiabendazole?Occurrence of Field Strains, Res Vet Sci, vol.27, issue.1, pp.106-116, 1979.

F. Borgsteede, The difference between two strains of Ostertagia ostertagi in resistance to morantel tartrate, International Journal for Parasitology, vol.18, issue.4, pp.499-502, 1988.
DOI : 10.1016/0020-7519(88)90013-6

N. Sangster, F. Riley, and G. Collins, Investigation of the mechanism of levamisole resistance in trichostrongylid nematodes of sheep, International Journal for Parasitology, vol.18, issue.6, pp.813-821, 1988.
DOI : 10.1016/0020-7519(88)90123-3

J. Vanwyk, F. Malan, H. Gerber, and R. Alves, The problem of escalating resistance of Haemonchus contortus to the modern anthelmintics in South Africa, Onderstepoort J Vet Res, vol.56, issue.1, pp.41-50, 1989.

J. Vanwyk, G. Bath, H. Gerber, and R. Alves, A field strain of Trichostrongylus colubriformis resistant to levamisole and morantel in South Africa, Onderstepoort J Vet Res, vol.57, issue.2, pp.119-141, 1990.

F. Borgsteede, Further studies with a strain of Ostertagia ostertagi resistant to morantel tartrate, International Journal for Parasitology, vol.21, issue.7, pp.867-70, 1991.
DOI : 10.1016/0020-7519(91)90157-3

P. Mckenna, The efficacy of levamisole and ivermectin against a morantel-resistant strain of Trichostrongylus colubriformis, N Z Vet J, vol.33, issue.11, p.16031119, 1985.

P. Waller, R. Dobson, D. Obendorf, and R. Gillham, Resistance of Trichostrongylus colubriformis to levamisole and morantel: Differences in relation to selection history, Veterinary Parasitology, vol.21, issue.4, pp.255-63, 1986.
DOI : 10.1016/0304-4017(86)90051-8

M. Roos, M. Otsen, R. Hoekstra, J. Veenstra, and J. Lenstra, Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus, International Journal for Parasitology, vol.34, issue.1, p.14711596, 2004.
DOI : 10.1016/j.ijpara.2003.10.002

A. Delannoy-normand, J. Cortet, J. Cabaret, and C. Neveu, A suite of genes expressed during transition to parasitic lifestyle in the trichostrongylid nematode Haemonchus contortus encode potentially secreted proteins conserved in Teladorsagia circumcincta, Veterinary Parasitology, vol.174, issue.1-2, pp.106-120, 2010.
DOI : 10.1016/j.vetpar.2010.07.017

S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-402, 1997.
DOI : 10.1093/nar/25.17.3389

J. Bendtsen, H. Nielsen, G. Von-heijne, and S. Brunak, Improved Prediction of Signal Peptides: SignalP 3.0, Journal of Molecular Biology, vol.340, issue.4, pp.783-95, 2004.
DOI : 10.1016/j.jmb.2004.05.028

J. Schultz, F. Milpetz, P. Bork, and C. Ponting, SMART, a simple modular architecture research tool: Identification of signaling domains, Proceedings of the National Academy of Sciences, vol.95, issue.11, pp.5857-64, 1998.
DOI : 10.1073/pnas.95.11.5857

J. De-boer, Y. Yan, G. Smant, E. Davis, and T. Baum, In-situ hybridization to messenger RNA in Heterodera glycines, J Nematol, vol.30, issue.3, pp.309-321, 1998.

T. Boulin, G. Rapti, L. Briseno-roa, C. Stigloher, J. Richmond et al., Positive modulation of a Cys-loop acetylcholine receptor by an auxiliary transmembrane subunit, Nature Neuroscience, vol.269, issue.10, pp.1374-81, 2012.
DOI : 10.1085/jgp.61.6.687

S. Brenner, The genetics of Caenorhabditis elegans, Genetics, vol.77, issue.1, pp.71-94, 1974.

C. Mello, J. Kramer, D. Stinchcomb, and A. V. , Efficient gene-transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences, EMBO J, vol.10, issue.12, pp.3959-70, 1991.