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Explore First, Exploit Next:

The True Shape of Regret in Bandit Problems

Aurélien Garivier∗, Pierre Ménard†, Gilles Stoltz‡

June 16, 2016

Abstract

We revisit lower bounds on the regret in the case of multi-armed bandit problems. We obtain
non-asymptotic, distribution-dependent bounds and provide straightforward proofs based only
on well-known properties of Kullback-Leibler divergences. These bounds show in particular that
in an initial phase the regret grows almost linearly, and that the well-known logarithmic growth
of the regret only holds in a final phase. The proof techniques come to the essence of the
information-theoretic arguments used and they are deprived of all unnecessary complications.

1 Introduction.

After the works of Lai and Robbins [16] and Burnetas and Katehakis [8], it is widely admitted
that the growth of the cumulative regret in a bandit problem is a logarithmic function of time,
multiplied by a sum of terms involving Kullback-Leibler divergences. The asymptotic nature of the
lower bounds, however, appears spectacularly in numerical experiments, where the logarithmic shape
is not to be observed on small horizons (see Figure 1, left). Even on larger horizons, the second-
order terms keeps a large importance, which causes the regret of some algorithms to remain way
below the “lower bound” on any experimentally visible horizon (see Figure 1, right; see also Garivier
et al. [13]).

First contribution: a folk result made rigorous. It seems to be a folk result (or at least,
a widely believed result) that the regret should be linear in an initial phase of a bandit problem.
However, all references that we were pointed out exhibit such a linear behavior only for limited
bandit settings; we discuss them below, in the section about literature review. We are the first to
provide linear distribution-dependent lower bounds for small horizons that hold for general bandit
problems, with no restriction on the shape or on the expectations of the distributions over the arms.

Thus we may draw a more precise picture of the behavior of the regret in any bandit problem.
Indeed, our bounds show the existence of three successive phases: an initial linear phase, when
all the arms are essentially drawn uniformly; a transition phase, when the number of observations
becomes sufficient to perceive differences; and the final phase, when the distributions associated
with all the arms are known with high confidence and when the new draws are just confirming the
identity of the best arms with higher and higher degree of confidence (this is the famous logarithmic
phase). This last phase may often be out of reach in applications, especially when the number of
arms is large.
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Figure 1: Expected regret of Thompson [18] Sampling (blue, solid line) on a Bernoulli bandit
problem with parameters (µa)16a66 = (0.05, 0.04, 0.02, 0.015, 0.01, 0.005); expectations are ap-
proximated over 500 runs.

Versus the Lai and Robbins [16] lower bound (red, dotted line) for a Bernoulli model; here kl denotes
the Kullback-Leibler divergence (5) between Bernoulli distributions.

Left : the shape of regret is not logarithmic at first, rather linear.
Right : the asymptotic lower bound is out of reach unless T is extremely large.

Second contribution: a generic tool for proving distribution-dependent bandit lower
bounds. On the technical side, we provide straightforward proofs, based on some fundamen-
tal information-theoretic inequality, which generalizes and simplifies previous approaches based on
explicit changes of measures. In particular, we are able to re-derive the asymptotic distribution-
dependent lower bounds of Lai and Robbins [16] and Burnetas and Katehakis [8] in a few lines, and
do the same also for the non-asymptotic bounds of Bubeck et al. [6]. The proof techniques come to
the essence of the arguments used so far in the literature and they are deprived of all unnecessary
complications; they only rely on well-known properties of Kullback-Leibler divergences.

As a final set of results, we offer non-asymptotic versions of the lower bounds of Lai and Rob-
bins [16] and Burnetas and Katehakis [8] for large horizons.

1.1 Setting.

We consider the simplest case of a stochastic bandit problem, with finitely many arms indexed
by a ∈ {1, . . . ,K}. Each of these arms is associated with an unknown probability distribution νa
over R. We assume that each νa has a well-defined expectation and call ν = (νa)a=1,...,K a bandit
problem.

At each round t > 1, the player pulls the arm At and gets a real-valued reward Yt drawn inde-
pendently at random according to the distribution νAt . This reward is the only piece of information
available to the player.

Strategies. A strategy ψ associates an arm with the information gained in the past, possibly
based on some auxiliary randomization; without loss of generality, this auxiliary randomization is
provided by a sequence U0, U1, U2, . . . of independent and identically distributed random variables,
with common distribution the uniform distribution over [0, 1]. Formally, a strategy is a sequence
ψ = (ψt)t>0 of measurable functions, each of which associates with the said past information,
namely,

It =
(
U0, Y1, U1, . . . , Yt, Ut

)
,

2 Garivier, Ménard, Stoltz



Explore first, exploit next: the true shape of regret in bandit problems

an arm ψt(It) = At+1 ∈ {1, . . . ,K}, where t > 0. The initial information reduces to I0 = U0 and the
first arm is A1 = ψ0(U0). The auxiliary randomization is conditionally independent of the sequence
of rewards in the following sense: for t > 1, the randomization Ut used to pick At+1 is independent
of It−1 and Yt.

Regret. A typical measure of the performance of a strategy is given by its regret. To recall its
definition, we denote by E(νa) = µa the expected payoff of arm a and by ∆a its gap to an optimal
arm:

µ? = max
a=1,...,K

µa and ∆a = µ? − µa .

The number of times an arm a is pulled until round T is referred to as

Na(T ) =
T∑

t=1

I{At=a} .

The expected regret of the strategy equals, by the tower rule,

Rν,T = Tµ? − Eν

[
T∑

t=1

Yt

]
= Eν

[
T∑

t=1

(
µ? − µAt

)
]

=

K∑

a=1

∆a Eν
[
Na(T )

]
. (1)

In the equation above, the notation Eν refers to the expectation associated with the bandit problem
ν = (νa)a=1,...,K ; it is made formal in Section 2.

1.2 The general asymptotic lower bound: a quick literature review.

We consider a bandit model D, i.e., a collection of possible distributions νa associated with the
arms. Lai and Robbins [16] and later Burnetas and Katehakis [8] exhibited asymptotic lower
bounds and matching asymptotic upper bounds on the normalized regret Rν,T / lnT , respectively
in a one-parameter case and in a more general, non-parametric case.

The key quantity Kinf . To state the most general bound, the one of Burnetas and Katehakis [8],
we first denote by KL the Kullback-Leibler divergence between two probability distributions and
recall that we denoted by E the expectation operator (that associates with each distribution its
expectation). Now, given νa ∈ D and a real number x, we introduce

Kinf(νa, x) = inf
{

KL(νa, ν
′
a) : ν ′a ∈ D and E(ν ′a) > x

}
;

by convention, the infimum of the empty set equals +∞. Burnetas and Katehakis [8, conditions
A1–A3] consider rather mild conditions on the model D and on the strategy at hand (in particular,
its consistency in the sense of Definition 1 stated later in this paper, but not only). Under these
conditions, for any suboptimal arm a,

lim inf
T→∞

Eν
[
Na(T )

]

lnT
>

1

Kinf(νa, µ?)
. (2)

Note that by the convention on the infimum of the empty set, this lower bound is void as soon as
there exists no ν ′a ∈ D such that E(ν ′a) > µ?.
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Explore first, exploit next: the true shape of regret in bandit problems

Previous partial simplifications of the proof of (2). We re-derive the above bound in a few
lines in Section 2.3.

There had been recent attempts to clarify the exposition of the proof of this lower bound,
together with the desire of relaxing the stated conditions. The case of Bernoulli models is discussed
in Bubeck [4] and Bubeck and Cesa-Bianchi [5]. Only assumptions of consistency of the strategies
are required and the associated proof follows the original proof technique, by performing first an
explicit change of measure and then applying some Markov–Chernoff bounding.

Recently, Kaufmann et al. [14, Appendix B] dealt with the case of any model D but with
the restriction that only bandit problems ν = (νa)a=1,...,K with a unique optimal arm should be
considered. They still use both an explicit change of measure –to prove the chain-rule equality
in (F)– and then apply as well some Markov–Chernoff bounding to the probability of well-chosen
events. With a different aim, Combes and Proutière [12] presented similar arguments.

We also wish to mention the contribution of Wu et al. [19], though their focus and aim are
radically different. With respect to some aspects, their setting and goal is wider or more general:
they developed non-asymptotic problem-dependent lower bounds on the regret of any algorithm, in
the case of more general limited feedback models than just the simplest case of multi-armed bandit
problems. Their lower bounds can recover the asymptotic bounds of Burnetas and Katehakis [8],
but only up to a constant factor as they acknowledge in their contribution. These lower bounds are
in terms of uniform upper bounds on the regret of the considered strategies, which is in contrast
with the lower bounds we develop in Section 3. Therein, we need some assumptions on the strategies
–extremely mild ones, though: some minimal symmetry– and do not need their regret to be bounded
from above. However, the main difference with respect to this reference is that its focus is limited
to specific bandit models, namely Gaussian bandits models, while Burnetas and Katehakis [8] and
the present paper do not impose any restriction on the bandit model. For this reason, the obtained
bounds are incomparable.

