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Abstract. An s-subset of codewords of a binary code X is said to be
(s,£)-bad in X if the code X contains a subset of other ¢ codewords such
that the conjunction of the £ codewords is covered by the disjunctive sum
of the s codewords. Otherwise, the s-subset of codewords of X is called
(s,£)-good in X. A binary code X is said to be a cover-free (CF) (s, £)-
code if the code X does not contain (s,£)-bad subsets. In this paper,
we introduce a natural probabilistic generalization of CF (s, ¢)-codes,
namely: a binary code X is said to be an almost CF (s,{)-code if the
relative number of its (s, £)-good s-subsets is close to 1. We develop a
random coding method based on the ensemble of binary constant weight
codes to obtain lower bounds on the capacity of such codes. Our main
result shows that the capacity for almost CF (s, £)-codes is essentially
greater than the rate for ordinary CF (s, £)-codes.

Keywords: Almost cover-free codes and designs, capacity, random coding bound

1 Statement of Problem and Results

1.1 Notations and Conventions

In what follows, the symbol £ denotes definitional equalities. For any posi-
tive integer n put [n] £ {1,2,...,n}. Let N and t be positive integers, |A| —
the size of set A. The standard symbol |a] ([a]) will be used to denote the
largest (least) integer < a (> a). Introduce a binary N x t matrix X = ||z;(5)]|
having N rows @; = (2;(1),2;(2),...,2:(t)), i € [N], and t columns z(j) =
(z1(4), 22(4),---,2n(4)), 7 € [t]. Any such matrix X is called a binary code of
length N and size t = |28V | (briefly, (N, R)-code), where a fixed parameter
R > 0 is called the rate of code X. A column z(j) € {0,1}" is called a j-th

N

codeword. The number of 1’s in column z(j), i.e., |£(j)| £ 3 x;(4), is called the
i=1
weight of z(j), j € [t].
For binary vectors u £ (uy,...,uy) € {0,1}¥ and v £ (vy,...,vn) €
{0,1}", we will use the standard notations of component-wise disjunction u\/v
and conjunction u \ v. We say that u is covered by v (v = u) if u\/v=v.



1.2 Almost Cover-Free Codes

Let s and £ be positive integers such that s+¢ < t and Ps(t) £ {S : S C [t], |S| =
s} is the collection of all s-subsets of the set [t]. Note that |P,(t)| = (}).

Definition 1. Let X = (x(1),2(2),...,z(t)) be an arbitrary binary code
of length N and size t. A set S € P;(t) is said to be (s, £)-bad in X if there exists
aset L, L C [t]\S of size |£| = £ such that

V z() = A =0).

JES JEL

Otherwise, the set S € Py(t) is called an (s, £)-good set in X.

Let the symbol B(s, 4, X) (G(s,¥, X)) denote the collection of all (s, £)-bad
((s,£)-good) sets S € Py(t) in X and |B(s, ¢, X)| (|G(s,¥¢, X)|) is the size of the
corresponding collection. Obviously, |B(s, £, X)| + |G(s, £, X)| = ().

Note an evident statement.

Proposition 1. For s > 2 and £ > 1, any (s,£ + 1)-good ((s,{)-bad)
set in X is (s,€)-good ((s,£ + 1)-bad) set in X, i.e., the injections are true:
B(s,4,X) CB(s,0+1,X) and G(s,£+1,X) C G(s,¢,X).

Definition 2. Lete¢, 0 < e < 1, be a fixed parameter. A code X is said to be
an almost cover-free (s,{)-code of error probability e or, briefly, CF (s, ¥, €)-code
if

B(s, 0, X t
|(5(’t)7)| <e = |G(5,4,X)>(1—¢) <s> (1)
Example 1. Consider 5 x 5 code X defined as: (1) = (1,0,0,0,0), (2) =
(0,1,1,1,0), (3) = (0,1,1,0,1), (4) = (1,1,0,1,1), =(5) = (1, ,1,1,1). Then
G(2,2, X) = {{1;2}, {1;3}, {1;4}, {1;5}, {23}} and X is (2,2, 3)-code.

From Definition 2 and Proposition 1, it follows

Proposition 2. Any CF (s, + 1,€)-code is a CF (s,¢,€)-code.

Monotonicity with respect to parameter s is provided by

Proposition 3. If X is a CF (s,{,¢)-code of size t and length N, then
there exists a CF (s — 1,£,€)-code X' of sizet — 1 and length N.

