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Abstract. In this paper, we use a linear algebra point of view to describe
the derivatives and higher order derivatives over F2n . On one hand, this
new approach enables us to prove several properties of these functions,
as well as the functions that have these derivatives. On the other hand,
we provide a method to construct all of the higher order derivatives in
given directions. We also demonstrate some properties of the higher order
derivatives and their decomposition as a sum of functions with 0-linear
structure. Moreover, we introduce a criterion and an algorithm to realize
discrete antidifferentiation of vectorial Boolean functions. This leads us
to define a new equivalence of functions, that we call differential equiva-
lence, which links functions that share the same derivatives in directions
given by some subspace. Finally, we discuss the importance of finding
2-to-1 functions.

Keywords: Derivative functions, higher order derivative functions, antidifferen-
tiation over F2n , antiderivative functions, linear structure, quadratic APN func-
tions.

1 Introduction

In symmetric cryptography, confusion in block and stream ciphers is usually
performed by non-linear functions over finite fields called Substitution boxes (or
S-boxes). In order to behave securely against most of the known attacks against
cryptographic primitives using S-boxes, these functions must satisfy some secu-
rity criteria. After the introduction of differential attacks [4], which is one of the
most powerful known cryptanalysis, differential properties of functions over F2n

have attracted a lot of attention from researchers not only in cryptography, but
also in other related areas such as coding theory [6] or finite geometry [8]. Indeed,
the resistance of a function against differential attacks is closely related to the
study of its discrete derivatives, especially of the size of their image sets [13]. The
most resistant functions against this attack are called Almost Perfect Nonlinear
(APN), and all of their derivatives have an image set of the largest possible
size (see Definition 1 below). In terms of coding theory, these APN functions
correspond to some binary codes having a minimal distance 5 [6].

The generalization of differential cryptanalysis has brought new concepts
and attacks linked to the derivative functions such as the impossible differential



attacks [3] or the boomerang attacks [14] among others. Conversely, tools re-
lated to derivatives and their properties (e.g. algebraic degree), like higher order
derivatives [12], are frequently used in cryptanalysis, higher order differential
attacks [11], cube attacks [7], zero-sum distinguishers [5]. Therefore, building
functions that fulfill differential criteria has become an important issue in dis-
crete mathematics.

There already exist some efficient techniques to find APN functions, as the
so-called switching method [9]. Moreover, there are also techniques that aim at
finding quadratic APN functions experimentally [15, 17]. However, up to our
knowledge, the idea of constructing such functions from the derivatives them-
selves has never been explored before. Indeed, the goal of the switching method,
when applied to APN functions, is somehow to transform some Boolean compo-
nent functions of an APN function in such a way that all the derivatives of these
Boolean functions keep their differential properties.

In this paper, we introduce a method able to recover a function from a set
of derivatives in given directions, with possibly some differential properties. In
other words, we realize discrete antidifferentiation of functions over F2n .

In a recent work [16], Xiong et al. gave a criterion to decide whether or
not a function is a derivative in a given direction, how many such derivatives
exist, and what could be one of the function’s antiderivative. However, their
results were not pushed far enough, and many problems still arise. Indeed, in
this paper, we revisit this work with another approach which allows us to not only
discuss the higher order derivatives and their set, but also the functions that are
canceled when differentiated in given directions and several other properties. In
fact, higher order derivatives play an important role in the reconstruction of an
antiderivative function. Most notably, we give a necessary and sufficient condition
for some derivatives to be compatible, that is to be integrated in a function over
F2n . We also provide an efficient algorithm that realizes this antidifferentiation.
Then we introduce a new function equivalence over F2n , that we call differential
equivalence, and which is distinct from CCZ-equivalence [6]. Finally, we discuss
the eventuality to recover APN functions from their derivatives. In particular,
we show that the two presented recently [15, 17] very similar techniques for
finding quadratic APN functions, are quite surprisingly equivalent to the first
natural application of antidifferentiation over F2n , which consists in gathering
affine derivatives.