1.3 Other bandit lower bounds: a quick literature review.

In this paper, we are mostly interested in general distribution-dependent lower bounds, that hold
for all bandit problems, just like (2). We do target generality. This is contrast with many earlier
lower bounds in the multi-armed bandit setting, which are rather of the form: “There exist some
well-chosen difficult bandit problems such that all strategies suffer a regret larger than [...].” On the
contrary, we will issue statements of the form: “For all bandit problems, all (reasonable) strategies
suffer a regret larger than [...].” Sometimes, but not always, we will have to impose some mild re-
strictions on the considered strategies (like some minimal symmetry, or some notion of consistency);
this is what we meant by requiring the strategies to be reasonable.

We discuss below in details two sets of earlier bandit lower bounds. We are pleased to men-
tion that our fundamental inequality was already used in at least one subsequent article, namely
by Garivier et al. [13], to prove in a few lines matching lower bounds for a refined analysis of
explore-then-commit strategies.

The distribution-free lower bound. This inequality states that for the model D = P
(
[0, 1]

)

of all probability distributions over [0, 1], for all T > 1 and all K > 2,

sup
ν
Rν,T >

1

20
min

{√
KT, T

}
; (3)

see Auer et al. [2], Cesa-Bianchi and Lugosi [11], and for two-armed bandits, Kulkarni and Lu-
gosi [15]. We re-derive the above bound in Section 2.3. This re-derivation follows the very same
proof scheme as in the original proof; the only difference is that some steps (e.g., the use of chain-
rule equality for Kullback-Leibler divergences) are implemented separately as parts of the proof of
our general inequality (F). In particular, the well-chosen difficult bandit problems used to prove
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this bound are composed of Bernoulli distributions with parameters 1/2 and 1/2 + ε, where ε is
carefully tuned according to the values of T and K.

Lower bounds for sub-Gaussian bandit problems in the case when µ? or the gaps ∆
are known. This framework and the exploitation of this knowledge was first studied by Bubeck
et al. [6]. They consider a bandit model D containing only sub-Gaussian distributions with param-
eter σ2 6 1; that is, distributions νa, with expectations µa ∈ R, such that

∀λ ∈ R,
∫

R
exp
(
λ(y − µa)

)
dνa(y) 6 exp

(
λ2/2

)
. (4)

Examples of such distributions include Gaussian distributions with variance smaller than 1 and
bounded distributions with range smaller than 2.

They study how smaller the regret bounds can get when either the maximal expected payoff µ?

or the gaps ∆a are known. For the case when the gaps ∆a are known but not µ?, they exhibit a
lower bound on the regret matching previously known upper bounds, thus proving their optimality.
For the case when µ? is known but not the gaps, they offer an algorithm and its associated regret
upper bound, of order

∑
a lnT/∆a, as well as a framework for deriving a lower bound (Bubeck

et al. [7] note that their attempt for such a lower bound is unfortunately incorrect).

We (re-)derive these two lower bounds in a few lines in Section 2.4. In particular, the well-chosen
difficult bandit problems used are composed of Gaussian distributions N (µa, 1), with expectations
µa ∈ {−∆, 0,∆}. No general distribution-dependent statement like: “For all bandit problems in
which the gaps ∆ (or the maximal expected payoff µ?) are known, all (reasonable) strategies suffer a
regret larger than [...]” is proposed by Bubeck et al. [6]; only well-chosen, difficult bandit problems
are considered. This is in strong contrast with our general distribution-dependent bounds for the
initial linear regime, provided in Section 3.

1.4 Outline of our contributions.

In Section 2, we present Inequality (F), in our opinion the most efficient and most versatile tool for
proving lower bounds in bandit models. We carefully detail its remarkably simple proof, together
with an elegant re-derivation of some earlier lower bounds: the Lai and Robbins [16] and Burnetas
and Katehakis [8] asymptotic lower bound, the distribution-free lower bound by Auer et al. [2], as
well as the bounded-regret Gaussian lower bounds by Bubeck et al. [6] in the case when µ? or the
gaps ∆ are known.

The true power of Inequality (F) is illustrated in Section 3: we study the initial regime when
the small number T of draws does not yet permit to unambiguously identify the best arm. We
propose three different bounds (each with specific merits). They explain the quasi-linear growth
of the regret in this initial phase. We also discuss how the length of the initial phase depends on
the number of arms and on the gap between optimal and sub-optimal arms in Kullback-Leibler
divergence. These lower bounds are extremely strong as they hold for all possible bandit problems,
not just for some well-chosen ones.

Section 4 contains a general non-asymptotic lower bound for the logarithmic (large T ) regime.
This bound does not only contain the right leading term, but the analysis aims at highlighting
what the second-order terms depend on. Results of independent interest on the regularity (upper
semi-continuity) of Kinf are provided in its Subsection 4.2.

Garivier, Ménard, Stoltz 5
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2 The fundamental inequality, and re-derivation of earlier lower
bounds.

We denote by kl the Kullback-Leibler divergence for Bernoulli distributions:

∀p, q ∈ [0, 1]2, kl(p, q) = p ln
p

q
+ (1− p) ln

1− p
1− q . (5)

We show in this section that for all strategies ψ, for all bandit problems ν and ν ′, for all σ(IT )–
measurable random variables Z with values in [0, 1],

K∑

a=1

Eν
[
Na(T )

]
KL(νa, ν

′
a) > kl

(
Eν [Z], Eν′ [Z]

)
. (F)

Inequality (F) will be referred to as the fundamental inequality of this article. We will typically
apply it by considering variables of the form Z = Nk(T )/T for some arm k. That the kl term in (F)
then also contains expected numbers of draws of arms will be very handy. Unlike all previous proofs
of distribution-dependent lower bounds for bandit problems, we will not have to introduce well-
chosen events and control their probability by some Markov–Chernoff bounding. Implicit changes
of measures will however be performed by considering bandit problems ν and ν ′ and their associated
probability measures Pν and Pν′ .

Underlying probability measures. The proof of (F) will be based, among others, on an appli-
cation of the chain rule for Kullback-Leibler divergences. For this reason, it is helpful to construct
and define the underlying measures, so that the needed stochastic transition kernels appear clearly.

By Kolmogorov’s extension theorem, there exists a measurable space (Ω,F), e.g., based on

Ω = [0, 1] ×
(
R × [0, 1]

)N
, such that all probability measures Pν and Pν′ considered above can be

defined on the same probability space. Given the probabilistic and strategic setting described in
Section 1.1, the probability measure Pν over this (Ω,F) is such that for all t > 0, for all Borel sets
B ⊆ R and B′ ⊆ [0, 1],

Pν
(
Yt+1 ∈ B, Ut+1 ∈ B′

∣∣ It
)

= νψt(It)(B) λ(B′) , (6)

where λ denotes the Lebesgue measure on [0, 1].

Remark 1. Equation (6) actually reveals that the distributions Pν should be indexed as well by the
considered strategy ψ. Because the important element in the proofs will be the dependency on ν (we
will replace ν by alternative bandit problems ν ′), we drop the dependency on ψ in the notation for
the underlying probability measures. Note that a similar choice was made for the numbers of times
Na(T ) arms are pulled: we insist on the dependency on the arm a and the time horizon T , but not
on the strategy ψ.

2.1 Proof of the fundamental inequality (F).

We let PITν and PITν′ denote the respective distributions (pushforward measures) of IT under Pν and
Pν′ . We add an intermediate equation in (F),

K∑

a=1

Eν
[
Na(T )

]
KL(νa, ν

′
a) = KL

(
PITν , P

IT
ν′
)
> kl

(
Eν [Z], Eν′ [Z]

)
, (F-long)

and are left with proving a standard equality (via the chain rule for Kullback-Leibler divergences)
and a less standard inequality (following from the data-processing inequality for Kullback-Leibler
divergences).

6 Garivier, Ménard, Stoltz
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Remark 2. Although this possibility is not used in the present article, it is important to note,
after Kaufmann et al. [14, Lemma 1], that (F-long) actually holds not only for deterministic values
of T but also for any stopping time with respect to the sigma-field generated by (It)t>1.

Proof of the standard equality in (F-long). This equality can be found, e.g., in the proofs of the
distribution-free lower bounds on the bandit regret, in the special case of Bernoulli distributions,
see Auer et al. [2] and Cesa-Bianchi and Lugosi [11]; see also Combes and Proutière [12]. We
thus reprove this equality for the sake of completeness only. The chain rule for Kullback-Leibler
divergences ensures that for all t > 0,

KL
(
PIt+1
ν , PIt+1

ν′

)
= KL

(
P(It,Yt+1,Ut+1)
ν , P(It,Yt+1,Ut+1)

ν′

)

= KL
(
PItν , P

It
ν′
)

+ KL
(
P(Yt+1,Ut+1) | It
ν , P(Yt+1,Ut+1) | It

ν′

)
. (7)

We use the symbol ⊗ to denote products of measures. The stochastic transition kernel (6) exactly
indicates that the conditional distribution of (Yt+1, Ut+1) given It equals

P(Yt+1,Ut+1) | It
ν = νψt(It) ⊗ λ .

