
HAL Id: hal-01275888
https://hal.science/hal-01275888

Submitted on 22 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rapid prototyping of complete systems, the case study
of a smart parking

Laurent-Frédéric Ducreux, Claire Guyon-Gardeux, Maxime Louvel, François
Pacull, Thior Safietou Raby, Maria Isabel Vergara-Gallego

To cite this version:
Laurent-Frédéric Ducreux, Claire Guyon-Gardeux, Maxime Louvel, François Pacull, Thior Safietou
Raby, et al.. Rapid prototyping of complete systems, the case study of a smart parking. IEEE
International Symposium on Rapid System Prototyping (RSP), Oct 2015, Amsterdam, Netherlands.
�hal-01275888�

https://hal.science/hal-01275888
https://hal.archives-ouvertes.fr

Rapid prototyping of complete systems, the case
study of a smart parking

Laurent-Frédéric Ducreux, Claire Guyon-Gardeux, Maxime Louvel,
François Pacull, Safietou Raby Thior, Maria Isabel Vergara-Gallego

Univ. Grenoble Alpes, F-38000 Grenoble, France
CEA, LETI, MINATEC Campus, F-38054 Grenoble, France

Email: firstname.lastname@cea.fr

Abstract—This paper details how LINC a coordination middle-
ware, can fasten the development of prototypes that integrate
several equipment. A case study of rapid prototyping is presented.
It illustrates how a smart parking prototype has been built from
several independent and autonomous equipment, coming from
different vendors. This has been achieved by parallel development
thanks to the resource based approach offered by LINC. This
paper also describes how LINC helps building rich user interfaces
quickly and easily.

Keywords–Coordination, Prototyping, User interface

I. INTRODUCTION

Embedded systems have been part of our daily life for
decades. Most of the industrial or consumer products embed
multiple processors, sensors and actuators. The next step is
the opportunity to build new products, systems, and usages,
combining together several of these products. In such inno-
vative and quickly evolving context it is necessary to build
prototypes to test, validate, and challenge new products usages
or solutions. This paper considers prototypes including several
equipment, possibly from different vendors. Such prototypes
can be used to exhibit demonstrations in a trade fair, to
convince investors of the viability of an idea or to verify the
adequacy of the solutions for early adopters.

To succeed in today’s highly competitive market, a proto-
type should be more than a few items wired together with
a command line interface. Targeted prototypes are real-life
demonstrations of new products or technologies with a high
end-user experience. Moreover, a prototype should be included
in its targeted environment (e.g. a house, a building or a
parking). The development of prototypes is vital during the
validation stage of new products as they may help to:

1) Reduce the time to market: by testing and validating
product functionality;

2) Improve and extend functionality: by opening the way
to new scenarios and usages of the product;

3) Create alliances: by integrating products coming
from different vendors;

4) Validate segments of clients: by pruning or expending
in a early stage the set of segments of clients.

Time and cost being critical, adequate tools are required
to fasten prototypes development. Such tools must help to
develop in parallel several parts of the prototype and ease
their integration in the last stage. They must also be flexible
enough to allow up to last minute changes. For instance,
when replacing a piece of hardware by another (e.g. cheaper,
more powerful or with better availability). Changes in the user
interface should also be facilitated to better take into account
feedback of early adopters. In addition, tools must simplify the

simulation of the equipment still under development. Indeed,
very often there is a co-design and co-development of a set of
devices and the global application that integrates all of them.
Simulating these devices at little cost reduces the length of the
critical path. Finally, fast development of rich user interfaces
are also needed because they leverage opportunities offered by
the prototype and allow to consider several alternatives.

In this paper, we show how we can use LINC [1] to
answer these challenges. LINC is a resource-based middleware
which integrates a rule engine. The resource approach provides
an abstraction layer to ease the integration of heterogeneous
components. The rule engine provides a coordination layer that
permits defining interactions between components, through the
use of coordination rules.

We illustrate the ability of LINC to deal with rapid pro-
totyping through the case study of a “smart parking”. The
challenge was twofold: first, the time frame of 3 months to
put everything in place and, second, the fact that some of
the equipment were themselves prototypes still under devel-
opment. Several scenarios demonstrating different usages of
the smart parking have been put in place: for (i) the car driver,
(ii) the people in charge of parking monitoring and control, and
(iii) the parking administrator for charging station and parking
slot usage optimisation.