This paper is thus organized as follows. After some basic definitions and nota-
tions (Section 2), in Section 3 we propose to see derivatives as linear applications
described by matrices. By using techniques from linear algebra, we prove several
properties concerning the set of derivatives and higher order derivatives. Then,
in Section 4, we give the conditions that must be satisfied by the derivatives in
order to be integrated into a discrete antidifference function, which we call an-
tiderivative. We give also a simple algorithm that computes such antiderivatives.
Finally, in Section 5, we talk about some applications and present the particular
case of quadratic APN functions.



2 Definitions and notations

It is well known that any function F : F2n → F2n has a unique univariate
polynomial representation:

F (x) =

2n−1∑
i=0

fix
i ∈ F2n [x],

and its algebraic degree is given by deg(F ) = max{wt(i) | fi 6= 0}, where wt(i)
is the binary Hamming weight of the integer i. In the rest of this paper, we will
use both ’function’ and ’polynomial’ indifferently to describe such an element F .

Definition 1. The discrete derivative or simply derivative of a function F :
F2n → F2n in a direction α ∈ F∗2n is given by

∆αF : F2n → F2n

x 7→ F (x) + F (x+ α)

The differential uniformity of F , denoted by δ(F ), is defined as

δ(F ) = max
α6=0,β∈F2n

{x | ∆αF (x) = β} ≥ 2.

The differential uniformity of a function measures its resistance to differential
cryptanalysis. APN functions are the ones that have the lowest possible differ-
ential uniformity, i.e. 2. A derivative that has exactly two pre-images for each
element in its image set is called a 2-to-1 function. It is clear that every derivative
of an APN function is 2-to-1.

Definition 2. Let F : F2n → F2n be a function and α, c ∈ F2n . We say that α
is a c−linear structure of F if ∆αF (x) = F (x) + F (x+ α) = c, for all x ∈ F2n .

Definition 3 ([12]). Let L ⊆ F2n be the vector space over F2 spanned by the
F2−linearly independent elements α1, . . . , αm ∈ F2n and let F : F2n → F2n .
Then,

∆LF (x) := ∆α1,...,αm
F (x) = ∆α1

(∆α2,...,αm
F (x)) =

∑
c∈L

F (x+ c).

Remark that there is a one-to-one correspondence between functions from
F2n into F2n and the vector space F2n

2n .

Definition 4. We denote by ϕ the bijective function that maps any function
over F2n to the vector of its coefficients. More precisely, let F : F2n → F2n such

that F (x) =
∑2n−1
i=0 fix

i, then

ϕ(F ) =


f0
f1
...

f2n−1

 ∈ F2n

2n .

For the sake of simplicity, we will denote ϕ(F ) by
−→
F .



Thus, we have for all x ∈ F2n , F (x) = (0, x, x2, x3, . . . , x2
n−1) ·

−→
F .

Since our approach is mainly based on linear algebra, we also introduce the
essential background on this topic. For more details, we invite the readers to
refer to [10].

Definition 5. The image and kernel of a linear application, given by its matrix
M , between two vector spaces A and B, are denoted by Im(M) and by ker(M)
respectively and are defined as follows:

Im(M) = {y ∈ B |M ·x = y, ∀x ∈ A} and ker(M) = {x ∈ A |M ·x = 0B},

where 0B denotes the null vector of the vector space B. Both Im(M) and ker(M)
are vector spaces. The rank of a matrix M is defined as rank(M) = dim(Im(M)).

Definition 6. Let M be a matrix defining an endomorphism of a vector space
A and let A′ be a subspace of A:

1. A′ is said invariant under the action of M if x ∈ A′ implies Mx ∈ A′.
2. A′ + v = {a+ v | a ∈ A′}, with v ∈ A, is an affine space (or coset) of A.

3 Derivatives and higher order derivatives

3.1 A matrix point of view

First of all, note that any positive integer a can be uniquely written as a =∑
i≥0 ai2

i where ai’s lie in F2. We define the following relation:

Definition 7. Let a and b be two positive integers. We will say that a is covered
(resp. strictly covered) by b, and denote a � b (resp. a ≺ b), if

{i | ai 6= 0} ⊆ {j | bj 6= 0} (resp. {i | ai 6= 0} ⊂ {j | bj 6= 0}).