Thus,

KL
(
P(Yt+1,Ut+1) | It
ν , P(Yt+1,Ut+1) | It

ν′

)
= Eν

[
Eν
[
KL
(
νψt(It) ⊗ λ, ν ′ψt(It)

⊗ λ
) ∣∣∣ It

]]

= Eν
[
Eν
[
KL
(
νψt(It), ν

′
ψt(It)

) ∣∣∣ It
]]

= Eν

[
K∑

a=1

KL(νa, ν
′
a) I{ψt(It)=a}

]
.

Recalling that At+1 = ψt(It), we proved so far

KL
(
PIt+1
ν , PIt+1

ν′

)
= KL

(
PItν , P

It
ν′
)

+ Eν

[
K∑

a=1

KL(νa, ν
′
a) I{At+1=a}

]
.

Iterating the argument and using that KL
(
PI0ν , P

I0
ν′
)

= KL(λ, λ) = 0 leads to the equality stated
in (F-long).

Proof of the inequality in (F-long). This is our key contribution to a simplified proof of the lower
bound (2). It follows from the data-processing inequality (also known as contraction of entropy),
i.e., the fact that Kullback-Leibler divergences between pushforward measures are smaller than
the Kullback-Leibler divergences between the original probability measures. (The data-processing
inequality itself follows, e.g., from a log-sum inequality, i.e., Jensen’s inequality applied to t 7→ t ln t.)

We state our inequality in a slightly more general way, as it is of independent interest.

Lemma 1. Consider a measurable space (Γ,G) equipped with two distributions P1 and P2, and any
[0, 1]–valued and G–measurable random variable Z. Then,

KL(P1,P2) > kl
(
E1[Z],E2[Z]

)
.

Garivier, Ménard, Stoltz 7
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Proof. We augment the underlying measurable space into Γ × [0, 1], where [0, 1] is equipped with
the Borel σ–algebra and the Lebesgue measure λ, and consider a random variable V independent
of G, with uniform distribution over [0, 1]. Introduce the event E = {Z > V }. By the consideration
of product distributions for the first equality and by the data-processing inequality applied to IE
for the inequality, we have

KL(P1,P2) = KL
(
P1 ⊗ λ, P2 ⊗ λ

)
> KL

(
(P1 ⊗ λ)IE , (P2 ⊗ λ)IE

)

= kl
(
(P1 ⊗ λ)(E), (P2 ⊗ λ)(E)

)
.

The last equality is by definition of kl as the Kullback-Leibler divergence between Bernoulli distri-
butions. The proof is concluded by noting that for all j,

(Pj ⊗ λ)(E) = Ej ⊗ λ
[
I{Z>V }

]
= Ej [Z]

by the Fubini-Tonelli theorem.

2.2 Application: re-derivation of the general asymptotic distribution-dependent
bound.

As a warm-up, we show how the asymptotic distribution-dependent lower bound (2) of Burnetas
and Katehakis [8] can be reobtained, for so-called consistent strategies.

Definition 1. A strategy ψ is consistent if for all bandit problems ν, for all suboptimal arms a,
i.e., for all arms a such that ∆a > 0, it satisfies Eν

[
Na(T )

]
= o(Tα) for all 0 < α 6 1.

Theorem 1. For all models D, for all consistent strategies, for all bandit problems ν, for all
suboptimal arms a,

lim inf
T→∞

Eν
[
Na(T )

]

lnT
>

1

Kinf(νa, µ?)
.

Proof. Given any bandit problem ν and any suboptimal arm a, we consider a modified problem ν ′

where a is the (unique) optimal arm: ν ′k = νk for all k 6= a and ν ′a is any distribution in D such that
its expectation µ′a satisfies µ′a > µ? (if such a distribution exists; see the end of the proof otherwise).
We apply the fundamental inequality (F) with Z = Na(T )/T . All Kullback-Leibler divergences in
its left-hand side are null except the one for arm a, so that we get the lower bound

Eν
[
Na(T )

]
KL(νa, ν

′
a) > kl

(
Eν
[
Na(T )

]
/T, Eν′

[
Na(T )

]
/T
)

>

(
1− Eν

[
Na(T )

]

T

)
ln

T

T − Eν′
[
Na(T )

] − ln 2 , (8)

where we used for the second inequality that for all (p, q) ∈ [0, 1]2,

kl(p, q) = p ln
1

q︸ ︷︷ ︸
>0

+(1− p) ln
1

1− q +
(
p ln p+ (1− p) ln(1− p)︸ ︷︷ ︸

>− ln 2

)
. (9)

The consistency of ψ together with the fact that all arms k 6= a are suboptimal for ν ′ entails that

∀ 0 < α 6 1, 0 6 T − Eν′
[
Na(T )

]
=
∑

k 6=a
Eν′
[
Nk(T )

]
= o(Tα) ;

8 Garivier, Ménard, Stoltz



Explore first, exploit next: the true shape of regret in bandit problems

in particular, T − Eν′
[
Na(T )

]
6 Tα for T sufficiently large. Therefore, for all 0 < α 6 1,

lim inf
T→∞

1

lnT
ln

T

T − Eν′
[
Na(T )

] > lim inf
T→∞

1

lnT
ln

T

Tα
= (1− α) .

In addition, the consistency of ψ and the suboptimality of a for the bandit problem ν ensure that
Eν
[
Na(T )

]
/T → 0. Substituting these two facts in (8) we proved

lim inf
T→∞

Eν
[
Na(T )

]

lnT
>

1

KL(νa, ν ′a)
.

By taking the supremum in the right-hand side over all distributions ν ′a ∈ D with µ′a > µ?, if at
least one such distribution exists, we get the bound of the theorem. Otherwise, Kinf(νa, µ

?) = +∞
by a standard convention on the infimum of an empty set and the bound holds as well.

2.3 Application: re-derivation of the distribution-free lower bound.

We consider the bound (3) recalled in Section 1.3. More specifically, we re-prove Theorem A.2 of
Auer et al. [2], from which the stated bound (3) follows by optimization over ε.

Theorem 2. For all ε ∈ (0, 1/2), for all strategies, there exists a bandit problem ν ′ such that

Rν′,T > Tε

(
1− 1

K
− 1

2

√
T

K
ln

1

1− 4ε2

)
.

This problem ν ′ can be given by Bernoulli distributions, with parameters 1/2 for all arms but one,
for which the parameter is 1/2 + ε.

Proof. We fix a strategy and ε ∈ (0, 1/2). We denote by ν the bandit problem where all distributions
are given by Bernoulli distributions with parameter 1/2. There exists an arm k ∈ {1, . . . ,K} such
that Eν

[
Nk(T )

]
6 T/K, as these K numbers of pulls sum up to T . We define the bandit problem

ν ′ by ν ′a = νa for a 6= k, that is, ν ′a is a symmetric Bernoulli distribution, while ν ′k is the Bernoulli
distribution with parameter 1/2 + ε. By (1), we have

Rν′,T =
∑

a6=k
εEν′

[
Na(T )

]
= Tε

(
1− Eν′

[
Nk(T )

]

T

)
.

A direct computation of kl(1/2, 1/2 + ε) and the application of (F) indicate that

Eν
[
Nk(T )

]

2
ln

1

1− 4ε2
= Eν

[
Nk(T )

]
kl(1/2, 1/2 + ε) > kl

(
Eν
[
Nk(T )

]
/T, Eν′

[
Nk(T )

]
/T
)
.

Now, Pinsker’s inequality (14) ensures that

Eν
[
Nk(T )

]

2
ln

1

1− 4ε2
> kl

(
Eν
[
Nk(T )

]
/T, Eν′

[
Nk(T )

]
/T
)
> 2

(
Eν′
[
Nk(T )

]

T
− Eν

[
Nk(T )

]

T

)2

.

Solving for Eν′
[
Nk(T )

]
/T , based on whether Eν′

[
Nk(T )

]
/T is larger or smaller than Eν

[
Nk(T )

]
/T ,

we get, in all cases,

Eν′
[
Nk(T )

]

T
6

Eν
[
Nk(T )

]

T
+

1

2

√
Eν
[
Nk(T )

]
ln

1

1− 4ε2
.

The proof is concluded by substituting the fact that Eν
[
Nk(T )

]
6 T/K by definition of k.

The short proof above actually re-uses absolutely all the original arguments of Auer et al. [2]: the
same Bernoulli distributions, the chain rule for Kullback-Leibler divergences, Pinsker’s inequality.
It is merely stated in a compact way, that puts under the same umbrella the distribution-dependent
and the distribution-free lower bounds for multi-armed bandit problems.
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2.4 Application: re-derivation of the lower bounds for the case when µ? or the
gaps ∆ are known.

We consider here the second framework discussed in Section 1.3, with sub-Gaussian bandit problems.
For simplicity and following Bubeck et al. [6], we restrict our attention to lower bounds for two-
armed bandit problems (i.e., for K = 2).