This paper is organised as follows. First, section II presents
an overview of LINC. Then, section III presents the intrinsic
properties of LINC that address the challenges of rapid pro-
totyping. Section IV describes the case study, the components
and equipment to be integrated, and the scenarios put in place.
Then, section V details the implementation of the prototype
and section VI describes how user interfaces have been built.
Section VII presents related work on rapid prototyping. Finally,
section VIII concludes the paper.

II. OVERVIEW OF LINC

LINC is described in detail in [1], however this section
recalls some information to make the paper self contained.
LINC provides a uniform abstraction layer to encapsulate
software and hardware components. This abstraction layer
relies on the associative memory paradigm implemented as a
distributed set of bags containing resources (tuples). Inspired
by Linda [2], bags are accessed only through three operations:

• rd(): takes a partially instantiated tuple as input
parameter and returns from the bag a stream of fully
instantiated tuples matching the given input pattern;

• put(): takes a fully instantiated tuple as input pa-
rameter and inserts it in the bag;

• get(): takes a fully instantiated tuple as input pa-
rameter, verifies if a matching resource exists in the
bag and consumes it in an atomic way.

Bags are grouped within objects according to application
logic. For instance, all the bags used to manage a set of devices
of the same type or technology are grouped in an object.

A. Coordination rules
The three operations rd(), get() and put() are used

within production rules [3]. A production rule is composed of
a precondition phase and a performance phase.

Precondition phase: The precondition phase is a sequence
of rd() operations which detect or wait for the presence of
resources in several given bags. The resources are, for instance,
values from sensors, external events, or results of service calls.
In the precondition phase:

• the output fields of a rd() operation can be used to
define input fields of subsequent rd() operations;

• a rd() is blocked until at least one resource corre-
sponding to the input pattern is available.

Performance phase: The performance phase of a LINC
rule combines the three rd(), get() and put() operations
to respectively verify that some resources (e.g. the one(s)
found in the precondition phase) are present, consume some
resources, and insert new resources.

In this phase, the operations are embedded in one or
multiple distributed transactions [4], executed in sequence.
Each transaction contains a set of operations that are performed
in an atomic manner. Hence, we can guarantee that actions
belonging to the same transaction, are either all executed or
none. This ensures properties such as:

• Some conditions responsible for firing the rule (pre-
condition) are still valid at the time of the performance
phase completion;

• All the involved bags are effectively accessible. For
instance, for a bag encapsulating a remote service we
can determine if such service can be actually accessed.

These properties ensure that the set of required objects, bags,
and resources, are actually available “at the same time”.

B. Bag abstraction
The bag abstraction maps software and hardware components:

database: A possible encapsulation is to associate a bag
to each table of the database. These bags can be automati-
cally generated from the database meta-data. The rd() and
put() operations correspond to the read and write on
the database. The rd() operations in the precondition part
develops an inference tree, like a SQL request.

remote service: To encapsulate a remote service, par-
tially instantiated tuples are passed to a rd() with in-
put parameters (e.g.: (”4511′45.96”, ”542′35.81”, town) to
get the town associated to GPS coordinates). The remote
service is queried within the proprietary format and com-
munication protocol. The result is combined with the in-
put parameters to define a fully instantiated tuple (i.e.
(”4511′45.96”, ”542′35.81”, ”Grenoble”)) which is returned
by the rd() operation.

event system: An event can be represented as a tuple
with the following fields (id, topic, timestamp, payload). To
encapsulate an event system, rd() and put() are mapped
to publish and subscribe operations on the system.

sensor: To encapsulate sensors, three bags can be used:
Sensors to store (id, value), Type to associate sensor type
to its id (i.e. (id, type)) and Location to manage the
location (i.e. (id, location)). The first two bags are usually
filled by the sensor network gateway driver and the last one is
managed at the application layer when the binding is done.

actuator: To operate on an actuator, a resource is put in
the bag associated to it. The resource contains the id of the
actuator, the command to apply and possible parameters.
When the resource is added, the command is sent to the
actuator through the driver encapsulating the protocol.

user interface: User interfaces follow a Model-View-
Controller [5] approach implemented above the bag paradigm.
Inputs or gestures from users are inserted in the bag
MVCControl to indicate to the system what has been done on
graphical elements (e.g. clicked, mouse over). This information
is used to trigger further actions on the whole system. In
return, feedback is given as modifications to be applied to the
graphical elements. This is done through resources inserted
in the bag MVCStatus. A resource has three fields defining
a graphical element, one of its attributes, and the new value.
Finally, inserting a resource in the bag MVCRefresh triggers
the update of a given part of the user interface. This is
described in more detail in the following section.

