Dirichlet and Neumann boundary conditions for the p-Laplace operator: what is in between?
Ralph Chill, Mahamadi Warma

To cite this version:

HAL Id: hal-01275667
https://hal.archives-ouvertes.fr/hal-01275667
Submitted on 17 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
DIRICHLET AND NEUMANN BOUNDARY CONDITIONS FOR THE
p-LAPLACE OPERATOR: WHAT IS IN BETWEEN?

RALPH CHILL AND MAHAMADI WARMA

ABSTRACT. Let $p \in (1, \infty)$ and let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with Lipschitz continuous boundary. We characterize all order preserving semigroups on $L^2(\Omega)$ which are generated by convex, lower semicontinuous, local functionals and which are sandwiched between the semigroups generated by the p-Laplace operator with Dirichlet and Neumann boundary conditions. We show that every such semigroup is generated by the p-Laplace operator with Robin type boundary conditions.

1. INTRODUCTION

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with Lipschitz continuous boundary $\partial \Omega$. It is well known that for every $p \in (1, \infty)$ the diffusion equation governed by the p-Laplace operator

$$
\begin{align*}
\begin{cases}
 u_t - \Delta_p u &= 0 \quad \text{in } (0, \infty) \times \Omega, \\
 u(0, \cdot) &= u_0 \quad \text{in } \Omega,
\end{cases}
\end{align*}
$$

with $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$, is well-posed in $L^2(\Omega)$ if it is complemented by Dirichlet boundary conditions

$$
u = 0 \quad \text{on } (0, \infty) \times \partial \Omega \quad \text{(perfectly conducting boundary)}$$

or by Neumann boundary conditions

$$|
\nabla u|^{p-2} \partial u / \partial \nu = 0 \quad \text{on } (0, \infty) \times \partial \Omega \quad \text{(perfectly isolating boundary)}.
$$

The two problems can be rewritten as abstract gradient systems of the form

$$
\dot{u} + \partial \varphi(u) \ni 0 \quad \text{on } \mathbb{R}_+, \quad u(0) = u_0,
$$

with $\varphi : L^2(\Omega) \to [0, +\infty]$ being a convex and lower semicontinuous functional and $\partial \varphi$ being its subgradient; the well-posedness of such gradient systems follows from a classical result by Minty. In the case of Dirichlet boundary conditions, this functional is

$$
\varphi_D(u) := \begin{cases}
 \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx, & \text{if } u \in W^{1,p}_0(\Omega) \cap L^2(\Omega), \\
 +\infty & \text{otherwise}
\end{cases}
$$

and in the case of Neumann boundary conditions it is

$$
\varphi_N(u) := \begin{cases}
 \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx, & \text{if } u \in W^{1,p}(\Omega) \cap L^2(\Omega), \\
 +\infty & \text{otherwise}.
\end{cases}
$$
The associated gradient systems give rise to strongly continuous semigroups of nonlinear (linear if $p = 2$) contractions on $L^2(\Omega)$, denoted by S_D and S_N, respectively. It is well known that both semigroups are order preserving, and that S_D is dominated by the semigroup S_N in the sense that
\[|S_D(t)u| \leq S_N(t)|u| \text{ for every } t \geq 0 \text{ and every } u \in L^2(\Omega). \]

In other words, the diffusion governed by the p-Laplace operator with Neumann boundary conditions (perfectly isolating boundary; the total energy $\int_\Omega u$ is conserved) dominates the diffusion governed by the p-Laplace operator with Dirichlet boundary conditions (perfectly conducting boundary; the energy dissipates through the boundary).

We also consider the functional φ on $L^2(\Omega)$ defined by
\[
\varphi(u) := \begin{cases}
\frac{1}{p} \int_\Omega |\nabla u|^p \, dx + \int_{\partial \Omega} B(x,u) \, d\mu, & \text{if } u \in D(\varphi), \\
+\infty & \text{otherwise},
\end{cases}
\]
with effective domain
\[D(\varphi) = \{u \in W^{1,p}(\Omega) \cap L^2(\Omega) : \int_{\partial \Omega} B(x,u) \, d\mu < \infty\}, \]
where μ is a regular Borel measure on $\partial \Omega$, and $B : \partial \Omega \times \mathbb{R} \to [0, +\infty]$ is a Borel function which is measurable in the first variable, and lower semicontinuous and bi-monotone (that is, nonincreasing on $]-\infty, 0]$ and nondecreasing on $[0, +\infty]$) in the second variable. This functional is equal to φ_D or to φ_N, if $\mu = \sigma$ is the surface measure on $\partial \Omega$ and if
\[
B(x,s) = \begin{cases}
+\infty & \text{if } s \neq 0, \\
0 & \text{if } s = 0,
\end{cases}
\]
in the case of Dirichlet boundary conditions, and
\[
B(x,s) = 0
\]
in the case of Neumann boundary conditions. In any case, if φ is convex and lower semicontinuous, then $\partial \varphi$ is a realization of the p-Laplace operator with generalized Robin type boundary conditions formally given by
\[
|\nabla u|^{p-2} \partial u/\partial v d\sigma + \beta(x,u) d\mu \geq 0 \text{ on } \partial \Omega.
\]
If $\mu = \sigma$ or, more generally, if μ is absolutely continuous with respect to σ (hence, $d\mu = \alpha(x) \, d\sigma$), then (1.5) reduces to the classical Robin boundary conditions. For more details on this formulation of the boundary conditions, we refer to [1, 2, 6, 7, 8, 17, 18] and the references therein, and to Section 3.1 below. The subgradient $\partial \varphi$ generates a nonlinear semigroup S of contractions on $L^2(\Omega)$. Under appropriate further conditions on μ and B (see Theorem 2.1 for the precise conditions), the semigroup S is sandwiched between the semigroups S_D and S_N in the sense that
\[
|S_D(t)|u| \leq S(t)|u| \text{ and } |S(t)|u| \leq S_N(t)|u| \text{ for every } t \geq 0 \text{ and } u \in L^2(\Omega).
\]
In this sense, the diffusion governed by the p-Laplace operator with Robin type boundary conditions is intermediate between the diffusions governed by the p-Laplace operator with Dirichlet and Neumann boundary conditions.