We give a more precise expression of the derivative of a function F (x) =∑
i fix

i ∈ F2n [x], in a direction α ∈ F∗2n . For all x ∈ F2n , we have:

∆αF (x) = F (x) + F (x+ α) =

2n−1∑
i=0

fix
i +

2n−1∑
i=0

fi(x+ α)i

=

2n−1∑
i=0

fix
i +

2n−1∑
i=0

fi
∑
j, j�i

xjαi−j

=

2n−1∑
i=0

fix
i +

2n−1∑
i=0

∑
j, j�i

fix
jαi−j

=

2n−1∑
i=0

fix
i +

2n−1∑
j=0

xj
∑
i, i�j

fiα
i−j

=

2n−1∑
j=0

xj
∑
i, i�j

fiα
i−j .



We can thus write ∆αF (x) =
∑2n−1
j=0 δj(α)xj , where δj(α) =

∑
i�j fiα

i−j . No-
tice that each coefficient of ∆αF (x) ∈ F2n [x], δj(α), can be written as a vectorial
product between coefficients fi’s and αi−j with i � j. Then, from Definition 4,
we have

−−−→
∆αF =


δ0(α)
δ1(α)

...
δ2n−1(α)

 = M(α) ·
−→
F = M(α) ·


f0
f1
...

f2n−1

 ,

where the matrix M(α) is defined as

M(α) =
(
ai,j
)
0≤i,j≤2n−1 , ai,j =

{
αi−j if i � j

0 otherwise
.

We can now define the differentiation function over F2n

2n , which gives the
coefficients of the derivative of F in a direction α ∈ F2n :

−→
∆α : F2n

2n → F2n

2n−→
F 7→M(α) ·

−→
F

We can adapt some well known facts about derivatives and higher order
derivatives [12] to our matrix point of view:

Proposition 1. Let α1, . . . , αm ∈ F∗2n , and F : F2n → F2n be any function:

1.
−−−−−−−−→
∆α1,...,αm

F = M(α1) . . .M(αm) ·
−→
F ;

2. Matrices M(αi)’s commute, that is ∆αi,αj
F (x) = ∆αj ,αi

F (x), for any 1 ≤
i, j ≤ m.

3. If αm is F2-linearly dependent from α1, . . . , αm−1, then Π1≤i≤mM(αi) = 0.
In particular, M(αi) is nilpotent of order 2, that is M(αi)

2 = 0 or
∆αi,αi

F (x) = 0.

Example 1. Let n = 3 and α ∈ F∗2n .

M(α) =



. α α2 α3 α4 α5 α6 α7

. . . α2 . α4 . α6

. . . α . . α4 α5

. . . . . . . α4

. . . . . α α2 α3

. . . . . . . α2

. . . . . . . α

. . . . . . . .


Block construction of M(α). Let α ∈ F∗2n . It is possible to construct the matrix
M(α) by following the recursive method:

M1(α) =

(
0 α
0 0

)
, Mi(α) =

(
Mi−1(α) α2i−1

(Idi−1 +Mi−1(α))
0 Mi−1(α)

)
,



where Idj is the identity matrix of size 2j . Then M(α) := Mn(α).
We can notice here that even thought the size of the matrix M(α) grows

exponentially with n, it is very sparse. Furthermore, since it has a nice block
structure as well as several symmetries, practical computation with matrices
M(α), even if n is quite large, is possible.

3.2 Characterization of derivative functions

Theorem 1. Let α ∈ F∗2n . The rank of the matrix M(α) is rank(M(α)) = 2n−1.
Moreover, the kernel of the linear application defined by M(α) has dimension
2n−1 and is generated by the matrix K(α):

K(α) =

(
Idn−1

α2n−1−1Mn−1(α)

)
.

Sketch of Proof. We can verify easily that M(α)K(α) = 0. It implies that
the vector space generated by the matrix K(α) is included in ker(M(α)) and
dim(ker(M(α))) ≥ 2n−1. However, since M(α) = (mi,j) with mi,j = αj−i if j � i
and 0 otherwise, M(α) is an upper triangular matrix and mi,i+1 = α for every
even integer i and 0 otherwise. That is, M(α) has exactly 2n−1 elements different
from zero on the upper diagonal. Thus, rank(M(α)) ≥ 2n−1. We conclude by
using the rank-nullity1 theorem: dim(Ker(α)) + rank(M(α)) = 2n. ut

In order to ease the notations, we will use Ker(α) to denote the vector space
ker(M(α)), its basis matrix is then K(α).