C. Frameworks
A framework is a group of objects targeting a domain. For

instance, the PUTUTU [6] framework integrates more than
20 technologies for sensor/actuator networks. A framework
offers ready to use objects and/or template objects to speed up
development. We have defined several frameworks dedicated
to UI, user notifications (e-mail, SMS), voice recognition and
synthesis, light management, and so on.

D. Tools
LINC offers tools to help development and debugging.

Firstly, a web based monitor allows to remotely introspect and
modify the content of the bags. An analysis tool is provided
to observe the rules execution, the amount of resources read,
added or removed in bags. Finally, it is possible to restart an
application by forcing the rules to be re-executed in the same
order than a previous execution. This is useful for debugging
purposes, as described in section III-E.

III. LINC AND RAPID PROTOTYPING

A LINC application can be decomposed into three layers:

• the external and legacy world encapsulated as bags;
• the user interface, through web browser based inter-

action following a Model-View-Controller approach;
• the application logic, where the application state is

kept as resources in the bags, and the state transitions
are driven by coordination rules bridging the external
world and the users.

LINC provides loose coupling through the resource/bag
based approach. This is particularly useful for rapid proto-
typing as now explained.

A. Parallel development
The bag abstraction provides decoupling in both time

and space between the producer and the consumer. Hence to
develop several parts in parallel, it is only required to define
the resources that will be produced and consumed. This is true
for hardware (e.g. sensors or actuators) encapsulated within
the bag abstraction. But this is also true at the interface level
(e.g. what graphical element have been clicked) and at the
application level (e.g. events or state of a process). Indeed,
one team can develop the graphical interface, while another can
write the code to encapsulate a sensor or an existing product,
and another can work on the application logic. The teams only
have to agree on the data format that will be exchanged.

B. Simulation
With the resource approach, it is very easy to simulate other

parts of the system. Indeed the resources of interest simply
need to be added in a bag. This can be done manually or via
a coordination rule. This allows to validate the system even if
every single part or device is still under design. This is critical
for rapid prototyping, where part of the components can be
available or stable only in the last stage of the development.

C. Re-usability
The resource approach, coupled with the coordination

rules, also increases re-usability which is vital for rapid proto-
typing. In fact, the decoupling between the modelling (using
resources) and the usage (through rules) permits the design of
objects that do not depend on the way they are used. This facil-
itates the reuse of objects in different applications/contexts. For
instance, the ModBus object, from the PUTUTU framework,
has been reused in 3 demonstrators from different domains:
home automation, lift energy management, and smart parking.

D. User Interfaces
LINC provides four types of objects that can be combined

to define very flexible and dynamic interfaces.
The first one, Layout defines the global interface as a

set of frames. Frames may overlap and accept transparency
effects. The association of the frame and its content (URL) is
stored in a bag. Thus, it is possible to dynamically change an
interface: frames can be moved and their content changed.

The second object MVC (Model-View-Controller) is used,
on the one hand, to capture the interactions from the users and,
on the other hand, to reflect the current state of the application.
This state is the result of the rules execution regardless to what
are the causes: user interactions, sensors detection, results of
a complex algorithm, events, etc.

The third object Chart is used to directly render as charts
information contained in bags. Once the bag name, the type
of chart, and the different parameters inherent to the type
of chart are known, the object returns a web page containing
a chart (in SVG) corresponding to the resources contained in
the bag. This allows to manage both a static chart from data
collected in the past or a dynamic chart following the changes
of one or several values. We consider not only the classical
charts (such as plots, histograms, and pies) but also gauges
and progression bars when a single value is followed.

Finally, the last object dynamicSVG is used to animate
2D SVG graphical objects into a SVG scene, composed of

three main bags. The Sprite bag manages the graphical
representation of a sprite. The Location bag manages the
place of the sprite within the global scene. The Animation
bag associates a sprite, a path to follow, a duration
and a type of movement (accelerate, slow down, . . .).
Collisions with other graphical objects are detected and can
be used to trigger further actions through rules.