The aim of this paper is to prove a converse of (1.6). More precisely, we show that if S is a semigroup on $L^2(\Omega)$ generated by the subgradient of a convex and lower semicontinuous functional φ on $L^2(\Omega)$, if S is sandwiched between S_D and S_N in the sense of (1.6), and if
DIRICHLET AND NEUMANN BOUNDARY CONDITIONS: WHAT IS IN BETWEEN? 3

If \(\varphi \) satisfies a natural locality condition (so that its subgradient is a local operator), then \(\varphi \) is necessarily of the form (1.4) for some \(\mu \) and some \(B \) (Theorem 2.1). This is a possible answer to the question Dirichlet and Neumann boundary condition: What is in between? which was asked in the title of the article by Arendt & Warma [2]. The article [2] gave an answer to this question in the linear case, that is, in the case of the diffusion governed by the Laplace operator and when all semigroups are \(C_0 \)-semigroups of linear, selfadjoint operators. Our article (and the title of our article) is clearly motivated by the question considered in [2], and by the question whether a similar characterization of sandwiched semigroups holds in the context of a nonlinear diffusion equation.

We outline the plan of the paper. In Section 2 we give some preliminaries and state the main result of this article (Theorem 2.1). Concerning the proof of the main result, we follow in some sense the idea of proof of the corresponding result in the linear case [2, Theorem 4.1]. Our proof thus heavily depends on a characterization of domination and order preservation of semigroups in terms of properties of the generating functionals and on a Riesz type representation theorem for convex, lower semicontinuous functionals. These two results are also stated in Section 2. Characterizations of domination and order preservation of nonlinear semigroups generated by subdifferentials go back to Brézis & Pazy [9], but the formulation which is appropriate for our purposes (Theorem 2.2) is taken from Barthélemy [3]. There exist also several Riesz type representation theorems for nonlinear functionals (see, for example, [14, 15, 16, 22]), but no appropriate result is stated for lower semicontinuous functionals on the Sobolev space \(W^{1,p}(\Omega) \). Therefore, we state and prove such a result (Theorem 2.3) which seems to be new to the best of our knowledge and may have its own, independent interest. Sections 4 and 5 are devoted to the proofs of Theorems 2.1 and 2.3, while in Section 3 we include a discussion to clarify the conditions from the main theorem.

2. MAIN RESULT

Let \(H \) be a real Hilbert space with inner product \((\cdot,\cdot)_H\), and let \(\varphi : H \to (-\infty, +\infty] \) be a convex and lower semicontinuous (l.s.c.) functional with effective domain

\[
D(\varphi) := \{ u \in H : \varphi(u) < \infty \}.
\]

By a classical result of Minty [24] (see also Minty [25] or the monographs by Brézis [9], Evans [19], or Showalter [28]), every convex, l.s.c. functional \(\varphi \) on \(H \) generates a strongly continuous semigroup \(S = (S(t))_{t \geq 0} \) of (in general nonlinear) contractions on \(D(\varphi) \). This means that there exists a unique family \(S = (S(t)) \) of contractions on \(D(\varphi) \) such that for every \(u_0 \in D(\varphi) \) the trajectory \(u := S(\cdot)u_0 \) is the unique strong solution of the abstract gradient system

\[
\begin{align*}
&u \in C([0,\infty);H) \cap W^{1,\infty}_{\text{loc}}((0,\infty);H), \\
&u + \partial \varphi(u) \ni 0 \text{ almost everywhere on } [0,\infty), \\
&u(0) = u_0.
\end{align*}
\]

Here, the subgradient \(\partial \varphi \) at a point \(u \in D(\varphi) \) is defined by

\[
\partial \varphi(u) := \{ f \in H : \varphi(u + w) - \varphi(u) \geq (f,w)_H \text{ for every } w \in H \}.
\]

In fact, throughout the following, \(H = L^2(\Omega) \) for some bounded domain \(\Omega \subseteq \mathbb{R}^N \) with Lipschitz continuous boundary, and all functionals on \(L^2(\Omega) \) have dense effective domain, unless otherwise stated. The space \(L^2(\Omega) \) is a real Hilbert lattice for the natural ordering. It thus makes sense to consider the following properties of a semigroup or a pair of
semigroups. We say that a semigroup \(S = (S(t))_{t \geq 0} \) on \(L^2(\Omega) \) is order preserving, if

\[
S(t)u \leq S(t)v \quad \text{for all } t \geq 0 \quad \text{whenever } u, v \in L^2(\Omega) \text{ and } u \leq v.
\]

Moreover, if \(S_1 = (S_1(t))_{t \geq 0} \) and \(S_2 = (S_2(t))_{t \geq 0} \) are two semigroups on \(L^2(\Omega) \), then we say that \(S_1 \) is dominated by \(S_2 \) and we write \(S_1 \preceq S_2 \), if

\[
|S_1(t)u| \leq S_2(t)|u| \quad \text{for all } u \in L^2(\Omega) \text{ and } t \geq 0.
\]

We say that a functional \(\phi : L^2(\Omega) \to (-\infty, +\infty] \) is local\(^1\) if for every \(u, v \in L^2(\Omega) \)

\[
|u| \land |v| = 0 \quad \Rightarrow \quad \phi(u + v) = \phi(u) + \phi(v).
\]

Here, \(u \land v \) denotes the (pointwise) infimum of the functions \(u \) and \(v \). Note that every local functional necessarily vanishes in 0. By abuse of language, we call a semigroup local if it is generated by a local functional.