Proof of Proposition 3. Let B(s,/, X,i) 2{S : i€ S € B(s,¢,X)} de-
note the collection of all (s,#)-bad sets S in X containing the element i € [t].
Note that the cardinalities |B(s, 4, X,4)|, 0 < |B(s,¢, X,i)| < (zj), i € [t],
satisfy the equality:

t
S IB(s, 6, X,1)] = 5+ [B(s, £, X)| < s (t) ‘

: S
=1

where the last inequality follows from (1). This means that there exists j € [t],
such that [B(s, £, X, )] < (“~}) e. Then one can check that the code X’ obtained
from X by deleting the column z(j) is a CF (s — 1,4, €¢)-code of size t — 1 and
length N. O

For e = 0, the concept of CF (s,/,€)-code can be considered as a natural
probabilistic generalization of the combinatorial concept of CF (s,f)-code that



is defined in [1]-[2] as the incidence matriz of a family of finite sets in which no
intersection of £ sets is covered by the union of s others. For the case £ =1, CF
codes and their applications were introduced in [3]. For ¢ > 2, CF (s, ¥{)-codes
along with their applications to key distribution patterns were firstly suggested
in [4].
Let t(N,s,£) be the maximal size of CF (s,{)-codes of length N and let
N(t,s,?) be the minimal length of CF (s, £)-codes of size t. Then the number
— logy t(N, s,0) —  log,t
2 fm =222 — fim —2— 2
Bs, ) N oo N v N(t,s,£) @)
is called [2] the rate of CF (s, £)-codes. In the recent papers [5, 6], one can find a
detailed survey of the best known lower and upper bounds on the rate R(s, ).
Using the conventional information-theoretic terminology accepted in the
probabilistic coding theory [7], introduce
Definition 3. Let R, R > 0, be a fixed parameter. Taking into account
inequality (1), define the error for almost CF (s, £)-codes:

e(s,é,R,N)éX:trgigRNJ {W} (3)

where the minimum is taken over all (IV, R)-codes X. The function
— -1 L, R,N
E(s,R) 2 T —082C&LRN) (4)

N—o00 N
is said to be the error exponent for almost CF (s, £)-codes, the number
C(s,0) = sup{R: E(s,{,R) >0} (5)

is said to be the capacity for almost CF (s,f)-codes and rate R(s,{) defined
by (2) is called the zero-error capacity for almost CF (s, £)-codes.

For the particular case £ = 1, Definitions 1-3 were suggested in our paper [8],
in which we introduce the concept of almost disjunctive list-decoding codes. The
best presently known constructions of such codes were proposed in [9]. Bounds
on the rate for these constructions were computed in the recent paper [10].

Definitions 1-3 and Proposition 1-3 lead to

Theorem 1. (Monotonicity properties.)  The following inequalities hold
true

R(s+1,0) < R(s,f) < R(s,£—1), C(s+1,0) <C(s,£) <C(s,£—1),
E(s+1,{,R) <E(s,{,R) <E(s,{—1,R) s>1, £>2,  R>0.

1.3 Almost Cover-Free Designs

By Ps(£,t) denote the collection of supersets p, p 2 (Py,Ps,...,P,), Pi C
Pe(t), i € [s], where each p consists of s disjoint sets P C [¢] of size |P| = ¢, i.e.:
P Clt], |P|=¢, }

ﬁsgﬂfé :P7P?""PS’
( ) {p (1 2 ) pZmPJ:QforZ#j,%]e[s]v



Obviously, the collection Py (£, t) has the cardinality

el =5(5) () (F): (0

For a superset p € P, (¢,t) and a code X, introduce the binary vector r(p, X):

r(p, X) 2 \/ A\ =(), r(p.X)2 (ri,re,...,rn) € {0, 1}V, (7)

PecpjeP

One can see that the i-th component of r(p, X) can be written in the form:

(8)

1, if there exists P € p such that z;(j) =1 for all j € P,
Ty =
0, otherwise.

Definition 4. Let X = (z(1),z(2),...,z(t)) be an arbitrary binary code
of length N and size t. A superset p, p € [:’S(f, t), is said to be an (s,£)-bad
superset in X, if there exists another superset p’ € I:’s(é, t), p # p’, such that
r(p, X) = r(p’, X). Otherwise, the superset p is said to be (s, £)-good superset
in X.