Thus, an elaborated user interface is constructed with one
Layout object, and possibly objects of type MVC, Chart
and dynamicSVG associated to the frames. In addition,
any other HTML element coming from an external source
may be included in a frame. It is possible to refresh the
frames independently according to what is really required. This
decreases the network traffic and the CPU usage of the host
running the browser. This allows to target very small devices
(e.g. a kindle paper-white from amazon is a perfect device for
home automation remote user interface).

As the status is not contained in the user interface but at the
objects level, the same data can be used for different interfaces
and/or for different sessions of the same interface on different
devices. These sessions can be synchronised or not depending
on the need. Indeed, triggering the refresh of a browser session
is as simple as inserting the appropriate resources in the
MVCRefresh bag. This is used when collaboration/sharing
among geographically distributed users is required by the
application. Another usage, is to propose the user to choose
among several alternative representation of a same interface.

The development of an interface may be dispatched to
several people with different expertise. The purely graphic part
can be done by a designer using standard tools such as Adobe
Illustrator or Inkscape without any knowledge of LINC. The
result is plain SVG drawing. The instrumentation of this SVG
is done by another person for which the knowledge required
about LINC is just the generic API needed to insert a resource
in a bag when an action on a graphical entity is done. This
can be very easily done in an SVG editor such as Inkscape.
Chart type interfaces are directly integrated without any code
to write. dynamicSVG requires more knowledge of LINC
since the animations are coded as a set of LINC rules defining
how the sprites move according to contextual conditions.

E. Tools
The tools complete the environment by providing facilities

to remove or add resources when the application is running.
This allows debugging or verification of sub part of the
application without needing to restart everything. The rule
analysis tools allow to spot very easily rules that can be
optimised. Finally, the controlled re-execution of an application
forces a non-deterministic application to behave in the same
way as a previous crashed execution. Debugging is easier
because otherwise one would have to replay the application
several times hoping to recreate the crash condition.

IV. CASE STUDY DESCRIPTION

The case study consists of a “smart parking” that has been
developed in the context of the IRT Nanoelec [7] within the
PULSE program. This is a french initiative, whose role is
to accelerate collaboration between industry and academia.
The “smart parking” prototype has been inaugurated during
an event called “day of the sustainable mobility” organised at
CEA premises in Grenoble.

The target was to develop a prototype integrating products
provided by several industrial partners, such as Bouygues and
Schneider electric, and off-the-shelve products. The equipment
from partners consist of their last prototypes still under devel-
opment and improvement.

A. Smart parking description
1) Parking spot solution: (prototype): This is a solution

promoted by Bouygues, composed of autonomous car sensors.
Sensors are embedded in each parking spot and data is
aggregated by a gateway called TOTEM. The gateway may
be queried via FTP.

2) Charging stations: (prototype): These stations are used
to charge electrical vehicles, they are manufactured by Schnei-
der Electric. The charging stations are composed of an RFID
reader: for users authentication and two plugs working inde-
pendently. A station works autonomously, so that it manages
the user authentication procedure, as well as the full process
to charge a vehicle. Through a ModBusTCP [8] connection,
it is possible to retrieve information such as the current state
of the station (e.g a car is plugged, a car is charging, or a
user has been identified) and the RFID values detected by the
station. It is also possible to send remote commands, to reboot
the station, for example.

3) Off-the-shelve products: : These equipment have been
added to extend the scenarios with enhanced user experience:

• Lights columns : These columns have 4 lights (Blue,
Red, Green, and Orange). They are placed at each
parking spot to give feedback about the status of the
related parking spot and/or charging station. They can
be remotely controlled through an IP-Relay board.

• Video camera: Several IP-based cameras have been
installed. It is possible to retrieve a video stream and
for some of them to pilot their position.

Car sensor

Charging station

TOTEM

Figure 1. Picture of the parking

Figure 1 shows a picture of the parking. The blue circle
highlights the sensors gateway (or TOTEM), the green circle
highlights a charging station, and the red circle highlights one
of the sensors embedded in a parking spot.

The prototype contains 3 charging stations with 2 plugs
each, 5 instrumented parking spots (sensors and light columns),
and 3 Video Cameras.

B. Scenarios
Three scenarios have been defined to target respectively

the parking manager, the people responsible for the mainte-
nance and the parking users. With LINC, the information are

resources in bags, easily manipulated by rules to trigger actions
given a specific context. Thus, from the same information (e.g.
a car is charged) several actions may be taken: send an SMS
to the car owner, store the information in a database, or raise
an alert to the parking manager.