The functionals \(\partial \phi_D \) and \(\partial \phi_N : L^2(\Omega) \to [0, +\infty] \) defined in (1.2) and (1.3) are convex, l.s.c. and local. Their effective domains \(D(\partial \phi_D) = W^{1,p}_0(\Omega) \cap L^2(\Omega) \) and \(D(\partial \phi_N) = W^{1,p}_0(\Omega) \cap L^2(\Omega) \) are both dense in \(L^2(\Omega) \). Hence, the semigroups \(S_D \) and \(S_N \) generated by the two functionals \(\partial \phi_D \) and \(\partial \phi_N \) are both defined on the whole space \(L^2(\Omega) \). The subgradients \(\partial \phi_D \) and \(\partial \phi_N \) are realizations of the \(p \)-Laplace operator with Dirichlet and Neumann boundary conditions, respectively. It is well known that the semigroups \(S_D \) and \(S_N \) are both order preserving, and that \(S_D \) is dominated by \(S_N \) (see [26] for \(p = 2 \) and [3] for general \(p \)).

The \(p \)-capacity of a set \(A \subseteq \mathbb{R}^N \) is given by

\[
\text{Cap}_p(A) := \inf \left\{ \|u\|_{W^{1,p}(\mathbb{R}^N)}^p : u \in W^{1,p}(\mathbb{R}^N) \text{ and there exists } O \subseteq \mathbb{R}^N \text{ open,} \right. \\
\left. \text{such that } A \subseteq O \text{ and } u \geq 1 \text{ a.e. on } O \right\}.
\]

A set \(A \subseteq \mathbb{R}^N \) is called \(p \)-polar if \(\text{Cap}_p(A) = 0 \). A statement \(P(x) \) is said to hold \(p \)-quasi everywhere on \(B \subseteq \mathbb{R}^N \), if there exists a \(p \)-polar set \(A \subseteq \mathbb{R}^N \) such that the statement \(P(x) \) holds for every \(x \in B \setminus A \). A function \(u : B \to \mathbb{R} (B \subseteq \mathbb{R}^N) \) is said to be \(p \)-quasi continuous if for every \(\varepsilon > 0 \) there exists an open set \(O \subseteq \mathbb{R}^N \) such that \(\text{Cap}_p(O) < \varepsilon \) and \(u \) restricted to \(B \setminus O \) is continuous. It is well known that every \(u \in W^{1,p}(\Omega) \) admits a \(p \)-quasi continuous representative \(\tilde{u} : \bar{\Omega} \to \mathbb{R} \). This \(p \)-quasi continuous representative is unique up to a \(p \)-polar set, that is, every two \(p \)-quasi continuous representatives coincide \(p \)-quasi everywhere on \(\bar{\Omega} \). Throughout the following, we identify each function \(u \in W^{1,p}(\Omega) \) with a \(p \)-quasi-continuous representative. A subset \(G \subseteq \mathbb{R}^N \) is said to be \(p \)-quasi open if for every \(\varepsilon > 0 \) there exists an open set \(O \subseteq \mathbb{R}^N \) such that \(\text{Cap}_p(O) < \varepsilon \) and \(G \cup O \) is open.

Despite the fact that the \(p \)-capacity is not a Borel measure (the \(p \)-capacity is not \(\sigma \)-additive), we say that the measure \(\mu \) is absolutely continuous with respect to the \(p \)-capacity if for every \(p \)-polar Borel set \(A \subseteq \Omega \), one has \(\mu(A) = 0 \).

Finally, a function \(B : \mathbb{R} \to]-\infty, +\infty[\) is called bi-monotone if it is nonincreasing on \(]-\infty, 0] \) and nondecreasing on \([0, +\infty[\).

The following is the main theorem of this article.

\(^1\)In the literature, one can also find the term additive.
Theorem 2.1. Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with Lipschitz continuous boundary $\partial \Omega$, and let $p \in (1, \infty)$. Let S be the semigroup generated by a convex, l.s.c. functional $\varphi : L^2(\Omega) \to [0, +\infty]$, and let S_D and S_N be the semigroups generated by the Dirichlet-\(p\)-Laplace operator and the Neumann-\(p\)-Laplace operator, respectively. Then the following assertions are equivalent.

(i) The semigroup S is local, order preserving and $S_D \preceq S \preceq S_N$.