Known largest expected payoff µ? but unknown gap ∆. The lower bound stated in Theo-
rem 3 below corresponds to Theorem 8 of Bubeck et al. [6], for which Bubeck et al. [7] mentioned
that they were unsure whether the initially claimed lnT dependency therein exists or not. They had
offered a matching (lnT )/∆ upper bound on the regret earlier in their article. The best lower bound
we could get using our techniques is of order 1/∆ and does not indicate any lnT increase in the
regret with T . We wondered whether this absence of the lnT term was an artifact of our analysis,
which we believe is rather sharp. And indeed it turned out that actually the room for improvement
was in the upper bound, which can be reduced to something of the order of ln(1/∆)/∆, as shown
in Theorem 9 in Appendix.

We restrict our attention to strategies ψ symmetric in some sense, e.g., in the sense of Definition 4
stated later on. We actually need very little symmetry here: the considered strategies ψ should just
be such that in the bandit problem ν0 =

(
N (0, 1), N (0, 1)

)
, in which the two arms have the same

distribution,

Eν0

[
N1(T )

]
= Eν0

[
N2(T )

]
=
T

2
. (10)

Of course, all reasonable strategies are usually even more symmetric than that: they are usually
stable by permutations over the arms (i.e., they base their decisions only on the payoffs received,
not on the labeling of the arms).

Theorem 3. For all ∆ > 0 we consider ν∆ =
(
N (0, 1), N (−∆, 1)

)
and ν0 =

(
N (0, 1), N (0, 1)

)
.

For all strategies ψ that are symmetric in the sense of (10), for all ∆ > 0, for all T > 1,

Eν∆
[
N2(T )

]
>

1

∆2 + 1/T
and Rν∆,T >

∆

∆2 + 1/T
.

In addition, for all strategies ψ and for all T such that Eν∆
[
N2(T )

]
> 1,

Eν∆
[
N2(T )

]
> min

{
2 ln 2

∆2 + 2 ln(4T )/T
,
T

2

}
and Rν∆,T > min

{
2(ln 2)∆

∆2 + 2 ln(4T )/T
,
T∆

2

}
.

Note that the constraint that Eν∆
[
N2(T )

]
> 1 is satisfied for all T > K by most of the reasonable

strategies, as the latter typically start by playing each arm once (in a random order).

Proof. We first note that Rν∆,T = ∆ Eν∆
[
N2(T )

]
. Inequality (F) entails that

∆2

2
Eν∆
[
N2(T )

]
= Eν∆

[
N2(T )

]
KL
(
N (−∆, 1), N (0, 1)

)

> kl
(
Eν∆
[
N2(T )

]
/T, Eν0

[
N2(T )

]
/T
)

= kl
(
Eν∆
[
N2(T )

]
/T, 1/2

)
, (11)

where we used respectively, for the two equalities, the closed-form expression for the Kullback-Leibler
divergences between Gaussian distribution with the same variance and the symmetry assumption
on the strategy. Pinsker’s inequality (14), followed by the inequality

∀x ∈ R, 2

(
1

2
− x
)2

>
1

2
− 2x ,

10 Garivier, Ménard, Stoltz
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yields

∆2

2
Eν∆
[
N2(T )

]
> 2

(
1

2
− Eν∆

[
N2(T )

]

T

)2

>
1

2
− 2

Eν∆
[
N2(T )

]

T
.

Straightforward manipulations entail the first claimed bound on Eν∆
[
N2(T )

]
.

For the second one, given the form of the lower bound, which involves a minimum with T/2, it
suffices to consider the case when Eν∆

[
N2(T )

]
/T 6 1/2. We use that

kl(x, 1/2) = ln 2− h(x) , where h(x) = −
(
x lnx+ (1− x) ln(1− x)

)

is the binary entropy function. Now, Calabro [9, page 8] indicates that h(x) 6 x ln(4/x) for all
x ∈ [0, 1/2], so that, restricting our attention to x > 1/T , we get

∀x ∈ [1/T, 1/2], kl(x, 1/2) > ln 2− x ln(4/x) > ln 2− x ln(4T ) .

Substituting this inequality into (11), using x = Eν∆
[
N2(T )

]
/T ∈ [1/T, 1/2], concludes the proof.

The proof above, which is simple and direct, illustrates the interest of Inequality (F) over the
standard approaches used so far to prove lower bounds in the same or similar settings.

Known gap ∆ but unknown largest expected payoff µ?. The lower bound stated in Theo-
rem 4 below corresponds to Theorem 6 of Bubeck et al. [6]. It shows the optimality of the perfor-
mance bound ln(T∆2)/∆ on the regret of the Improved–UCB strategy introduced by [3] and further
studied by [13]. The latter improved the constant in the leading term, which equals ln(T∆2)/(2∆)
when the gap ∆ between the expected payoffs between the two Gaussian arms with variance 1 is
known.

We denote by W the Lambert function: for all u > 0, there exists a unique v > 0 such that
u exp(u) = v, which is denoted by v = W (u). The Lambert function W is increasing on [0,+∞).
One may easily check that

∀x > e, ln(x)− ln
(
ln(x)

)
6W (x) 6 ln(x) .

We state below two lower bounds: one for all strategies ψ, in terms of a maximum between two
regrets; and one for strategies that are symmetric and invariant by translation. This symmetry and
invariance-by-translation properties are most natural requirements. To define them, for all c ∈ R
and all distributions ν, we denote by τc(ν) the distribution of Y + c when Y ∼ ν.

Definition 2. A strategy ψ for K–armed bandits is symmetric and invariant by translation of
the payoffs if for all permutations σ of {1, . . . ,K}, all c ∈ R, and all T > 1, the distribu-
tion of the vector

(
N1(T ), . . . , NK(T )

)
in the bandit problem (ν1, . . . , νK) is equal to the one of(

Nσ−1(1)(T ), . . . , Nσ−1(K)(T )
)

in the bandit problem
(
τc(νσ(1)), . . . , τc(νσ(K))

)
.

Theorem 4. We fix ∆ > 0 and consider ν1 =
(
N (0, 1), N (−∆, 1)

)
and ν2 =

(
N (0, 1), N (∆, 1)

)
.

Then, for all strategies ψ, for all T > 1,

max
{
Rν1,T , Rν2,T

}
> min

{
W
(
T∆2/1.2

)

2∆
,
T∆

2

}
. (12)

Or, alternatively, for all strategies ψ that are symmetric and invariant by translation of the payoffs,
for all T > 1,

Rν1,T = Rν2,T >
W
(
T∆2/1.2

)

2∆
.
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Remark 3. We compare the obtained bound (12) to Theorem 6 of Bubeck et al. [6]. First, the proof
reveals that (12) holds for all distributions ν1 =

(
P0, N (−∆, 1)

)
and ν2 =

(
P0, N (∆, 1)

)
where P0

is a probability distribution with expectation 0. For instance, Bubeck et al. [6] considered the Dirac
mass δ0 at 0.

Second, Theorem 6 of Bubeck et al. [6] offers the bound

max
{
Rν1,T , Rν2,T

}
>

ln
(
T∆2/2

)

4∆
. (13)

Asymptotically, as T → +∞, our bound (12) is smaller by a factor of 2. For small values of T (or
small values of ∆), the bound (13) is void as the logarithmic term is non-positive, while our bound
is always nonnegative. The second argument of the minimum in (12) is unimportant, as the regret
is always bounded by T∆.

Proof. We have Rν1,T = ∆Eν1

[
N2(T )

]
and Rν2,T = ∆Eν2

[
N1(T )

]
, so that it suffices to lower bound

x =
1

T
max

{
Eν1

[
N2(T )

]
, Eν2

[
N1(T )

]}
.

We assume below that the maximum is given by the first term; otherwise, the proof below should
be adapted by exchanging the roles of ν1 and ν2. Inequality (F) indicates that

2T∆2 x = 2 ∆2 Eν1

[
N2(T )

]
= Eν1

[
N2(T )

]
KL
(
N (−∆, 1), N (∆, 1)

)

> kl
(
Eν1

[
N2(T )

]
/T, Eν2

[
N2(T )

]
/T
)

= kl
(
x, 1− Eν2

[
N1(T )

]
/T
)
.

Given the form of the lower bound in the theorem, which involves a minimum with T∆/2, we may
assume, with no loss of generality, that x 6 1/2. Since kl(x, · ) is increasing on [x, 1] and since

1− Eν2

[
N1(T )

]

T
> 1− x >

1

2
> x ,

by definition of x and the assumption x 6 1/2, we get

2T∆2 x > kl(x, 1− x) = (1− 2x) ln
1− x
x

.

Note that the case x = 0 is excluded by the inequality above. A function study shows that

∀x ∈ (0, 1), (1− 2x) ln
1− x
x

> ln
1

2.4x
.

Substituting this lower bound and taking exponents, we are left with studying the inequality

exp
(
2T∆2 x

)
>

1

2.4x
, or equivalently, 2T∆2 x exp

(
2T∆2 x

)
>
T∆2

1.2
.

By definition of the Lambert function W , we rewrite this inequality as 2T∆2 x > W
(
T∆2/1.2

)
,

which concludes the proof of the first statement.
For the second statement, we note that the property of invariance by translation of the payoffs

ensures that
x = Eν1

[
N2(T )

]
= Eν2

[
N1(T )

]
.