1) Parking maintenance scenario: This scenario focuses
on the parking maintenance and administration. It allows to
monitor and control all the equipment in the parking remotely,
from a single interface. The interface offers a schematic view
of the real parking with the current state of the equipment. This
interface may be used for instance to display alerts caused by
possibly faulty devices. The interface allows also to control
manually some of the equipment such as lights or cameras
independently from their usual behaviour.

2) Parking manager scenario: The parking manager is
interested by statistics on parking spots and charging stations
usage. The scenario provides an interface presenting the anal-
ysis of the usage of the charging stations and the parking
spots. In this case, all the information from the equipment (i.e.
sensor values, events from charging stations, etc) is logged
in a database. Then, when the user requests it, statistics are
computed and represented. Presenting these statistics in a
unified manner will bring value to the parking manager. For
instance, it may show that some users park on a charging
station spot even though they never charge their car. Such
information could be used to warn the parking user or increase
the parking price when this situation happens. Another usage
could be to detect cars parked for a long time, i.e. still
connected to the charging station after the charge has ended.
The manager can also learn from these statistics and adopt new
strategies when planning future infrastructures. For instance, it
is possible to determine which type of plugs are the most used.

3) User scenario: This scenario focuses on the user of the
parking. The colour of the light column beside a parking spot
is used to give information about the parking spot (e.g. busy
or free) and the charging station (e.g. available, connected, or
charging). The colour informs the user if his/her vehicle has
been correctly connected, if it is charging, or if the charge has
finished. Besides, this scenario also manages the authentication
of users and the accounting for the parking usage. For instance,
the identity of the user can be retrieved from the RFID reader;
therefore, it is possible to associate the utilisation of a station
with a user and an account. In addition, the user can be
informed about the state of his/her account or charge through
notification mechanisms such as SMS or e-mails.

4) Software components added to implement the scenarios:

• A database containing information about users (e.g.
name, phone number), parking spots and charging
stations usage (e.g. duration, tariff, user);

• Simulators for products not available yet. This allowed
earlier integration of the products into the application
in order to speed up the development process;

• Notifications to users and the parking manager.

V. IMPLEMENTATION

The case study raises several challenges:

• equipment were not all available at the beginning, or
not with all their functionality;

• some of the equipment have an autonomous behaviour
(they have not been designed to be integrated into a
bigger product/system);

• high level information must be built by merging in-
formation of different equipment;

• time frame: this case study has been implemented in
3 months, with interfaces, equipment and scenarios
evolving up to the last week.

This section presents how LINC has been used to face these
challenges. In the proposed architecture, LINC has been used
both for communication and coordination.

A. Software architecture

Figure 2. Software architecture

Figure 2 depicts the architecture. A simulator for the
charging station has been developed as a Modbus slave whose
registers values correspond to the expected values for each
charging state; the same for RFID detection. Similarly, for the
parking spot sensors, the behaviour of the TOTEM has been
simulated thanks to sample files provided by the manufacturer.
This allowed the integration of equipment still under develop-
ment into scenarios before they were installed.

The database has been designed from scratch but it is now
available as a ready to use framework that we already have
used in another development in the field of connected health.

Most of the equipment integrated in the demonstrator are
sensors and/or actuators or at least can be considered as such.
We thus relied on the PUTUTU framework which already
contained objects for some of the required technologies (e.g.
Modbus used in the charging station, the IP based relay used
for the column lights, and user notifications). For the missing
parts, the templates coming with this framework reduced the
development time and effort (e.g. the technology used for the
car detectors has been added in a couple of days).

The coordination layer ensures, through LINC rules, the
consistency of the system and implements the scenarios. The
coordination rules define the core of the application, they
decide which are the actions to take after the detection of an
event (the presence of a resource in a bag).

B. LINC coordination rules
Several rules to implement the different scenarios were

written. The rules are divided in four groups:

• 10 rules to control the equipment. They control, for
example, the colour of the light columns according to
the state of the associated spot and charging station;

• 12 rules to manage charging cycles of the different
stations ;

• 9 rules to log information into the database for statis-
tics purpose;

• 10 rules to control the user interfaces. They update the
user interfaces according to values from equipment
and they send events generated by the user to the
different components of the application.