(ii) There exist a finite, regular Borel measure μ on $\partial \Omega$ which is absolutely continuous with respect to the p-capacity, and a Borel function $B : \partial \Omega \times \mathbb{R} \to [0, +\infty]$ satisfying

\[
(H) \begin{cases}
B(\cdot, s) \text{ is measurable} & \text{for every } s \in \mathbb{R}, \\
B(x, 0) = 0 & \text{for } \mu - \text{a.e. } x \in \partial \Omega, \\
B(x, \cdot) \text{ is lower semicontinuous} & \text{for } \mu - \text{a.e. } x \in \partial \Omega \\
B(x, \cdot) \text{ is bi-monotone} & \text{for } \mu - \text{a.e. } x \in \partial \Omega
\end{cases}
\]

such that

\[
\varphi(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx + \int_{\partial \Omega} B(x, u) \, d\mu \text{ for all } u \in D(\varphi).
\]

The proof of Theorem 2.1 is carried out in Section 5, while Section 3 is reserved for a discussion of Theorem 2.1. The proof of the implication (ii)⇒(i) is based on the following theorem and relatively straightforward. The following theorem due to Barthélemy [3] is an application, using also clever convexity arguments, of the characterization that a semigroup generated by a convex, l.s.c. functional $\varphi : L^2(\Omega) \to [0, +\infty]$ leaves a closed, convex set invariant. This characterization goes back to Brézis & Pazy [10]; see also Brézis [9, Section IV.4], Cipriano & Grillo [13] and the references therein. We state the theorem for densely defined functionals only.

Theorem 2.2 (Barthélemy). Let $\varphi, \varphi_1, \varphi_2 : L^2(\Omega) \to (-\infty, +\infty]$ be three convex and l.s.c. functionals with dense effective domains. Let $S, S_1,$ and S_2 be the semigroups generated by $\varphi, \varphi_1,$ and $\varphi_2,$ respectively. Then:

(a) ([3, Théorème 2.1]) If the functional φ is nonnegative, then the semigroup S is order preserving if and only if for all $u, v \in L^2(\Omega)$ one has

\[
\varphi(u \wedge v) + \varphi(u \vee v) \leq \varphi(u) + \varphi(v).
\]

(b) ([3, Théorème 3.3]) If the semigroup S_2 is order preserving, then the semigroup S_1 is dominated by the semigroup $S_2,$ that is, $S_1 \preceq S_2,$ if and only if for every $u, v \in L^2(\Omega)$, \(v \geq 0,

\[
\varphi_1((|u| \wedge v) \cdot \text{sgn}(u)) + \varphi_2(|u| \vee v) \leq \varphi_1(u) + \varphi_2(v).
\]

The difficult part in Theorem 2.1 is the implication (i)⇒(ii). Its proof uses the above characterization of order preservation and domination, too, but it uses in addition the following Riesz type representation theorem which may have its own interest, independently of the application given in this article. Similar representation theorems for various classes of functionals on various functions spaces are included in [11, 12, 14, 15, 16, 20, 21, 22, 27, 30] and the references therein.

Let $p \in (1, \infty)$. We denote by $W^{1,p}(\Omega)^+$ the positive cone in $W^{1,p}(\Omega)$. Given a functional $\psi : W^{1,p}(\Omega)^+ \to [0, +\infty]$, we call $D(\psi) = \{u \in W^{1,p}(\Omega)^+ : \psi(u) < +\infty\}$ its effective
domain. The effective support of the functional ψ is the set
\[\text{supp}[\psi] := \bar{\Omega} \setminus \{ x \in \bar{\Omega} : \text{there exists a neighborhood } U \text{ of } x \text{ such that for every } u \in D(\psi) \text{ with } \text{supp}[u] \subseteq U \text{ one has } \psi(u) = 0 \}. \]

We say that the functional ψ is monotone if for every $u, v \in W^{1,p}(\Omega)^+$
\begin{equation}
(2.6) \quad u \leq v \implies \psi(u) \leq \psi(v).
\end{equation}

Similarly as for functionals defined on $L^2(\Omega)$ we say that ψ is local if for every $u, v \in W^{1,p}(\Omega)^+$
\begin{equation}
(2.7) \quad u \wedge v = 0 \implies \psi(u + v) = \psi(u) + \psi(v).
\end{equation}

Theorem 2.3. Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with Lipschitz continuous boundary. For every functional $\psi : W^{1,p}(\Omega)^+ \to [0, +\infty]$ the following assertions are equivalent.

(i) The functional ψ is lower semicontinuous, monotone, local and for every $u, v \in D(\psi)$, one has $u \vee v, u \wedge v \in D(\psi)$ and
\begin{equation}
(2.8) \quad \psi(u \vee u) + \psi(u \wedge v) \leq \psi(u) + \psi(v).
\end{equation}

(ii) There exist a finite, regular Borel measure μ with $\text{supp}[\mu] \subseteq \text{supp}[\psi]$ which is absolutely continuous with respect to the p-capacity, and a Borel function $B : \bar{\Omega} \times \mathbb{R}_+ \to [0, +\infty]$ satisfying
\begin{align*}
(H^+)(\chi) &\begin{cases} B(\cdot, s) \text{ is measurable} & \text{for every } s \in \mathbb{R}, \\
B(x, 0) = 0 & \text{for } \mu - \text{a.e. } x \in \bar{\Omega}, \\
B(x, \cdot) \text{ is lower semicontinuous} & \text{for } \mu - \text{a.e. } x \in \bar{\Omega}, \\
B(x, \cdot) \text{ is monotone} & \text{for } \mu - \text{a.e. } x \in \bar{\Omega}
\end{cases}
\end{align*}

such that
\[\psi(u) = \int_{\bar{\Omega}} B(x, u) \, d\mu \text{ for all } u \in D(\psi). \]

Section 4 is devoted to the proof of this theorem.