Therefore, the fundamental inequality (F) directly gives in this case

2T∆2 x > kl
(
Eν1

[
N2(T )

]
/T, Eν2

[
N2(T )

]
/T
)

= kl(x, 1− x) ,

and we do not need to distinguish whether x is larger than 1/2 or not. The end of the proof of
the first statement of the theorem did not use that x 6 1/2 and can still safely be followed for the
second statement.
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3 Non-asymptotic bounds for small values of T .

We prove three such bounds with different merits and drawbacks. Basically, we expect suboptimal
arms to be pulled each about T/K of the time when T is small; when T becomes larger, sufficient
information was gained for identifying the best arm, and the logarithmic regime can take place.

The first bound shows that Eν
[
Na(T )

]
is of order T/K as long as T is at most of order

1/Kinf(νa, µ
?); we call it an absolute lower bound for a suboptimal arm a. Its drawback is that

the times T for which it is valid are independent of the number of arms K, while (at least in some
cases) one may expect the initial phase to last until T ≈ K/Kinf(νa, µ

?).

The second lower bound thus addresses the dependency of the initial phase in K by consider-
ing a relative lower bound between a suboptimal arm a and an optimal arm a?. We prove that
Eν
[
Na(T )/Na?(T )

]
is not much smaller than 1 whenever T is at most of order K/KL(νa, νa?). Here,

the number of arms K plays the expected effect on the length of the initial exploration phase, which
should be proportional to K.

The third lower bound is a collective lower bound on all suboptimal arms, i.e., a lower bound on∑
a6∈A?(ν) Eν

[
Na(T )

]
where A?(ν) denotes the set of the A?ν optimal arms of ν. It is of the desired

order T (1−A?ν/K) for times T of the desired order K/Kmax
ν , where Kmax

ν is some Kullback-Leibler
divergence.

Minimal restrictions on the considered strategies. We prove these lower bounds under
minimal assumptions on the considered strategies: either some mild symmetry (much milder than
asking for symmetry under permutation of the arms, see Definition 4); or the fact that for suboptimal
arms a, the number of pulls Eν

[
Na(T )

]
should decrease as µa decreases, all other distributions of

arms being fixed (see Definitions 3 and 5). These assumptions are satisfied by all well-performing
strategies we could think of: the UCB strategy of Auer et al. [1], the KL-UCB strategy of Cappé
et al. [10], Thompson [18] Sampling, EXP3 of Auer et al. [2], etc.

These mild restrictions on the considered strategies are necessary to rule out the irrelevant
strategies (e.g., always pull arm 1) that would perform extremely well on some particular bandit
problems. This is because we aim at proving distribution-dependent lower bounds that are valid
for all bandit problems: we prefer put the (mild) constraints on the strategies.

Note that the assumption of consistency (Definition 1), though classical and well-accepted, is
quite strong. It is necessary for a strategy to satisfy some symmetry and to be smarter than the
uniform strategy in the limit (not for all T , see Definition 3) to be consistent. Hence, the class of
strategies we consider is morally much larger than the subset of consistent strategies.

3.1 Absolute lower bound for a suboptimal arm.

The uniform strategy is the one that pulls an arm uniformly at random at each round.

Definition 3. A strategy ψ is smarter than the uniform strategy if for all bandit problems ν, for
all optimal arms a?, for all T > 1,

Eν
[
Na?(T )

]
>
T

K
.

Theorem 5. For all strategies ψ that are smarter than the uniform strategy, for all bandit prob-
lems ν, for all arms a, for all T > 1,

Eν
[
Na(T )

]
>
T

K

(
1−

√
2TKinf(νa, µ?)

)
.

In particular,

∀T 6
1

8Kinf(νa, µ?)
, Eν

[
Na(T )

]
>

T

2K
.
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Proof. It suffices to consider suboptimal arms a. As in the proof of Theorem 1, we consider a
modified bandit problem ν ′ with ν ′k = νk for all k 6= a and ν ′a ∈ D such that µ′a > µ?, if such a
distribution ν ′a exists (otherwise, the first claimed lower bounds equals −∞). From (F), we get

Eν
[
Na(T )

]
KL(νa, ν

′
a) > kl

(
Eν
[
Na(T )

]
/T, Eν′

[
Na(T )

]
/T
)
.

We may assume that Eν
[
Na(T )

]
/T 6 1/K; otherwise, the first claimed bound holds. Since a is

the optimal arm under ν ′ and since the considered strategy is smarter than the uniform strategy,
Eν′
[
Na(T )

]
/T > 1/K. Using that q 7→ kl(p, q) is increasing on [p, 1], we thus get

kl
(
Eν
[
Na(T )

]
/T, Eν′

[
Na(T )

]
/T
)
> kl

(
Eν
[
Na(T )

]
/T, 1/K

)
.

Lemma 2 below yields

Eν
[
Na(T )

]
KL(νa, ν

′
a) > kl

(
Eν
[
Na(T )

]
/T, 1/K

)
>
K

2

(
Eν
[
Na(T )

]
/T − 1/K

)2
,

from which follows, after substitution of the above assumption Eν
[
Na(T )

]
/T 6 1/K in the left-hand

side,

Eν
[
Na(T )

]

T
>

1

K
−
√

2T

K2
KL(νa, ν ′a) .

Taking the infimum over all possible ν ′a and rearranging concludes the proof.

The following lemma offers a local Pinsker’s inequality; see also Cappé et al. [10, Lemma 3 in
Appendix A.2.1] for a more general version. Of course, the classical Pinsker’s inequality,

∀(p, q) ∈ [0, 1]2, kl(p, q) > 2(p− q)2 , (14)

is a consequence of the first inequality of this local version.

Lemma 2. For 0 6 p < q 6 1, we have kl(p, q) >
1

2 max
x∈[p,q]

x(1− x)
(p− q)2 >

1

2q
(p− q)2 .

Proof. We may assume that p > 0 and q < 1, since for p = 0, the result follows by continuity, and
for q = 1, the inequality is void, as kl(p, 1) = +∞ when p < 1. The first and second derivative of kl
equal

∂

∂p
kl(p, q) = ln p− ln(1− p)− ln q + ln(1− q) and

∂2

∂2p
kl(p, q) =

1

p
+

1

1− p =
1

p(1− p) .

By Taylor’s equality, there exists r ∈ [p, q] such that

kl(p, q) = kl(q, q)︸ ︷︷ ︸
=0

+(p− q) ∂

∂p
kl(q, q)

︸ ︷︷ ︸
=0

+
(p− q)2

2

∂2

∂2p
kl(r, q)

︸ ︷︷ ︸
=1/(r(1−r))

.

The proof of the first inequality is concluded by upper bounding r(1− r) by max
x∈[p,q]

x(1− x).

The second inequality follows from max
x∈[p,q]

x(1− x) 6 max
x∈[p,q]

x 6 q.
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3.2 Relative lower bound.

Our proof will be based on an assumption of symmetry (milder than requiring that if the arms are
permuted in a bandit problem, the algorithm behaves the same way, as in Definition 2).

Definition 4. A strategy ψ is pairwise symmetric for optimal arms if for all bandit problems ν, for
each pair of optimal arms a? and a?, the equality νa? = νa? entails that, for all T > 1,

(
Na?(T ), Na?(T )

)
and

(
Na?(T ), Na?(T )

)

have the same distribution.

Note that the required symmetry is extremely mild as only pairs of optimal arms with the same
distribution are to be considered. What the equality of distributions means is that the strategy
should be based only on payoffs and not on the values of the indexes of the arms.

Theorem 6. For all strategies ψ that are pairwise symmetric for optimal arms, for all bandit
problems ν, for all suboptimal arms a and all optimal arms a?, for all T > 1,

either Eν
[
Na(T )

]
>
T

K
or Eν

[
max

{
Na(T ), 1

}

max
{
Na?(T ), 1

}
]
> 1− 2

√
2T KL(νa, νa?)

K
.

Proof. For all arms k, we denote by N+
k (T ) = max

{
Nk(T ), 1

}
. Given a bandit problem ν and a

suboptimal arm a, we form an alternative bandit problem ν ′ given by ν ′k = νk for all k 6= a and
ν ′a = νa? , where a? is an optimal arm of ν. In particular, arms a and a? are both optimal arms
under ν ′. By the assumption of pairwise symmetry for optimal arms, we have in particular that

Eν′
[

N+
a (T )

N+
a (T ) +N+

a?(T )

]
= Eν′

[
N+
a?(T )

N+
a?(T ) +N+

a (T )

]
=

1

2
.

The latter equality and the fundamental inequality (F) yield in the present case, through the choice
of Z = N+

a (T )
/(
N+
a (T ) +N+

a?(T )
)
,

Eν
[
Na(T )

]
KL(νa, ν

′
a) > kl

(
Eν
[

N+
a (T )

N+
a (T ) +N+

a?(T )

]
,

1

2

)
. (15)

The concavity of the function x 7→ x/(1 + x) and Jensen’s inequality show that

Eν
[

N+
a (T )

N+
a (T ) +N+

a?(T )

]
= Eν

[
N+
a (T )

/
N+
a?(T )

1 +N+
a (T )

/
N+
a?(T )

]
6

Eν
[
N+
a (T )

/
N+
a?(T )

]

1 + Eν
[
N+
a (T )

/
N+
a?(T )

] .