1[” App” , ” CCState”] . rd (cc id , s t i d , badge, ” charg ing”) &
[s t i d , ” S ta te ”] . rd (” VEHICLE CHARGED”) &

3[” App” , ” User In fo ”] . rd (badge, phone) &
: :

5{
[” App” , ” CCState”] . get (cc id , s t i d , badge, ” charg ing”) ;

7[” App” , ” CCState”] . put(cc id , s t i d , badge, ” charged”) ;
[” A l e r t s ” , ” SendSMS”] . put(phone, ” Veh ic le charged”) ;

9[” DB” , ” Charge”] . put(s t i d , bagde) ;
} .

Listing 1. Rule to detect end of charge

Listing 1 shows an example of a simplified rule used
to coordinate the charging cycle. The bag CCState refers
to the state of the charging cycle associated to a charging
station (st_id) and a user identity (badge). For each plug
on a charging station, a unique charging cycle (identified
by cc_id) can be active at a time. The precondition first
asks the bag CCState of the App (Application) object for
existing charging cycles. The second line waits for the resource
modelling the end of charge event of the corresponding station.
Finally the third line reads the user phone number. Then the
performance part (after ::) is triggered. Line 6 consumes the
current state of the process (i.e. charging) and line 7 inserts
the new state (i.e. charged). Then line 8 adds a resource
in the SendSMS bag of the Alerts object to notify the
user about the end of the charge. Finally the last line of the
performance stores the end of charge event in the database
(note that primary key information and time-stamp have been
removed to make the rule more readable).

Regarding the application interfaces, they are developed on
top of the UI Manager layer, and they rely on the coordination
layer to interact with the physical equipment. The interfaces
are described in the next section.

VI. USER INTERFACES

This section presents the graphical interfaces developed for
the first two scenarios. The Live interface allows to monitor
and control the parking in real time. The Statistics interface
displays statistics about the parking usage.

A. Live interface

Figure 3 shows the live interface provided by a Layout
object with three frames (highlighted by a rectangle in the
figure). The main frame (provided by an MVC object) shows the
actual parking and the current state of the different equipment.
This frame is an SVG file where each graphical element of
interest can be managed through resources inserted in the bag
MVCStatus.

Main Frame Frame 2

Frame 3

Magnifier

Figure 3. Live Interface

[” Park ing” , ” Sensors”] . rd (spot , ” Occupied”) &
2[” L i v e I n t ” , ” map”] . rd (c, spo t) &

: :
4{

[” Park ing” , ” Sensors”] . rd (spot , ” Occupied”)
6[” L i v e I n t ” , ” MVCStatus”] . put(c, ” v i s i b i l i t y ” , ” v i s i b l e ”) ;

[” L i v e I n t ” , ” MVCRefresh”] . put(” frame1” , ” r e f r e s h ”) ;
8} .

Listing 2. Rule to set car visibility attribute

Listing 2 shows the rule to show on the interface when a
car is parked. The precondition consists of a rd on the bag
Sensors of the parking object and a rd on the bag map
of the LiveInt object. When a new resource is added in the
bag Sensors, the rule reads the graphical entity associated
to the spot and the performance is triggered. The performance
checks that the sensor value did not change and updates the
bags MVCStatus and MVCRefresh of the LiveInt object.
This will automatically update the visibility attribute of the
graphical entity in the live interface.

The live interface also shows further information about the
parking spots, the charging stations, and the users currently
using the stations. It triggers alerts to inform about abusive
use of a charging station or faulty equipment. Then, the
parking manager can interact with the different components.
For instance, a click on a camera in the live interface opens the
stream of the corresponding camera and a click on the red light
of a column forces its state to red to indicate its unavailability
to the parking customers.
[” L i v e I n t ” , ” MVCControl”] . rd (column id , ” c l i c k ” , c o l o u r) &

2: :
{

4[” L i v e I n t ” , ” MVCControl”] . get (column id , ” c l i c k ” , c o l o u r) ;
[” Column” , ” command”] . put(colum id , c o l o u r) &

6} .

Listing 3. Rule to force column colour

Listing 3 shows the rule to force the colour of a light
column from the interface. The precondition contains one rd
that triggers the performance when a resource indicating a click
on a column is added. The performance consumes the resource
and updates the model, here by sending the command with
the correct colour to the object encapsulating the light column.
Note that this change will then trigger a rule (similar to rule 2)
that will update the MVCStatus and thus the interface.