Remark 2.4.
(a) We point out that the representing measure μ and function B are not unique. For example, given a representing measure μ and a representing function B, and given any Borel measurable weight $w : \bar{\Omega} \to \mathbb{R}_+$ which is bounded from above and from below (away from zero), the weighted measure $wd\mu$ and the function B/w represent ψ, too.

(b) On the other hand, the proof of Theorem 2.3 shows that for any pair ψ_1, ψ_2 of lower semicontinuous, monotone, local functionals satisfying the inequality (2.8) one can find a common representing measure μ with $\text{supp}[\mu] \subseteq \text{supp}[\psi_1] \cup \text{supp}[\psi_2]$ and two representing functions B_1 and B_2 satisfying the condition (H^+) of Theorem 2.3 such that $\psi_i(u) = \int_{\bar{\Omega}} B_i(x, u) \, d\mu$ for every $u \in D(\psi_i)$ ($i = 1, 2$). It suffices to take for example $\mu = \mu_1 + \mu_2$, where μ_1 and μ_2 are two representing measures for ψ_1 and ψ_2, respectively, the existence of which is guaranteed by Theorem 2.3.

(c) Theorem 2.3 remains true if the space $W^{1,p}(\Omega)$ is replaced by the a priori smaller space $W^{1,p}(\Omega) \cap L^2(\Omega)$. This is trivially true for $p \geq 2$, since then the two spaces actually coincide. If $p < 2$, essentially the same proof works. At a first glance, it seems necessary to replace everywhere the p-capacity by the following $(p, 2)$-capacity which is for subsets
A \subseteq \mathbb{R}^N \text{ defined by}
\Cap_{(p,2)}(A) = \inf \left\{ \|u\|_{W^{1,p}(\mathbb{R}^N)}^p + \|u\|_{L^2(\mathbb{R}^N)}^2 : u \in W^{1,p}(\mathbb{R}^N) \cap L^2(\mathbb{R}^N) \text{ and there exists } \right. \\
\left. O \subseteq \mathbb{R}^N \text{ open, such that } A \subseteq O \text{ and } u \geq 1 \text{ a.e. on } O \right\}.

However, it is actually not necessary to do this since for \(p \leq 2 \) the \(p \)-capacity and the \((p,2) \)-capacity are equivalent in the sense that for every subset \(A \subseteq \mathbb{R}^N \)
\[\Cap_p(A) \leq \Cap_{(p,2)}(A) \leq 2 \Cap_p(A). \]

Here, the first inequality is obvious from the respective definitions of the two capacities, while for the second inequality one has to notice that the definition of the \((p,2) \)-capacity does not change if one takes the infimum over functions satisfying \(0 \leq u \leq 1 \) everywhere (and \(u = 1 \) a.e. on \(O \)) and that \(\|u\|_{L^2(\mathbb{R}^N)}^2 \leq \|u\|_{L^p(\mathbb{R}^N)}^p \) whenever \(0 \leq u \leq 1 \) and \(p \leq 2 \).

3. Discussion of the conditions in Theorem 2.1

3.1. Interpretation of the generalized Robin type boundary conditions. Let \(B \) and \(\mu \) be as in Theorem 2.1 (ii). Assume, for simplicity, that \(B(x,\cdot) \) is convex for \(\mu \)-a.e. \(x \in \partial \Omega \). Denote by \(\beta(x,\cdot) = \partial B(x,\cdot) \) the subgradient of the functional \(B(x,\cdot) \), that is, for \(s \in D(B(x,\cdot)) \),
\[\beta(x,s) = \{ \tau \in \mathbb{R} : B(x,s + \xi) - B(x,s) \geq \tau \xi \text{ for every } \xi \in \mathbb{R} \}. \]

Let \(f \in L^2(\Omega) \). We say that a function \(u \in W^{1,p}(\Omega) \cap L^2(\Omega) \) is a weak solution of the elliptic problem
\begin{equation}
\begin{aligned}
-\Delta_p u &= f & \text{ in } \Omega, \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} \, d\sigma + \beta(x,u) \, d\mu &\geq 0 & \text{ on } \partial \Omega,
\end{aligned}
\end{equation}
if \(-\Delta_p u = f \) in the sense of distributions, if \(\int_{\partial \Omega} B(x,u) \, d\mu < +\infty \) and if for every \(w \in W^{1,p}(\Omega) \cap L^2(\Omega) \)
\begin{equation}
\int_{\partial \Omega} (B(x,u+w) - B(x,u)) \, d\mu \geq \int_{\Omega} fw \, dx - \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla w \, dx.
\end{equation}
The relation between this inequality and the boundary condition in (3.1) becomes clear if one replaces \(f \) by \(-\Delta_p u \), if one recalls Green’s formula
\[\int_{\Omega} \Delta_p wu \, dx + \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla w \, dx = \int_{\partial \Omega} |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} \, w \, d\sigma \quad (w \in W^{1,p}(\Omega)) \]
(which holds for sufficiently smooth functions \(u \)), and if one uses the definition of the subgradient.