We can assume that Eν
[
N+
a (T )

/
N+
a?(T )

]
6 1, otherwise, the result of the theorem is obtained. In

this case, the latter upper bound is smaller than 1/2. Using in addition that p 7→ kl(p, 1/2) is
decreasing on [0, 1/2], and assuming that Eν

[
Na(T )

]
6 T/K (otherwise, the result of the theorem

is obtained as well), we get from (15)

T

K
KL(νa, ν

′
a) > kl

(
Eν
[
N+
a (T )

/
N+
a?(T )

]

1 + Eν
[
N+
a (T )

/
N+
a?(T )

] , 1

2

)
.

Pinsker’s inequality (14) entails the inequality

T

K
KL(νa, ν

′
a) > 2

(
1

2
− r

1 + r

)2

where r = Eν
[
N+
a (T )

N+
a?(T )

]
.

Garivier, Ménard, Stoltz 15



Explore first, exploit next: the true shape of regret in bandit problems

In particular,

r

1 + r
>

1

2
−
√
T KL(νa, ν ′a)

2K
.

Applying the increasing function x 7→ x/(1− x) to both sides, we get

r >
1−

√
2T KL(νa, ν ′a)/K

1 +
√

2T KL(νa, ν ′a)/K
>

(
1−

√
2T KL(νa, ν ′a)

K

)2

,

where we used 1/(1 + x) > 1 − x for the last inequality and where we assumed that T is small
enough to ensure 1 −

√
2T KL(νa, ν ′a)/K > 0. Whether this condition is satisfied or not, we have

the (possibly void) lower bound

r > 1− 2

√
2T KL(νa, ν ′a)

K
.

The proof is concluded by noting that by definition ν ′a = νa? .

3.3 Collective lower bound.

In this section, for any given bandit problem ν, we denote by A?(ν) the set of its optimal arms and
by W(ν) the set of its worse arms, i.e., the ones associated with the distributions with the smaller
expectation among all distributions for the arms. We also let A?ν be the cardinality of A?(ν).

We define the following partial order 4 on bandit problems: ν ′ 4 ν if

∀a ∈ A?(ν), νa = ν ′a and ∀a 6∈ A?(ν), E(ν ′a) 6 E(νa) .

In particular, A?(ν) = A?(ν ′) in this case. The definition models the fact that the bandit problem
ν ′ should be easier than ν, as non-optimal arms in ν ′ are farther away from the optimal arms (in
expectation) that in ν. Any reasonable strategy should perform better on ν ′ than on ν, which leads
to the following definition, where we measure performance in the expected number of times optimal
arms are pulled. (Recall that the sets of optimal arms are identical for ν and ν ′.)

Definition 5. A strategy ψ is monotonic if for all bandit problems ν ′ 4 ν,

∑

a?∈A?(ν′)

Eν′
[
Na?(T )

]
>

∑

a?∈A?(ν)

Eν
[
Na?(T )

]
.

Theorem 7. For all strategies ψ that are pairwise symmetric for optimal arms and monotonic, for
all bandit problems ν,

∑

a6∈A?(ν)

Eν
[
Na(T )

]
> T

(
1− A?ν

K
− A?ν

√
2T Kmax

ν

K
− 2A?νTKmax

ν

K

)
,

where Kmax
ν = min

w∈W(ν)
max

a?∈A?(ν)
KL(νw, νa?) .

In particular, the regret is lower bounded according to

Rν,T >

(
min

a6∈A?(ν)
∆a

)
T

(
1− A?ν

K
− A?ν

√
2T Kmax

ν

K
− 2A?νTKmax

ν

K

)
.
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Proof. We denote by w̃ some w ∈ W(ν) achieving the minimum in the defining equation of Kmax
ν .

We construct two bandit models from ν. First, the model ν differs from ν only at suboptimal arms
a 6∈ A?(ν), which we associate with νa = νw̃. By construction, ν 4 ν. In the second model ν, each
arm is associated with νw̃, i.e., ν

a
= νw̃ for all a ∈ {1, . . . ,K}.

By monotonicity of ψ,
∑

a6∈A?(ν)

Eν
[
Na(T )

]
>

∑

a6∈A?(ν)

Eν
[
Na(T )

]
.

We can therefore focus our attention, for the rest of the proof, on the Eν
[
Na(T )

]
. The strategy is

also pairwise symmetric for optimal arms and all arms of ν are optimal. This implies in particular

that Eν
[
N1(T )

]
= Eν

[
Na(T )

]
for all arms a, thus Eν

[
Na(T )

]
= T/K for all arms a.

Now, the bound (F) with Z =
∑

a?∈A?(ν)Na?(T )/T and the bandit models ν and ν gives

∑

a?∈A?(ν)

Eν
[
Na?(T )

]
KL(νw̃, νa?) > kl

( ∑

a?∈A?(ν)

Eν
[
Na?(T )

]
/T,

∑

a?∈A?(ν)

Eν
[
Na?(T )

]
/T

)

= kl

(
A?ν
K
,
∑

a?∈A?(ν)

Eν
[
Na?(T )

]
/T

)
.

By definition of Kmax
ν and w̃, and because Eν

[
Na(T )

]
= T/K, we have

∑

a?∈A?(ν)

Eν
[
Na?(T )

]
KL(νw̃, νa?) 6

TA?νKmax
ν

K
,

which yields the inequality

TA?νKmax
ν

K
> kl

(
A?ν
K
, x

)
where x =

1

T

∑

a?∈A?(ν)

Eν
[
Na?(T )

]
.

We want to upper bound x, in order to get a lower bound on 1 − x. We assume that x > A?ν/K,
otherwise, the bound (16) stated below is also satisfied. Pinsker’s inequality (Lemma 2) then ensures
that

TA?νKmax
ν

K
>

1

2x

(
A?ν
K
− x
)2

,

Lemma 3 below finally entails that

x 6
A?ν
K

(
1 + 2TKmax

ν +
√

2TKmax
ν

)
. (16)

The proof is concluded by putting all elements together thanks to the monotonicity of ψ and the
definition of x: ∑

a6∈A?(ν)

Eν
[
Na(T )

]
>

∑

a6∈A?(ν)

Eν
[
Na(T )

]
= T (1− x) .

Lemma 3. If x ∈ R satisfies (x− α)2 6 βx for some α > 0 and β > 0, then x 6 α+ β +
√
αβ.

Proof. By assumption, x2 − (2α+ β)x+ α2 6 0. We have that x is smaller than the larger root of
the associated polynom, that is,

x 6
2α+ β +

√
(2α+ β)2 − 4α2

2
=

2α+ β +
√

4αβ + β2

2
.

We conclude with
√

4αβ + β2 6
√

4αβ +
√
β2.

Garivier, Ménard, Stoltz 17



Explore first, exploit next: the true shape of regret in bandit problems

4 Non-asymptotic bounds for large T.

We restrict our attention to well-behaved models and super-consistent strategies.

Definition 6. A model D is well behaved if there exists a function ω such that for all bandit problems
ν, there exists ε0(µ?) such that for all suboptimal arms a,

∀ε < ε0(µ?), Kinf(νa, µ
? + ε) 6 Kinf(νa, µ

?) + ε ω(νa, µ
?) .

We could have considered a more general definition, where the upper bound would have been
any vanishing function of ε, not only a linear function of ε. However, all examples considered in
this paper (see Section 4.2) can be associated with such a linear difference. Those examples of
well-behaved models include parametric families like regular exponential families, as well as more
massive classes, like the set of all distributions with bounded support (with or without a constraint
on the finiteness of support). Some of these examples, namely, regular exponential families and
finitely-supported distributions with common bounded support, were the models studied in Cappé
et al. [10] to get non-asymptotic upper bounds on the regret of the optimal order (2).

Definition 7. A strategy ψ is super consistent on a model D if there exists a constant Cψ,D such
that for all bandit problems ν in D, for all suboptimal arms a, for all T > 2,

Eν
[
Na(T )

]
6 Cψ,D

lnT

∆2
a

.

Super consistence is a refinement of the notion of consistence based on two considerations. First,
that there exist such strategies, for instance, the UCB strategy of Auer et al. [1] on the model of all
distributions with some common bounded support. Second, that together with Pinsker’s inequality,
which entails in particular that Kinf(νa, µ) > 2∆2

a, the bound stated in the definition of super
consistency is still weaker than the aim (2).