Corollary 1.
Im(M(α)) = Ker(α).

Sketch of Proof. From Proposition 1 (3.), we know that Im(M(α)) ⊂ Ker(α).
We conclude with Theorem 1, since dim(Im(M(α))) = dim(Ker(α)) = 2n−1. ut

This last corollary can be translated into the following:

Corollary 2. Let F : F2n → F2n and α ∈ F2n . Then, it exists a function
G : F2n → F2n such that ∆αG(x) = F (x) if and only if α is a 0−linear structure
of F .

Note that, this characterization of derivative functions was already given in
another way in [16, Theorem 1]. Nevertheless, the structure of the matrix K(α),
permits to find and compute them efficiently even if n is large.

Example 2. Let n = 3 and α ∈ F2n . The vector space Ker(α) is spanned by the
columns of K(α):

K(α)ᵀ =


1 . . . . . . .
. 1 . . α8 . . .
. . 1 . α9 . . .
. . . 1 α10 α9 α8


1 See for instance [10, Section50].



3.3 Higher order derivatives

Before discussing the general case of higher order derivatives, we first start with
second order derivatives. This helps to understand better the general result that
follows.

Lemma 1. Let α, β ∈ F∗2n be distinct. Then,

Im (M(α)M(β)) = Ker(α) ∩Ker(β) and (1)

ker (M(α)M(β)) = Ker(α) +Ker(β). (2)

Proof. We have that

Im(M(α)M(β)) = {M(α) · x | x ∈ Im(M(β))} = Im(M(α)|Im(M(β))).

Since M(α) and M(β) commute, we have that Im(M(β)) is invariant (see
Definition 6 or [10, Section 39]) under the action of M(α). It means that we
may ignore the fact that M(α) is defined outside Im(M(β)) and may consider
M(α) as a linear transformation of Im(β). Thus, from Corollary 1, we have that
Im(M(α)|Im(M(β))) = ker(M(α)|Im(M(β))) = Ker(α) ∩ Im(M(α)) = Ker(α) ∩
Ker(β).

We prove Eq. (2). We know from the rank-nullity theorem and Eq. (1) that

dim(ker(M(α)M(β))) + rank(M(α)M(β)) = 2n

dim(ker(M(α)M(β))) + dim(Ker(α) ∩Ker(β)) = 2n.

Moreover, 2n = dim(Ker(α)) + dim(Ker(β)). In other words,

dim(ker(M(α)M(β))) = dim(Ker(α)) + dim(Ker(β))− dim(Ker(α) ∩Ker(β))

= dim(Ker(α) +Ker(β)).

We conclude this proof by noticing the following natural inclusion:

Ker(α) +Ker(β) ⊆ ker(M(α)M(β)).

ut

We extend Lemma 1 to more than two distinct elements α, β in the next theorem.

Theorem 2. Let α1, . . . , αm ∈ F∗2n be F2-linearly. Then,

1. the set of all m-order derivatives with respect to {αi}1≤i≤m is

Im(
−−−−−−−→
∆α1, ..., αm) = Im(

∏
1≤i≤m

M(αi)) =
⋂

1≤i≤m

Ker(αi). (3)

Furthermore, dim
(⋂

1≤i≤mKer(αi)
)

= 2n−m.



2. the set of all functions such that their m-order derivative, with respect to
{αi}1≤i≤m, cancel is

ker(
−−−−−−−→
∆α1, ..., αm) = ker(

∏
1≤i≤m

M(αi)) =
∑

1≤i≤m

Ker(αi). (4)

Furthermore, dim
(∑

1≤i≤mKer(αi)
)

= 2n − 2n−m.

Sketch of Proof.

1. Eq. (3) can be proven by induction on m with Eq. 1 as initialization and
by noticing that matrices M(αi) commute. We can prove the dimension
by induction on m with the rank-nullity theorem and the fact that, for all
distinct 1 ≤ i, j ≤ m:

dim(ker(M(αi)M(αj))) = dim(Ker(αj)) + dim(Ker(αi) ∩ Im(M(αj))).