Let the symbol B(s,?, X) (G(s, ¢, X)) denote the collection of all (s,¢)-
bad ((s,£)-good) supersets p, p € Py(f,t), for the code X and |B(s, ¢, X)|
(|G(s, ¢, X)|) is the size of the corresponding collection. Obviously, |B(s, £, X )|+
|G(S,£, X)| = |,Ps(€7 t)|

Definition 5. Let ¢, 0 < e <1, be a fixed parameter. A code X is said to
be an almost cover-free (s, f)-design of error probability € or, briefly, CF (s, /, ¢€)-
design if

IB(s, ¢, X)| A 5
W < = |G(s,4,X)| > (1—¢€)|Ps(L,t)]. (9)

Example 2. For the code X described in Example 1, the collection of (2, 2)-
bad supersets

B(s, £, X) = {({1:2}, {4:5}), ({1:3},{4;5}), ({L:4},{2:3}), ({1;5}. {2:3})}.
It follows that X is a CF (2,2, ;£)-design.

Definition 6. Let R, R > 0, be a fixed parameter. Taking into account
inequality (9) define the error for almost CF (s, ¢)-designs:

é(s,/,R,N) = min M ) (10)
X i t=[20N] |Ps(£,1)]

where the minimum is taken over all (N, R)-codes X. The function

E(s,(,R) 2 Tm —log, é(s, £, R, N)



is said to be the error exponent for almost CF (s, ¢)-designs, the number
C(s,0) 2 sup{R : E(s,/, R) > 0}

is called the capacity for almost CF (s, ¢)-designs.

For the particular case £ = 1, Definitions 4-6 were already introduced in [11]
to describe the model called planning screening experiments. In [11], it was
proved that the capacity of almost CF (s, 1)-designs C'(s,1) = 1/s. One can
see that Definitions 4-6 represent a natural generalization of almost CF (s, 1)-
designs. We conjecture that the capacity C(s,¢) = 1/(s{).

In Section 2, we establish

Theorem 2. The capacities and the error exponents satisfy the inequality

C(s,0) < C(s,0) <1/(sl), E(s,{,R) < E(s,{,R).

However, in spite of the greater capacity, using of CF (s, ¢, €)-designs for the
superset identification problem p € Ps(ﬁ,t) is practically unacceptable, since it
requires much greater complexity, which is evidently equal to the complexity
of exhaustive search |Py(¢,t)| ~ t*¢. It will be shown in Section 1.5 that CF
(s, £, ¢)-codes are efficient CF (s, ¢, ¢)-designs and for such codes the algorithm
of identification supersets p € P (£,t), is essentially faster than the trivial one,
and its complexity is proportional to t‘.

1.4 Lower Bounds on R(s,?), C(s,¥£)

The best presently known upper and lower bounds on the rate R(s, ¢) of cover-
free (s, ¢)-codes were presented in [5,6]. If £ > 1 is fixed and s — oo, then these
bounds have the following asymptotic form:

(€4 1)+ logy s
P N |

£+ 1) log, s
9el—1  Gi+1

(1+0(1)) < R(s,0) <

(I4+0(1)). (12)

In the present paper, we suggest a modification of the random coding method
developed in [5] and [8], which permits us to obtain a lower bound on the capacity
C(s,f). Let [x]" and h(z) denote the positive part function and the binary
entropy function respectively. In Section 3, we prove

Theorem 3. (Random coding lower bound C(s,¥)).

Claim 1. For { > 2, the capacity for almost CF codes satisfies inequality

C(s.0) 2 C(s,0) 2 § max DICQ.0) (13)
where the function D(L,Q,q) is defined in the parametric form
D(£,Q.q) = (1 - Q)¢ logy z — (1 — g) log,[1 — (1 2)"+ (14)
re(Dama - (S22 g) a- 2 logl - o)+ @,

z z



and parameters z and ¢ are uniquely determined by the following equations

(1-2)1-(1-2)%—(1-¢1-2)

@= 1—(1—2) ’

¢=1-(1-Q)°. (15
Claim 2. For{> 2 and s — oo, the lower asymptotic bound on C(s,{) is

logye (41

C(s, ) > —(1+0(1)). (16)

st

1.5 Boolean Model for Nonadaptive Search of Supersets

Definition 7. [2] A binary N x t matrix X is called a cover-free (s,{)-
design or, briefly, CF (s, )-design if for any p’,p" € Ps((,t), p’ # p”, the vec-
tors r(p’, X) # r(p”, X).

