Quality-driven and real-time iris recognition from close-up eye videos

Valérian Némesin 1 Stéphane Derrode 2
1 GSM - GSM
FRESNEL - Institut FRESNEL
2 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : This paper deals with the computation of robust iris templates from video sequences. The main contribution is to propose (i) optimal tracking and robust detection of the pupil, (ii) smart selection of iris images to be enrolled, and (iii) multi-thread and quality-driven decomposition of tasks to reach real-time processing. The evaluation of the system was done on the Multiple Biometric Grand Challenge dataset. Especially we conducted a systematic study regarding the fragile bit rate and the number of merged images, using classical criteria. We reached an equal error rate value of 0.2% which reflects high performance on this database with respect to previous studies.
Document type :
Journal articles
Complete list of metadatas

Cited literature [26 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01276600
Contributor : Stéphane Derrode <>
Submitted on : Saturday, February 20, 2016 - 7:02:56 AM
Last modification on : Thursday, January 23, 2020 - 6:22:16 PM
Long-term archiving on: Saturday, May 21, 2016 - 10:18:36 AM

File

Nemesin2014.pdf
Files produced by the author(s)

Identifiers

Citation

Valérian Némesin, Stéphane Derrode. Quality-driven and real-time iris recognition from close-up eye videos. Signal, Image and Video Processing, Springer Verlag, 2016, 10 (1), pp.153-160. ⟨10.1007/s11760-014-0720-x⟩. ⟨hal-01276600⟩

Share

Metrics

Record views

441

Files downloads

423