Let \(\phi \) be as in Theorem 2.1 (ii), that is,
\[\phi(u) = \begin{cases}
\frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx + \int_{\partial \Omega} B(x,u) \, d\mu & \text{ if } u \in D(\phi) \\
+\infty & \text{ otherwise},
\end{cases} \]
where the effective domain is given by
\[D(\phi) = \{ u \in W^{1,p}(\Omega) \cap L^2(\Omega) : \int_{\partial \Omega} B(x,u) \, d\mu < \infty \}. \]

Proposition 3.1. Let \(f \in L^2(\Omega) \). Then \(u \in W^{1,p}(\Omega) \cap L^2(\Omega) \) is a weak solution of (3.1) if and only if \(u \in D(\phi) \) and \(f \in \partial \phi(u) \).
Proof. Assume that \(u \in D(\varphi) \) and \(f \in \partial \varphi(u) \). Then, by the definition of \(D(\varphi) \), \(u \in W^{1,p}(\Omega) \cap L^2(\Omega) \). If \(B(x, u) \, d\mu < +\infty \), and, as a consequence of the definition of the subgradient \(\partial \varphi \), for every \(w \in W^{1,p}(\Omega) \cap L^2(\Omega) \)

\[
\frac{1}{p} \int_{\Omega} (|\nabla(u+w)|^p - |\nabla u|^p) \, dx + \int_{\partial \Omega} (B(x,u+w) - B(x,u)) \, d\mu \geq \int_{\Omega} fw \, dx.
\]

In particular, when we replace \(w \) by \(tw \) (\(t > 0 \)), divide the inequality by \(t \) and let \(t \) tend to 0, we obtain that for every \(w \in W^{1,p}(\Omega) \cap L^2(\Omega) \)

\[
\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla w \, dx + \liminf_{t \to 0^+} \int_{\partial \Omega} \frac{B(x,u+tw) - B(x,u)}{t} \, d\mu \geq \int_{\Omega} fw \, dx.
\]

In particular, for every test function \(w \in \mathcal{D}(\Omega) \),

\[
\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla w \, dx \geq \int_{\Omega} fw \, dx.
\]

Since this inequality is true for \(w \) and \(-w (w \in \mathcal{D}(\Omega)) \), one actually has equality, and therefore \(-\Delta_p u = f\) in the sense of distributions. Finally, by convexity of \(B(x, \cdot) \), the inequality (3.3) holds for every \(w \in W^{1,p}(\Omega) \cap L^2(\Omega) \) if and only if the inequality (3.2) holds for every \(w \in W^{1,p}(\Omega) \cap L^2(\Omega) \). Hence, \(u \) is a weak solution of (3.1).

Conversely, let \(u \in W^{1,p}(\Omega) \cap L^2(\Omega) \) be a weak solution of (3.1). Then, by definition of weak solution and by definition of \(D(\varphi) \), \(u \in D(\varphi) \). Moreover, the inequality (3.2) holds for every \(w \in W^{1,p}(\Omega) \cap L^2(\Omega) \), that is

\[
\varphi(u+w) - \varphi(u) \geq \int_{\Omega} fw \, dx \text{ for every } w \in W^{1,p}(\Omega) \cap L^2(\Omega).
\]

Clearly this inequality holds trivially for \(w \in L^2(\Omega) \setminus W^{1,p}(\Omega) \), too. Hence, \(f \in \partial \varphi(u) \). \(\square \)

3.2. Regularity of \(\Omega \). Theorems 2.1 and 2.3 remain true if \(\Omega \) is a bounded domain with the \(W^{1,p} \)-extension property (for more details on the extension property we refer to [23, 29]). This means that there exists a bounded, linear extension operator \(W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N) \). We note that the \(W^{1,p} \)-extension property depends on \(p \). If \(\Omega \) has Lipschitz continuous boundary \(\partial \Omega \), as we assumed in Theorems 2.1 and 2.3, then \(\Omega \) has the \(W^{1,p} \)-extension property for every \(p \in (1, \infty) \), [29, Chap VI Theorem 5, p.181]. The Lipschitz continuity of the boundary (or: the \(W^{1,p} \)-extension property) is important in several places where we deal with the \(p \)-capacity. Note that the \(p \)-capacity is defined by means of \(W^{1,p}(\mathbb{R}^N) \) functions.

If \(\Omega \) does not have a Lipschitz continuous boundary, but is just an arbitrary bounded, open set, one may replace the \(p \)-capacity by the relative \(p \)-capacity, and replace the Sobolev space \(W^{1,p}(\Omega) \) by the space \(\widetilde{W}^{1,p}(\Omega) = \overline{W^{1,p}(\Omega) \cap C(\Omega)}^{W^{1,p}(\Omega)} \). The relative \(p \)-capacity \(\text{Cap}_{p,\Omega}(A) \) is for subsets \(A \subseteq \Omega \) defined by

\[
\text{Cap}_{p,\Omega}(A) := \inf \left\{ \|u\|_{W^{1,p}(\Omega)}^p : u \in \widetilde{W}^{1,p}(\Omega) \text{ and there exists } O \subseteq \mathbb{R}^N \text{ open, such that } A \subseteq O \text{ and } u \geq 1 \text{ a.e. on } O \cap \Omega \right\};
\]

see [1] for the case \(p = 2 \) and [5, 7] for general \(p \in [1, \infty] \). Up to these changes, and up to replacing the functional \(\varphi_N \) (and the associated semigroup \(S_N \)) by the functional