Suppose a set of ¢ samples is given. We identify it with the set [¢t]. In the
present paper we consider a generalization of the boolean search model for sets
[3] which is called the boolean search model for supersets [2]. Assume that a
positive superset p € Py (¢,1) is fixed. Our aim is to detect it using the minimal
number of group tests, where each test checks whether a testing group contains
at least one set P € p or not. Now assume that we use N tests. They can be
encoded by a code X = ||z;(j)|- A column x(j) corresponds to the j-th sample;
a row x; corresponds to the i-th test. We put z;(j) £ 1 iff the j-th sample is
included into the i-th testing group; otherwise, z;(j) £ 0. The outcomes (8) of all
N tests form the binary vector r(p, X) (7), where p € Py((,t) is the (unknown)
positive superset. Thus, the code X should be designed in such a way that we
should be able to detect a superset p given the vector r(p, X). Obviously, it
is possible if and only if X is a CF (s,¢)-design. Note that we deal with the
nonadaptive search model arised from the needs of molecular biology and firstly
suggested in [12].

Let X be a binary N x ¢t matrix and p(") e P, (¢,t) be an unknown superset.
Any fixed set P’ C [t], |P'| < £, is called acceptable for the known vector r(k») £
r(p("™), X) if the conjunction A x(j) is covered by . In the given model,

jep!
an effective decoding algorithm is based on the following

Proposition 4. [2] If X is an CF (s, ¢)-code, then any superset p € P, (¢, )
is composed of all acceptable sets for r). This means that the decoding com-
plexity is proportional to (}) ~ ¢’ and doesn’t depend on s.

Note that in the general case of CF (s,f)-design and the trivial decoding
algorithm, we need to check all possible supersets p € Py (4,t). If s and £ are
fixed and ¢t — oo, then the number of such comparisons (decoding complexity)
is proportional to |Ps(£, t)| ~ t5¢. Thus, CF (s, {)-codes form a class of CF (s, {)-
designs for which the decoding algorithm based on Proposition 4 is strongly
better than the trivial one.



Let £ > 1 be fixed and s — oo. Taking into account (12), we conclude that
for sufficiently large t the use of CF (s, {)-codes gives the bounds:

logys (£ + 1)1
gL T 9el—1

log, s (£+ 1)1
(1+0(1)) > logyt/N > sef1 iy ez+)1 (1+o(1)).

The capacity C(s, ) can be interpreted as the theoretical tightest upper bound
on the information rate log, t/N of CF (s, ¥, ¢)-codes with error probability ¢ —
0. Therefore, the bound (16) means that for £ > 2, s — oo and sufficiently large
t, using of CF (s,/,€)-codes guarantees the inequality:

log,e 1
oz /N > 282 L0040,

2 Proof of Theorem 2.

For any superset p € Py((,t), p = {P1, Py, ..., Py}, define the set T(p):
= {S ePs(t): S={a,a9,...,as}, a;, €P;, P,Ep,i€E [s]}

Observe that if all sets S € T'(p) are (s, £)-good in X, then the superset p is also
a (s,£)-good superset in X.

Assume that a code X is a CF (s, ¥, €)-code. It means that the number (1)
of bad (s, ()-sets doesn’t exceed € - (). Given a bad (s, £)-set B € P,(t) for the
code X, one can check that the number of p € P,(¢,t) such that B € T(p)

is at most ( (te 51 )((éé%(;) 1)) (2(1Z 1)) This implies that the number of bad

(s, £)-supersets is at most € - (* )(s(e | )( S(E)zzlll)) e (2(415:11)) or e- 05 -|P,(L,1)),
where |P,(¢,t)] is computed (6). Thus, X is also a CF (s, £, e-£5)-design. In other
words, we proved the relations C(s, ) < C’(s,ﬁ) and E(s,¢,R) < E(S,E, R).
Now, fix R > 0 and ¢ > 0 and suppose that the code X is a CF (s,/,€)-
design of length N and size t £ LQRN J Observe that for any two different good

(see Def. 4) supersets p, p’ € G(S,E,X), p # p’, two vectors r(p, X) and r(p’, X)
defined by (7) are distinct, i.e., r(p, X) # r(p, X). From the definition (9) of CF
(s, 4, €)-design, we get

A 1/t sl 20
1—e€)|Ps(¢,t 1 <2V ¢t=]2"V]. (1
gl =a-0-5 (L) (M) (7) =2 =12 an
The comparison of the left and right-hand sides of (17) leads to the bound
. —1
é(s,{,R,N) > 1—2N. (|7>5(1z,t)\) = 127 NEER-Dre@] N 5 o0,

This inequality means that the condition 2 < 1/(sf) is necessary for E(s,{,R) >
0. It follows that C(s, () < . O



3 Proof of Theorem 3

Here we present a sketch of the proof only. The preprint containing a full
version of the given article is available at: arXiv: 1410.8566.
Proof of Claim 1. For a code X, the number |B(s, ¢, X)| of (s, {)-bad sets
in the code X can be represented in the form:

1 if the set S € B(s, ¢, X),
0 otherwise.