2. Let −→v =
∑m
i=1
−→vi with −→vi ∈ Ker(αi), that is −→v ∈

∑m
i=1Ker(αi). Then,

(
∏m
i=1M(αi)) · −→v = 0, and thus

∑m
i=1Ker(αi) ⊆ ker (

∏m
i=1M(αi)).

From Eq. (3), we know that

dim(ker(
∏

i≤i≤m

M(αi))) = 2n − dim(Im(
∏

1≤i≤m

M(αi))) = 2n − 2n−m.

Now, we notice that with the vector spaces Ker(αi), the intersection is dis-
tributive over the sum. Indeed, since Im(M(αi)) = Ker(αi), from Eq. (1)
and the fact that M(αi)’s commute, we have naturally, for β ∈ F∗2n ,

M(β)

 ∑
1≤i≤m

M(αi)

 =
∑

1≤i≤m

(M(αi)M(β))

⇒ Ker(β) ∩

 ∑
1≤i≤m

Ker(αi)

 =
∑

1≤i≤m

(Ker(αi) ∩Ker(β)) .

Thus, we can apply the inclusion-exclusion principle (see [1, Chapter 4]) to
these particular vector spaces. Hence we obtain that

dim

 ∑
1≤i≤m

Ker(αi)

 =
∑

1≤k≤m

(−1)k+1

(
m

k

)
2n−k.

The proof is completed by showing that the last equality is equal to 2n −
2n−m, with the help of an induction on m.

ut
Theorem 2 brings necessary and sufficient conditions to formalize higher order

derivatives as in Corollary 2 for order 1. Most notably, we can now extract the
following results:



Corollary 3. Let F : F2n → F2n ,

1. if ∆α1,...,αm
F (x) = 0 then there are functions F1, . . . , Fm : F2n → F2n , with

∆αi
Fi(x) = 0, such that F (x) = F1(x)+· · ·+Fm(x) (the converse is obviously

true).
2. if F possess some 0−linear structure in α1, . . . , αm F2−linearly independent,

m < n, that is ∆αi
F (x) = 0, 1 ≤ i ≤ m, then, there exists a function

G : F2n → F2n such that ∆α1,...,αm
G(x) = F (x) (the converse is obviously

true).

4 Antidifferentiation

In this section, we introduce necessary and sufficient conditions as well as an
algorithm to recover the antiderivative functions. From the sections above, we
can first deduce the following proposition.

Proposition 2. Let F,G : F2n → F2n . They share the same derivatives in
directions given by a subspace V of F2n if and only if every elements of V is a
0−linear structure of F +G.

Indeed, we have previously seen2 that:

∆vF (x) = ∆vG(x), ∀v ∈ V ⇔
−→
F +

−→
G ∈

⋂
v∈V

Ker(v). (5)

This results in a new function equivalence over F2n :

Definition 8 (Differential equivalence). Let F,G : F2n → F2n . The func-
tions F and G are said differentially equivalent with respect to a subspace V ⊆
F2n , denoted by F ∼V G, if

∆vF (x) = ∆vG(x), for all v ∈ V.

From Eq. (5), we have that the equivalence class, we call differential coset, of
the function F : F2n → F2n with respect to the subspace V ⊆ F2n is the affine

space ∩v∈VKer(v) +
−→
F . In other words, a function G : F2n → F2n shares the

same derivatives as F in directions given by V if and only if it consists in the
sum of some higher order derivative function over V (see Eq. (3)) and F itself:

F ∼V G⇔
−→
G ∈ ∩v∈VKer(v) +

−→
F .

Furthermore, we know that the (algebraic) degree of a function h : F2n → F2n

such that
−→
h ∈ ∩v∈VKer(v) could not exceed n−dim(V ). Indeed, we know that

the algebraic degree of a function strictly decrease with its differentiation [12,
Proposition 2]. Then, there is F : F2n → F2n such that ∆V F (x) = h(x) and we
have:

n ≥ deg(F ) > deg(∆vF (x)) > · · · > deg(∆V F (x))⇒ n− dim(V ) ≥ deg(h(x)).