\[
\varphi_N(u) := \begin{cases}
\frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx, & \text{if } u \in \widetilde{W}^{1,p}(\Omega) \cap L^2(\Omega), \\
+\infty & \text{otherwise}
\end{cases}
\]

```
(and the associated semigroup \( \overline{S}_N \)), the main results in this article (Theorems 2.1 and 2.3) hold with essentially the same proofs.

3.3. The special case of quadratic forms \((p = 2 \text{ and } B \text{ quadratic})\). A particular situation occurs when all functionals in Theorem 2.1 are assumed to be quadratic. A functional \( \varphi : L^2(\Omega) \to (-\infty, +\infty] \) is quadratic if there exists a symmetric, bilinear form \( (a, D(a)) \) such that

\[
\varphi(u) = \begin{cases} \frac{1}{2} a(u, u) & \text{if } u \in D(a), \\ +\infty & \text{else.} \end{cases}
\]

Note that \( D(\varphi) = D(a) \) is a linear space in this case. A quadratic functional \( \varphi \) is convex and l.s.c. if and only if the associated form \( (a, D(a)) \) is positive and closed. In this case, \( A := \partial \varphi \) is a linear, selfadjoint, nonnegative operator and the associated semigroup \( S \) is a \( C_0 \)-semigroup of linear, selfadjoint contractions. The functionals \( \varphi_D \) and \( \varphi_N \) are quadratic if and only if \( p = 2 \), and then \( \partial \varphi_D \) and \( \partial \varphi_N \) are the realizations of the Laplace operator with Dirichlet and Neumann boundary conditions, respectively. In the case when all functionals are quadratic, our Theorem 2.1 should be compared to Theorem 4.1 in Arendt & Warma [2], at least in the situation when \( \Omega \) is a bounded domain with Lipschitz continuous boundary \( \partial \Omega \) (in [2], \( \Omega \) is an arbitrary open set). Theorem 4.1 in [2] characterizes all symmetric local semigroups which are sandwiched between the semigroups \( S_D \) and \( \overline{S}_N \). However, there the generating bilinear form \( (a, D(a)) \) and the measure \( \mu \) are both assumed to satisfy an additional regularity condition, namely that \( D(a) \cap C(\overline{\Omega}) \) is dense in \( (D(a), \| \cdot \|_a) \) and that \( \mu \) is admissible [2, Definition 2.3]. Our Theorem 2.1 shows that these regularity conditions may be dropped.

In the general situation of Theorem 2.1, we are actually not able to show that \( D(\varphi) \cap C(\overline{\Omega}) \) is dense in \( D(\varphi) \) (in the \( W^{1, p}(\Omega) \) topology, for example). We are even not sure whether \( D(\varphi) \) contains nontrivial continuous functions at all. This problem is also the reason why we cannot use a Riesz type representation theorem for functionals defined on \( C(\overline{\Omega})^+ \) such as for example the representation theorems in [12] or [30]. Instead, we are forced to use a Riesz type representation theorem on \( W^{1, p}(\Omega)^+ \) (that is, Theorem 2.3).

If in the situation of Theorem 2.1 one assumes in addition that the functional \( \varphi \) is continuous on \( W^{1, p}(\Omega) \), then in Theorem 2.3 one obtains that \( B(x, \cdot) \) is continuous. In this situation, it is possible to show that the functional \( \varphi \) is also regular in the sense that for every \( u \in D(\varphi) \) there exists a sequence \( (u_n) \subseteq D(\varphi) \cap C(\overline{\Omega}) \) converging to \( u \) in \( W^{1, p}(\Omega) \) and satisfying \( \lim_{n \to \infty} \varphi(u_n) = \varphi(u) \).

We finally note that if \( p = 2 \) in Theorem 2.1, that is the case of the Laplace operator, even if \( S_D \) and \( \overline{S}_N \) are linear semigroups, Theorem 2.1 shows that there are nonlinear sandwiched semigroups generated by the Laplace operator with nonlinear boundary conditions of the form \( \partial u / \partial v d\sigma + \beta(x, u) d\mu \geq 0 \).

3.4. Nonnegativity of the functional \( \varphi \). While the generation theorem by Minty applies for general convex, l.s.c. functionals \( \varphi : L^2(\Omega) \to (-\infty, +\infty] \), the functional in Theorem 2.1 is assumed to be convex, l.s.c. and nonnegative. However, assuming condition (i) in Theorem 2.1, \( \varphi \) is automatically nonnegative. In fact, the domination \( S \preceq S_N \) implies that 0 is an equilibrium point of the semigroup \( S \) (that is, \( S(t)0 = 0 \) for every \( t \geq 0 \)). This is equivalent to \( 0 \in \partial \varphi(0) \). Since \( \varphi \) is convex, this in turn is equivalent to the fact that \( \varphi \) attains its minimum in 0. Now, the further assumption that \( \varphi \) is local implies \( \varphi(0) = 0 \). Hence, \( \varphi \) is necessarily nonnegative.
3.5. Locality of $\varphi$. Also the assumption that the functional $\varphi$ is local is necessary. In fact, there are semigroups $S$ generated by convex, l.s.c., and non-local functionals $\varphi$ such that $S_D \preceq S \preceq S_N$. Clearly, such functionals cannot be of the integral form as in Theorem 2.1 (ii). Examples of such non-local functionals exist even in the quadratic case, that is, when all semigroups are linear; see [2, Example 4.5].