These two examples of rules show how the physical world
(sensors) triggers feedback to the user interface and how the
user interface triggers actions on the physical world (actuators).

B. Statistics interface

Figure 4. Statistics Interface

Figure 4 shows the statics view of the application. The
user can select some parameters for statistics computations
and sends a new request to the statistics object (encapsulating
the database). As soon as calculations are done, the interface is
updated according to the new computed values. Chart objects
are used to draw histograms, plots and pie charts.

The interface is composed of a configuration part (right
column) and a display part. The right column configures the
statistics computation:

• select the parking on which statistics are shown;
• display statistics on plugs or parking spot;
• period of monitoring (start/end dates, last day, week,

month or year).

The display part is composed of four frames. The bottom
right square displays the schematic view of the parking already
seen in the live interface. However, even if it contains the
same graphical elements, the context allows to use them for a
different purpose. The user action is the same: click on a given
graphical object. Information inserted in the bag is the same;
however, the context, which is different, forces the execution
of a different set of rules. This simplifies the re-usability.

If the user clicks on a plug or a parking spot statistics
of the clicked element, for the selected period, are displayed.
Finally the last three squares (top-left, bottom-left and top-
right) display several statistics such as:

• ratio of occupied/free time per spot;
• ratio charging time/parking time;
• number of charges per hour, day, week, or month

(according to the selected period).

VII. RELATED WORK

Several software approaches that provide rapid prototyping,
targeting fast integration of heterogeneous equipment, have
been proposed in the literature [9], [10], [11]. Similar to the
work presented in this paper, these solutions propose the use
of middlewares to facilitate the integration of new components
and provide interactions between these components. However,
most of these middleware solutions have been thought for a
specific application domain lacking of flexibility. In addition,
the encapsulation procedure being closely coupled with the
application, reduces the possibility of code reuse.

Several coordination middlewares can be found in the liter-
ature, such as EgoSpace [12], LIME [13], TOTA [14] and Reo

[15]. As LINC, these middlewares rely on a resource approach,
making space and time decoupling easier. However, when rapid
prototyping is concerned, they do not offer development tools,
ready to use frameworks, and user interfaces development
framework.

Concerning the development of graphic interfaces, in most
of the cases they are developed manually. Through the use of
available tool-kits it is possible to use some predefined objects,
such as buttons and menus, but most of the development is
application dependent and cannot be reused. Mashups [16]
are one example of approaches trying to integrate presentation
components in a unique user interface. However, the lack of
proper tools and models, increases complexity of Mashups
requiring advanced programming skills. Yu et al. [17] propose
a framework for graphic interfaces based on a very simple
middleware; in this case the middleware allows the interaction
between existing presentation components. LINC goes further
by providing a method to define lightweight user interfaces
with the same paradigm as the one used for the application
logic itself. Thus, development of user interface is simpler,
since once the graphic design has been done, it is only required
to write the appropriate rules.

VIII. CONCLUSION

This paper has presented how LINC has been used to
accelerate system prototyping. The prototypes targeted in this
paper are applications that integrate several equipment from
different vendors, with possibly some of the equipment still
under development. Such prototypes are used to validate
usages, demonstrate products at a fair or convince investors.

LINC provides a loosely coupled approach and a transac-
tional rule engine. This characteristics permit to develop in
parallel the integration of the different software and hardware
components, the application logic and the user interfaces. High
re-usability and simulation of not available components speed
up the development. The transactional rule engine allows the
programmers to focus on the application design without taking
into account faulty equipment. This makes application easier
to develop, faster to debug and more upgradable.

A case study of smart parking prototype including several
equipment (some still under development), coming from dif-
ferent vendors, using different protocols, has been presented.
The equipment were not designed to work together or even to
be integrated in a more global system, since they have their
own independent embedded behaviour.

This prototype has been developed in three months and
demonstrated as part of a quite large event with several
thousands of attendees. It is now used, on the one hand, for
demonstration by the IRT Nanoelec and, on the other hand,
as an open infrastructure in which other equipment can be
integrated or other usages can be validated. We are currently
working on the integration of a more elaborated lighting
system and the validation of algorithms to adapt lighting,
according to pedestrian detection.