2 Remark that Ker(α)∩Ker(β) ⊂ Ker(α+β)⇐ ∆α+β(∆α,βF )(x) = 0 from Eq. (1).



In other words, the lower the dimension of the subspace, the lower the algebraic
degree of the functions we can add in order to stay in the same differential coset.
It is also clear that, in general, the differential equivalence does not preserve
differential uniformity and is thus distinct from CCZ-equivalence [6]. We can
thus deduce the following proposition:

Proposition 3. Let F : F2n → F2n be a function and let V ⊂ F2n . Then,

– if deg(F ) ≥ dim(V ), for all G : F2n → F2n such that F ∼V G, we have
deg(G) = deg(F ).

– if dim(V ) ≥ n − 1, for all G : F2n → F2n such that F ∼V G, we have
δ(F ) = δ(G).

We are now able to introduce the consistency theorem as well as an algo-
rithm which computes the coefficients of antiderivative functions from consistent
derivatives. By consistent, we mean derivatives that satisfy conditions in order
to be integrated together, that is which are the derivative of a same function.

Theorem 3. Let α1, . . . , αm ∈ F∗2n be F2−linearly independent elements and let

f1, . . . , fm : F2n → F2n be such that
−→
fi ∈ Ker(αi), 1 ≤ i ≤ m. Then, there is at

least one function F : F2n → F2n satisfying

∆αi
F (x) = fi(x), for all 1 ≤ i ≤ m, (6)

if and only if

∆αj
fi(x) = ∆αi

fj(x), for all 1 ≤ i, j ≤ m. (7)

Proof. Assume ∆αi
F (x) = fi(x), 1 ≤ i ≤ m, then ∆αj

fi(x) = ∆αi,αj
F (x) =

∆αi
fj(x).

Reciprocally, for all i, since
−→
fi ∈ Ker(αi), there is Fi : F2n → F2n such

that ∆αi
Fi(x) = fi(x). Thus, from Eq. (7) and Theorem 2: ∆αi,αj

Fj(x) =

∆αj ,αi
Fi(x)⇔ ∆αi,αj

(Fi + Fj)(x) = 0⇔
−−−−→
Fi + Fj ∈ Ker(αi) +Ker(αj).

Hence, there are
−→
Gi ∈ Ker(αi) and

−→
Gj ∈ Ker(αj) such that

−−−−→
Fi + Fj =

−−−−−→
Gi +Gj . Moreover, for all 1 ≤ i ≤ m, we can choose Gi to be the same each
time Fi is involved in a function. Thus, all the functions Fi + Gi, 1 ≤ i ≤ m,
are equal and we can so denote by F = Fi + Gi. Finally, we have ∆αiF (x) =
∆αi(Fi +Gi)(x) = ∆αiFi(x) = fi for all 1 ≤ i ≤ m. ut

From Theorem 3, and due to the fact that both matrices M(α) and K(α),
α ∈ F∗2n are easy to implement efficiently, we end up with Algorithm 1. Notice
that this algorithm only uses tools from linear algebra to compute solutions x of
linear systems Mx = y (we denote x = M\y). Moreover, the involved matrices
are easy to handle. Note also that from Proposition 2, we know that the function
in output is not unique, but the last matrix M , at the end of the computation,
generates the subspace ∩iKer(αi), so we can recover any differential equivalent
functions.



Algorithm 1 Antidifferentiation over F2n .

function Antiderivative({(fi, αi) | 1 ≤ i ≤ m} verifying conditions in Th. 3)

1: M ← K(α1);
−→
sol← 0F2n

2n
;

−→
F1 ←M(α1)\

−→
f1 ;

2: for i = 2 to i ≤ m do
3:

−→
Fi ←M(αi)\

−→
fi ;

4:
−→
sol←

−→
sol +M ·

(
(M(αi)M) \

(
M(αi) ·

−−−−−−−−−→
F1 + Fi + sol

))
;

5: M ←Mκ; . κ: generating matrix of ker(M(αi)M)

6: return sol + F0

5 Applications

In this section, we discuss the first natural application which consists in recover-
ing quadratic APN functions from 2-to-1 affine functions. We briefly discuss the
main idea of this method and show its equivalence to the previous works [15, 17].
We believe also that our point of view permits a better understanding of these
works.