4.1 A general non-asymptotic lower bound.

Throughout this subsection, we fix a strategy ψ that is super consistent with respect to a model D.
We recall that we denote by A?(ν) the set of optimal arms of the bandit problem ν and let A?ν be
its cardinality. We adapt the bounds (F) and (8) by using this time

Z =
1

T

∑

a?∈A?(ν)

Na?(T )

and kl(p, q) > p ln(1/q) − ln 2, see (9). For all bandit problems ν ′ that only differ from ν as far a
suboptimal arm a is concerned, whose distribution of payoffs ν ′a ∈ D is such that µ′a > µ?, we get

Eν
[
Na(T )

]
>

1

KL(νa, ν ′a)

(
Eν [Z] ln

1

Eν′ [Z]
− ln 2

)
. (17)

We restrict our attention to distributions ν ′a ∈ D such that the gaps for ν ′ associated with optimal
arms a? ∈ A?(ν) of ν satisfy ∆ = µ′a − µ? > ε, for some parameter ε > 0 to be defined by the
analysis. By super consistency, on the one hand,

Eν [Z] = 1− 1

T

∑

a6∈A?(ν)

Eν
[
Na(T )

]
> 1− 1

T


Cψ,D

∑

a6∈A?(ν)

1

∆2
a

lnT


 ;

on the other hand,

Eν′ [Z] =
1

T

∑

a?∈A?(ν)

Eν′
[
Na(T )

]
6
A?ν Cψ,D

∆2

lnT

T
.
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Denoting

H(ν) =
∑

a6∈A?(ν)

1

∆2
a

(18)

and using that ∆ > ε, a substitution of the two super-consistency inequalities into (17) and an
optimization over the considered distributions ν ′a leads to

Eν
[
Na(T )

]
>

1

Kinf(νa, µ? + ε)

(
1− Cψ,DH(ν)

lnT

T

)
ln

Tε2

A?ν Cψ,D lnT
− ln 2

Kinf(νa, µ? + ε)
. (19)

The obtained bound holds for all T > 2 (as in the definition of super consistency); however, for
small values of T , it might be negative, thus useless.

To proceed, we use the fact that the model D is well-behaved to relate Kinf(νa, µ
? + ε) to

Kinf(νa, µ
?). Since 1/(1 + x) > 1− x for all x > 0, we get by Definition 6

∀ε < ε0(µ?),
1

Kinf(νa, µ? + ε)
>

1

Kinf(νa, µ?)

(
1− ε ω(νa, µ

?)

Kinf(νa, µ?)

)
.

Now, we set ε = εT = (lnT )−4. Many other choices would have been possible, but this one is such
that εT 6 0.0005 already for T > 1 000. Putting all things together, from (19), from the fact that
(1− a)(1− b)(1− c) > 1− (a+ b+ c) when 0 6 a, b, c 6 1, and from the bound A?ν 6 K, we get the
following theorem.

Theorem 8. For all super-consistent strategies ψ on well-behaved models D, for all bandit problems
ν in D, for all suboptimal arms a,

Eν
[
Na(T )

]
>

lnT

Kinf(νa, µ?)
− (aT + bT + cT ) lnT − ln 2

Kinf(νa, µ?)
, (20)

for all T > 2 large enough so that

aT =
ω(νa, µ

?)

Kinf(νa, µ?)
(lnT )−4 , bT = Cψ,DH(ν)

lnT

T
, cT =

ln
(
K Cψ,D(lnT )9

)

lnT
,

are all smaller than 1, where H(ν) was defined in (18).

Remark 4. We have (aT +bT +cT ) lnT = O
(
ln(lnT )

)
. The non-asymptotic bound (20) is therefore

of the form

Eν
[
Na(T )

]
>

lnT

Kinf(νa, µ?)
−O

(
ln(lnT )

)
.

4.2 Two examples (and a half) of well-behaved models.

We consider first distributions with common bounded support (and the subclass of such distribu-
tions with finite support); and then, regular exponential families. The latter and the subclass of
distributions with finite and bounded support are the two models for which Cappé et al. [10] could
prove non-aymptotic upper bounds matching the lower bound (2).
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Distributions with common bounded support. We denote byM
(
[0,M ]

)
the set of all prob-

ability distributions over [0,M ], equipped with its Borel σ–algebra, and restrict our model to such
distributions with expectation not equal to M .

Lemma 4. In the model D =
{

m ∈M
(
[0,M ]

)
: E(m) < M

}
, we have

∀m ∈ D, ∀µ? ∈ [0,M), ∀ε ∈
(
0, (M − µ?)/2

)
,

Kinf(m, µ
? + ε) 6 Kinf(m, µ

?)− ln

(
1− 2ε

M − µ?
)
.

In particular, for all m ∈ D and µ? ∈ [0,M),

∀ε ∈
(
0, (M − µ?)/4

)
, Kinf(m, µ

? + ε) 6 Kinf(m, µ
?) +

4ε

M − µ? .

Proof. We fix m, µ? and ε as indicated for the first bound; in particular, µ? + ε < M . Since m
is a probability distribution, it has at most countably many atoms; therefore, there exists some
x ∈ (µ?+ ε,M) such that m({x}) = 0 and x > (M +µ?)/2. In particular, m and the Dirac measure
δx at this point are singular measures.

We consider some m′ ∈ D such that E(m′) > µ? and m � m′ (i.e., m is absolutely continuous
with respect to m′). Such distributions exist and they are the only interesting ones in the defining
infimum of Kinf(m, µ

?). We associate with m′ the distribution

m′α = (1− α)m′ + αδx for the value α =
ε

x− µ? ∈ (0, 1) .

The expectation of m′α satisfies

E
(
m′α
)
> (1− α)µ? + αx = µ? + α(x− µ?) = µ? + ε . (21)

Now, m� m′ entails that m� m′α as well, with respective densities satisfying (because m and δx
are singular)

dm

dm′α
=

1

1− α
dm

dm′
and

dm

dm′α
(x) = 0 .

Therefore,

KL(m,m′α) =

∫ (
ln

dm

dm′α

)
dm = ln

1

1− α +

∫ (
ln

dm

dm′

)
dm = ln

1

1− α + KL(m,m′) .

Since α decreases with x and x > (M + µ?)/2, we get α 6 2ε/(M − µ?). We substitute this bound
in the inequality above and take the infimum in both sides, considering (21), to get the first claimed
bound. The second bound follows from the inequality − ln(1− x) 6 2x for x ∈ [0, 1/2].

Remark 5. We denote byMfin

(
[0,M ]

)
the subset ofM

(
[0,M ]

)
formed by probability distributions

with finite support. The proof above shows that the bound of Lemma 4 also holds for the model

D =
{

m ∈Mfin

(
[0,M ]

)
: E(m) < M

}
.
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Regular exponential families. Another example of well-behaved models is given by regular
exponential families, see Lehmann and Casella [17] for a thorough exposition or Cappé et al. [10]
for an alternative exposition focused on multi-armed bandit problems.

Such a family D is indexed by an open set I = (m,M), where for each µ ∈ I there exists a
unique distribution νµ ∈ D with expectation µ. (The bounds m and M can be equal to ±∞.) A
key property of such a family is that the Kullback-Leibler divergence between two of its elements
can be represented1 by a twice differentiable and strictly convex function g : I → R, with increasing
first derivative ġ and continuous second derivative g̈ > 0, in the sense that

∀ (µ, µ′) ∈ I2, KL
(
νµ, νµ′

)
= g(µ)− g(µ′)− (µ− µ′) ġ(µ′) . (22)

In particular, µ′ 7→ KL
(
νµ, νµ′

)
is strictly convex on I, thus is increasing on [µ,M). This entails

that
∀ (µ, µ?) ∈ I2 s.t µ < µ?, Kinf(νµ, µ

?) = KL
(
νµ, νµ?

)
. (23)

In the lemma below, we restrict our attention to ε > 0 such that µ? + ε ∈ I, e.g., to ε < Bµ? where

Bµ? = min

{
M − µ?

2
, 1

}
. (24)

Lemma 5. In a model D given by a regular exponential family indexed by I = (m,M) and whose
Kullback-Leibler divergence (22) is represented by a function g, we have, with the notation (24),

∀ (µ, µ?) ∈ I2, ∀ 0 < ε < Bµ? , Kinf(νµ, µ
? + ε) 6 Kinf(νµ, µ

?) + ε
(
µ? +Bµ? − µ

)
Gµ?

where Gµ? = max
{
g̈(x) : µ? 6 x 6 µ? +Bµ?

}
.

Proof. We may assume that µ < µ?, otherwise Kinf(νµ, µ
? + ε) = Kinf(νµ, µ

?) = 0 and the stated
bound holds. When µ < µ?, we get by (22) and (23)

Kinf(νµ, µ
? + ε)−Kinf(νµ, µ

?)

= g(µ?)− g(µ? + ε)−
(
µ− (µ? + ε)

)
ġ(µ? + ε) + (µ− µ?) ġ(µ?)

= g(µ?)− g(µ? + ε) + ε ġ(µ?)︸ ︷︷ ︸
60

+
(
(µ? + ε)− µ

)(
ġ(µ? + ε)− ġ(µ?)

)
,

where the inequality is obtained by convexity of g. The proof is concluded by an application of the
mean-value theorem,

ġ(µ? + ε)− ġ(µ?) 6 ε max
(µ?,µ?+ε)

g̈ ,

and the bound ε 6 Bµ? .

The upper bound obtained on Kinf(νµ, µ
? + ε)−Kinf(νµ, µ

?) equals ε
(
µ? + Bµ? − µ

)
Gµ? . The

examples below propose concrete upper bounds for Gµ? in different exponential families. None of
these upper bounds involves Bµ? as various monotonicity arguments can be invoked.