IB(s,4,X)| & Z V(X,S), w(X,S)ﬁ{
SePs(

(18)

Let Q,0< @ < 1, and R, 0 < R < 1, be fixed parameters. Define the ensemble

{N,t,Q} of binary (N X t)-matrices X = (x(1),z(2),...x(t)), where columns

z(i), i € [t], t = |28V, are chosen independently and equiprobably from the set

consisting of (LQJ\J’VJ) columns of the fixed weight |QN |. Fix two subsets S, £ C [¢]

such that S| = s, |£] = £ and SNL = @. From (18) it follows that for {N,¢, Q},
the expectation |B(s, ¢, X)| of the number |B(s, ¢, X)| is

IB(s, ¢, X)| = |Ps(t)| Pr{S € B(s,¢,X)}.
Thus, the expectation of the error probability for almost CF (s, £)-codes is
EM(s,6,R,Q) 2 [Py(t)] ' B(s,0,X)] = Pr{S € B(s,£,X)}, (19)

where t = |28V |, The evident random coding upper bound on the error proba-
bility (3) for cover-free (s, ¢)-codes is formulated as the following inequality:

. B(s, ¢, X)]
(,R,N) 2 [B(s, £, X)] < EWN(s, 0, R 0 1.
6(87 b b ) thiligRNJ { |’Ps(t)‘ } — (87 b 7Q)7 < Q <

(20)
The expectation ENV) (s, ¢, R, Q) defined by (19) can be represented as follows

min{N, s|QN |}
EM(s,0,R,Q) = Z Pr{SeB(s,K,X)/ \/:z:(i) :k}x
min{N,sLQNJ}

k=|QN | €S
PR Y (QMmm{<t>(M@QM}
k=QN|
(21)

where we apply the total probability formula and the standard union bound
for the conditional probability Pr {U C; /C’} < min {1; ZPr{C’i/C}} and
introduce the notations ' '

PN (0,Q, k) 2 Vﬂ®>Adﬁ/

i€S jeL

V (i)

€S

=k (22)




and

V 2()

i€S

PN (5,Q,k) £ Pr{

—k}7 [QN] <k <min{N,s|QN]}. (23)

Let k 2 [¢N] and the functions

~log, [PV (6.Q.1)]

D(.Q.g) 2 Jim ~ , (21)
A . - 10g2 |:7D2(N) (S, Qa k)i|
A(s,Q,q) = lim (25)

N—oc0 N

denote the exponents of the logarithmic asymptotic behavior for the probability
of events (22) and (23) for {N,t,Q} respectively. Define § = 1 — (1 — Q)*.

Lemma 1. The function A(s, @, q) of the parameter ¢, Q < g < min{1, sQ},
defined by (25) can be represented in the parametric form

A(s,Q,q) = (1 - q)logy(1 — ) + qlog, LQ_yy] + 5Q log, ! ; Y1 sh(Q), (26)

1—9°
1—y’

=Q 0<y<l. (27)

In addition, A(s,Q,q) as a function of q attains its unique minimal value which
is equal to 0 at g =4 =1 — (1 —Q)*.

Lemma 2. For ¢ > 2, the value of the function D(¢,Q,q) defined by (24)
at point ¢ = 4 is equal to

D(l,Q,4) = (1= Q) logy z — (1 = §)logy[1 — (1 - 2)]+
re (200 - (S22 0) 1= ) 1oglt - 1+ (@),
where z is uniquely determined by the following equation

(1-2)0-(01-2)"-(1-9¢20-2)"
1—(1—2)¢ '

Q=

The inequality (21) and the random coding bound (20) imply that the error
probability exponent (11) satisfies the inequality

E(s,/,R) > E(s,/,R) = Or<n§><<1 E(s,4,R,Q), (28)

E(s,(,R,Q) & Q<q<1§1liirﬂ1,scg} {A(s,Q.9) +[D(£,Q,q) —¢R]T}.  (29)



Lemma 1 states that A(s, @, q) > 0 if ¢ # §. In particular, the condition ¢ # §
implies E(s,?¢, R,Q) > 0. Therefore, if { R < D({,Q,§) then E(s,¢,R,Q) > 0,
what, in turn, means (see (5) and (28)) that

1
C(s,ﬁ) Z Q(Své) = z OI<nCE)%}<(1 D<£> Qa ‘j), where (j =1- (1 - Q)S

Thus, the lower bound (13) is established. O

Proof of Claim 2. Let £ > 2 and s — co. Substituting z = s/(s + £) in

(13)-(15) and computing the asymptotic behaviour complete the proof. O
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