From the previous sections (or [16, Proposition 1]), we know that every affine

function, L(x) = ` +
∑
i cix

2i ∈ F2n [x], is a derivative function if and only if L
is not bijective. We can adapt Theorem 3 to fit affine functions and to find an
easier condition since the differential of an affine function is constant:

Corollary 4. Let α1, . . . , αm ∈ F∗2n be F2−linearly independent elements and
let L1, . . . , Lm : F2n → F2n be affine functions such that Li(αi) = 0, 1 ≤ i ≤
m. Then there is at least one (quadratic) function F : F2n → F2n such that
∆αi

F (x) = Li(x), for all 1 ≤ i ≤ m, if and only if Li(αj) + Li(0) = Lj(αi) +
Lj(0), for all 1 ≤ i, j ≤ m.

Note that a function is quadratic if and only if all of its derivatives are at most
affines [2].

Let α1, . . . , αn ∈ F∗2n be a base of F2n over F2 and consider the following
matrix:

B = (βi,j)1≤i,j≤n =


β1,1 β1,2 β1,3 . . . β1,n
β2,1 β2,2 . . .

...
. . .

...
βn,1 . . . βn,n

 . (8)

If we assume that each row of this matrix is a base of a subspace of F2n , then
there exist non-bijective affine functions Li : F2n → F2n satisfying (without loss
of generality)

βi,j = Li(αj) + Li(0), for all 1 ≤ i, j ≤ m.

Remark that in this case, each βi,i should be zero. Then, from each row of
the matrix B in (8), we can recover the coefficients of the affine functions Li’s
by a simple linear operation. Moreover, if we choose our βi,j wisely such that



they satisfy the condition of Eq. (7) (i.e. the matrix B is symmetric), then
there is a unique (quadratic) function (up to a constant, due to the differential
equivalence) F : F2n → F2n , which we can easily recover with Algorithm 1, such
that ∆αi

F (x) = Li(x), for all 1 ≤ i ≤ n.

Finally, if all non-zero elements of each row of B are F2-linearly independent,
it induces that the image set of each affine function Li is an hyperplane (subspace
of dimension 2n−1), that is each Li is 2-to-1. Furthermore, if any linear combi-
nation of the rows of matrix B spans again an hyperplane, the antiderivative F
must be APN.

This kind of matrices B we just described, are exactly the kind of matrices
used in [15] and [17] and have permitted to discover hundreds of new quadratic
APN functions. However, the method to justify them and to recover the function
F is slightly different. Indeed, our algorithm to recover the antiderivative F is
more general, since it would work theoretically with non-affine 2-to-1 compatible
derivatives. We would thus end up with non-quadratic APN functions.

As another application of the tools presented in the sections above, we can
look for functions differentially equivalent to APN functions with respect to a
subspace of dimension ≤ n−3 (so that the functions to add in order to remain in
the differential coset are quadratic). We performed a quick search on small fields
(5 ≤ n ≤ 9) trying to find new APN functions from non-quadratic APN power
functions with respect to a subspace of dimension n − 3. Although exhaustive
search in this differential cosets is expensive, after hours of computation, we
did not find yet other APN functions in this differential coset. This leads us to
express the following conjecture:

Conjecture 1. By fixing 2n−3 derivatives, in directions given by a subspace of
F2n , of a non-quadratic APN power functions, there is no other APN functions
in its differential coset.

6 Conclusion

In this paper, we provided a different point of view on derivatives and higher
order derivatives over F2n . In the light of the above, concerning the possibility
to recover APN functions, we shown that researchers should keep the focus on
finding and studying class of 2-to-1 functions. Indeed, prior to this work, not
much was known about what we could have done with 2-to-1 derivatives. The
more we will know about these functions, the easier it will be to combine them
(with respect to conditions of Theorem 3) and thus to recover APN functions
using antidifferentiation over F2n .

On another hand, the differential equivalence permits a new classification of
functions over F2n that will very probably lead to new constructions of func-
tions with prescribed differential properties over F2n . Moreover, the matrix rep-
resentation of derivatives we introduced in this paper should ease the future
experiments.
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