Example 1. For Poisson distributions, we have I = (0,+∞) and

KL
(
νµ, νµ′

)
= µ′ − µ+ µ ln

µ

µ′
.

We may take g(µ) = µ lnµ− µ, so that g̈(µ) = 1/µ and Gµ? = 1/µ?.

1This function g has an intrinsic definition as the convex conjugate of the log-normalization function b in the
natural parameter space Θ, where b can also be seen as a primitive of the expectation function Θ → I. But these
properties are unimportant here.
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Example 2. For Gamma distributions with known shape parameter α > 0 (e.g., the exponential
distributions when α = 1), we have I = (0,+∞) and

KL
(
νµ, νµ′

)
= α

(
µ

µ′
− 1− ln

µ

µ′

)
.

We may take g(µ) = −α lnµ, so that g̈(µ) = α/µ2 and Gµ? = α/(µ?)2.

Example 3. For Gaussian distributions with known variance σ2 > 0, we have I = (0,+∞) and

KL
(
νµ, νµ′

)
=

(µ− µ′)2

2σ2
.

We may take g(µ) = µ2/(2σ2), so that g̈(µ) = 1/σ2 and Gµ? = 1/σ2.

Example 4. For binomial distributions for n samples (e.g., Bernoulli distributions when n = 1),
we have I = (0, n) and

KL
(
νµ, νµ′

)
= µ ln

µ

µ′
+ (n− µ) ln

n− µ
n− µ′ .

We may take g(µ) = µ lnµ+ (n−µ) ln(n−µ), so that g̈(µ) = n/
(
µ(n−µ)

)
. A possible upper bound

is

Gµ? 6
2n

µ?(n− µ?) .

This can be seen by noting that Bµ? 6 (n−µ?)/2 so that any µ ∈ [µ?, µ? +Bµ? ] is such that µ > µ?

and n− µ > n− µ? −Bµ? > (n− µ?)/2.

Appendix: A finite-regret algorithm when µ? is known.

We consider the sub-Gaussian framework described in Section 1.3 and restrict our attention to the
case when µ? is known. We provide a refinement of the results of Bubeck et al. [6, Section 3]. Our
algorithm is inspired by their Algorithm 1. For each t > 1 and a ∈ {1, . . . ,K} such that Na(t) > 1,
we denote by

µ̂a,t =
1

Na(t)

t∑

s=1

Ys I{As=a}

the empirical mean of the rewards obtained between rounds 1 and t when playing arm a.

Algorithm 1: An algorithm with bounded regret, thanks to the knowledge of µ?

Bandit problem: ν = (νa)a=1,...,K where each νa is sub-Gaussian in the sense of (4)

Parameters: the value of µ? = max
a=1,...,K

µa

For: each t ∈ {1, . . . ,K}, do: play arm t.

For: each round t > K + 1,

1. Let Ct =

{
a ∈ {1, . . . ,K} : µ̂a,t−1 − µ? > −

√
4 lnNa(t− 1)

Na(t− 1)

}
be the set of candidate

arms;

2. If Ct 6= ∅, play an arm At at random in Ct, update t := t+ 1;

3. If Ct = ∅, play At = 1, At+1 = 2, . . . , At+K = t+K − 1, update t := t+K.
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We use the notation introduced before (1).

Theorem 9. For all bandit problems ν = (νa)a=1,...,K where each distribution νa is sub-Gaussian
in the sense of (4), the regret of the algorithm above is bounded by

Rν,T 6
∑

a:∆a>0

(
36 ln(17/∆a)

∆a
+ 3∆a

)
.

Proof. We fix an optimal arm a?. In view of (1), it suffices to bound Eν
[
Na(T )

]
for each suboptimal

arm a. Each arm is played once between 1 and K. For all t > K + 1, a suboptimal arm a can
only be played if a ∈ Ct (step 2 of the second for loop) or if we are in a sequence where each arm
is played successfully (step 3 of the second for loop). In the latter case, the set of candidate arms
at round t − a + 1 was empty. It did not contain a?. This optimal arm is played also once in the
sequence of pulls corresponding to step 3, at time t − a + a? + 1. At time t − a + a? we still had
Na?(t− a+ a?) = Na?(t− a+ 1), so that the condition for being a candidate was violated as well:

µ̂a?,t−a+a? − µ? 6 −
√

4 lnNa(t− a+ a?)

Na(t− a+ a?)
.

All in all, we proved the inclusion: for t > K + 1,

{At = a} ⊆
{
At = a and µ̂a,t−1 − µ? > −

√
4 lnNa(t− 1)

Na(t− 1)

}

∪
{
At−a+a? = a? and µ̂a?,t−a+a? − µ? 6 −

√
4 lnNa(t− a+ a?)

Na(t− a+ a?)

}
.

We now only sketch the next argument, as we proceed similarly to all multi-armed bandit analyses,
by resorting to Doob’s optional sampling theorem, which asserts that the rewards Ys obtained at
those rounds s when As = a are independent and identically distributed according to νa. We denote
by µa,n the empirical average of the first n rewards obtained by arm a during the game. Then,

Eν
[
Na(T )

]
6 1 +

T∑

t=K+1

P

{
At = a and µ̂a,t−1 − µ? > −

√
4 lnNa(t− 1)

Na(t− 1)

}

+

T∑

t=K+1

P

{
At−a+a? = a? and µ̂a?,t−a+a? − µ? 6 −

√
4 lnNa(t− a+ a?)

Na(t− a+ a?)

}

6 1 +
∑

n>1

P

{
µa,n − µ? > −

√
4 lnn

n

}
+
∑

n>1

P

{
µa?,n − µ? 6 −

√
4 lnn

n

}
. (25)

As indicated already in Bubeck et al. [6], for each arm a, the sub-Gaussian assumption on νa,
together with a Crámer–Chernoff bound, indicates that for all n > 1 and all ε > 0,

max
{
P
{
µa,n − µa > ε}, P

{
µa,n − µa 6 −ε}

}
6 exp

(
−nε2/2

)
. (26)

We substitute this inequality in the bound (25) obtained above. On the one hand, for a?,

∑

n>1

P

{
µa?,n − µ? 6 −

√
4 lnn

n

}
6
∑

n>1

n−2 6 2 . (27)
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On the other hand, for a, we rewrite µ? = µa + ∆a and get

∑

n>1

P

{
µa,n − µ? > −

√
4 lnn

n

}
=
∑

n>1

P

{
µa,n − µa > ∆a −

√
4 lnn

n

}
.

To upper bound the latter sum, we denote by n0 the smallest integer k > 3, if it exists, such that:

∆a −
√

4 ln k

k
>

∆a

2
, that is,

√
4 ln k

k
6

∆a

2
. (28)

As x 7→
√

(lnx)/x is decreasing on [3,+∞), we have

∀n > n0, ∆a −
√

4 lnn

n
>

∆a

2
,

and thus

∑

n>1

P

{
µa,n − µa > ∆a −

√
4 lnn

n

}
6 n0 − 1 +

∑

n>n0

P
{
µa,n − µa >

∆a

2

}
.

Note that the above inequality also holds with n0 = 2 when no k > 3 satisfies (28). We use (26)
and a comparison to an integral to get

∑

n>n0

P
{
µa,n − µa >

∆a

2

}
6
∑

n>n0

exp
(
−n∆2

a/8
)
6
∫ +∞

n0−1
exp
(
−x∆2

a/8
)

dx 6
8

∆2
a

.

Substituting the above bounds and (27) into (25), we showed so far that

Eν
[
Na(T )

]
6 n0 + 2 +

8

∆2
a

.

The proof is concluded by upper bounding n0, based on (28). If ∆a 6 4
√

(ln 3)/3, then the n0

defined in (28) exists. In this case, we denote by x0 ∈ [3,+∞) the real number such that

√
4 lnx0

x0
6

∆a

2
that is, x0 =

16 lnx0

∆2
a

.

We have n0 = dx0e 6 x0 + 1. Since

x0 =
16 lnx0

∆2
a

=
32 ln

(
4/∆)

∆2
a

+
16

∆2
a

ln
(
lnx0

)
,

we suspect that x0 should not be too much larger than 32 ln
(
4/∆)

/
∆2
a. Indeed, using the inequality

ln(u) 6 u, we see that

x0 =
16 lnx0

∆2
a

=
160 lnx

1/10
0

∆2
a

6
160x

1/10
0

∆2
a

, thus x0 6

(
160

∆2
a

)10/9

.

Therefore,

x0 =
16 lnx0

∆2
a

6
16

∆2
a

ln

(
160

∆2
a

)10/9

6
16× (10/9)× 2

∆2
a

ln
13

∆2
6

36

∆2
a

ln
13

∆2
.

When the n0 defined in (28) does not exist and we take n0 = 2, we may still bound n0 by 1 plus
the bound above on x0 (as the latter is larger than 1). The theorem follows, after substitution of
all the bounds, together with the inequality 8 6 36 ln(17)− 36 ln(13).
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