This paper has also presented how rich user interfaces can
be quickly built with LINC starting with standard designer
tools such as Inkscape or Adobe Illustrator. Different interfaces
have been provided for maintenance, parking exploitation, and
customers on top of the same application objects and data.

This kind of fast development are of tremendous interest to
reduce time to market, validate product during early stage, and
anticipate commercial activities. Future work focuses on high
level modelling and verifiable languages which can generate
directly LINC rules. This will go one step further to decrease
the prototype development time.

ACKNOWLEDGE

This Work was supported by the French national program
“Programme Investissements d’Avenir IRT Nanoelec” ANR-
10-AIRT-05.

REFERENCES
[1] M. Louvel and F. Pacull, “Linc: A compact yet powerful coordination

environment,” in Coordination Models and Languages, ser. Lecture
Notes in Computer Science, 2014, pp. 83–98.

[2] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM,
vol. 32, 1989, pp. 444–458.

[3] T. Cooper and N. Wogrin, Rule-based Programming with OPS5. San
Fransisco: Morgan Kaufmann, 1988, vol. 988.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. New York: Addison-wesley, 1987,
vol. 370.

[5] G. E. Krasner and S. T. Pope, “A description of the model-view-
controller user interface paradigm in the smalltalk-80 system,” Journal
of Object Oriented Programming, vol. 1, 1988, pp. 26–49.

[6] F. Pacull et al., “Self-organisation for building automation systems:
Middleware linc as an integration tool,” in IECON 2013-39th Annual
Conference on IEEE Industrial Electronics Society. Vienna, Austria:
IEEE, 2013, pp. 7726–7732.

[7] I. N. project, http://www.irtnanoelec.fr/en/.
[8] “ModBus Application Protocol Specification,” 2012. [Online].

Available: http://www.modbus.org
[9] R. Barraquand, D. Vaufreydaz, R. Emonet, A. Negre, and P. Reignier,

“The omiscid 2.0 middleware: Usage and experiments in smart environ-
ments,” International Journal On Advances in Software, March 2012,
pp. 231–243.

[10] T. Weis, M. Knoll, A. Ulbrich, G. Muhl, and A. Brandle, “Rapid
prototyping for pervasive applications,” Pervasive Computing, IEEE,
vol. 6, no. 2, April 2007, pp. 76–84.

[11] C. Côté, Y. Brosseau, D. Létourneau, C. Raı̈evsky, and F. Michaud,
“Robotic software integration using marie,” International Journal of
Advanced Robotic Systems, vol. 3, no. 1, March 2006, pp. 055–060.

[12] C. Julien and G.-C. Roman, “Egospaces: Facilitating rapid development
of context-aware mobile applications,” Software Engineering, IEEE
Transactions on, vol. 32, no. 5, 2006, pp. 281–298.

[13] A. L. Murphy, G. P. Picco, and G.-C. Roman, “Lime: A coordination
model and middleware supporting mobility of hosts and agents,” ACM
Transactions on Software Engineering and Methodology, vol. 15, no. 3,
2006, pp. 279–328.

[14] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The tota approach,” ACM Transactions on
Software Engineering and Methodology, vol. 18, no. 4, 2009, p. 15.

[15] F. Arbab, “Reo: a channel-based coordination model for component
composition,” Mathematical structures in computer science, vol. 14,
no. 03, 2004, pp. 329–366.

[16] G. Di Lorenzo, H. Hacid, H.-y. Paik, and B. Benatallah, “Data integra-
tion in mashups,” SIGMOD Rec., 2009, pp. 59–66.

[17] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera,
“A framework for rapid integration of presentation components,” in
Proceedings of the 16th International Conference on World Wide Web,
ser. WWW ’07. ACM, 2007, pp. 923–932.

http://www.modbus.org

	Introduction
	Overview of LINC
	Coordination rules
	Bag abstraction
	Frameworks
	Tools

	LINC and Rapid Prototyping
	Parallel development
	Simulation
	Re-usability
	User Interfaces
	Tools

	Case study description
	Smart parking description
	Parking spot solution
	Charging stations
	Off-the-shelve products

	Scenarios
	Parking maintenance scenario
	Parking manager scenario
	User scenario
	Software components added to implement the scenarios

	Implementation
	Software architecture
	LINC coordination rules

	User interfaces
	Live interface
	Statistics interface

	Related work
	Conclusion
	References