3.6. Relation between the lower semicontinuity of $\varphi$ and properties of $B$ and $\mu$. Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with Lipschitz continuous boundary $\partial \Omega$. Let $\mu$ be a finite, regular Borel measure on $\partial \Omega$ (no further assumption on $\mu$), and let $B : \partial \Omega \times \mathbb{R} \to [0, +\infty]$ be a Borel function satisfying the hypothesis (H) from Theorem 2.1. Fix $p \in (1, \infty)$, and consider the functional $\varphi : L^2(\Omega) \to [0, +\infty]$ given by

$$
\varphi(u) = \begin{cases} 
\frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx + \int_{\partial \Omega} B(x, u) \, d\mu, & \text{if } u \in D(\varphi) \\
+\infty & \text{otherwise},
\end{cases}
$$

where the effective domain

$$
D(\varphi) := \{ u \in W^{1,p}(\Omega) \cap L^2(\Omega) : \int_{\partial \Omega} B(x, u) \, d\mu < \infty \}.
$$

**Theorem 3.2.** If the functional $\varphi$ defined above is lower semicontinuous on $L^2(\Omega)$, then for every $p$-polar set $K \subseteq \partial \Omega$ and every $u \in D(\varphi)$ one has $\int_K B(x, u) \, d\mu = 0$.

**Proof.** Let $K \subseteq \partial \Omega$ be a $p$-polar set, and let $u \in D(\varphi)$. We first assume that $K$ is compact and that $u$ is nonnegative and essentially bounded. Since $K$ is $p$-polar, there exists a sequence $(v_n) \subseteq W^{1,p}(\mathbb{R}^N)$ such that

$$
0 \leq v_n \leq \|u\|_{L^p(\Omega)},
$$

everywhere on $\bar{\Omega}$, $v_n = \|u\|_{L^p(\Omega)}$ on $K$, and $\lim_{n \to \infty} \|v_n\|_{W^{1,p}(\mathbb{R}^N)} = 0$.

Now let $u_n := v_n \wedge u$. Then

$$
0 \leq u - u_n \leq u \text{ everywhere on } \bar{\Omega}, \quad u - u_n = 0 \text{ on } K, \quad \lim_{n \to \infty} \|u_n\|_{W^{1,p}(\Omega)} = 0.
$$

By the bounded convergence theorem, we also have $\lim_{n \to \infty} \|u - u_n\|_{L^2(\Omega)} = 0$. Since $\varphi$ is lower semicontinuous on $L^2(\Omega)$, we obtain

$$
\frac{1}{p} \int_{\Omega} |\nabla u|^p + \int_{\partial \Omega} B(x, u) \, d\mu \leq \liminf_{n \to \infty} \left( \frac{1}{p} \int_{\Omega} |\nabla (u - u_n)|^p + \int_{\partial \Omega} B(x, u - u_n) \, d\mu \right).
$$

The inequality $u - u_n \leq u$ (everywhere on $\bar{\Omega}$), the equality $u - u_n = 0$ on $K$, the assumption $B(x, 0) = 0$, and the bi-monotonicity of $B$ imply that for every $n$

$$
\int_{\partial \Omega} B(x, u - u_n) \, d\mu \leq \int_{\partial \Omega \setminus K} B(x, u) \, d\mu.
$$

The preceding two inequalities and the convergence $\|u_n\|_{W^{1,p}(\Omega)} \to 0$ together imply

$$
\int_K B(x, u) \, d\mu \leq 0.
$$

Since $B \geq 0$, we thus obtain $\int_K B(x, u) \, d\mu = 0$.

The equality $\int_K B(x, u) \, d\mu = 0$ for arbitrary nonnegative $u \in D(\varphi)$ (but compact $K$) follows by an approximation with the sequence $(u \wedge n)$, using also the lower semi-continuity of $\varphi$ and the monotonicity of $B$. If $K$ is not compact (but $p$-polar) and if $u \in D(\varphi)$ is nonnegative, then we obtain the equality $\int_K B(x, u) \, d\mu = 0$ from the inner regularity of the measure $B(x, u) \, d\mu$. 
Similarly, using the bi-monotonicity of $B$, one shows that $\int_K B(x,u) \, d\mu = 0$ for every $p$-polar set $K \subseteq \partial \Omega$ and every nonpositive $u \in D(\phi)$. Finally, if $K$ is an arbitrary $p$-polar set and $u \in D(\phi)$ is arbitrary, too, then the previous steps imply

$$\int_K B(x,u) \, d\mu = \int_K B(x,u^+ - u^-) \, d\mu = \int_K B(x,u^+) \, d\mu + \int_K B(x,-u^-) \, d\mu = 0,$$

where we have also used the fact if $u \in D(\phi)$, then $u^+ \in D(\phi)$. 

With a slight abuse of language, Theorem 3.2 says that if the functional $\phi$ given by (3.4) is lower semicontinuous, then the weighted measure $B \, d\mu$ is necessarily absolutely continuous with respect to the $p$-capacity (in the sense made precise in Theorem 3.2). We point out that the stronger property that the unweighted measure $\mu$ is absolutely continuous with respect to the $p$-capacity can not be expected in the general situation of Theorem 3.2 (take, for example, $B = 0$ and $\mu$ a measure which is not absolutely continuous with respect to the $p$-capacity). At the same time, we point out that our main Theorem 2.1 does state the existence of a representing measure $\mu$ which is absolutely continuous with respect to the $p$-capacity.

In the literature (see, for example, [6, 7, 8, 18] for the nonlinear case and [1, 2, 17] for the linear case) parabolic and elliptic equations associated with the functional $\phi$ defined in (3.4) have been investigated. There, the authors have always assumed that $B(x, \cdot)$ is convex for $\mu$-a.e. $x \in \partial \Omega$, and that the measure $\mu$ is absolutely continuous with respect to the $p$-capacity. Theorem 3.2 shows that this is a natural assumption (for obtaining well-posedness of the associated evolution problem, for example, but also for existence and regularity of weak solutions to associated elliptic problems).

The following result is a partial converse of Theorem 3.2.

**Theorem 3.3.** Assume that $B d\mu$ is absolutely continuous with respect to the $p$-capacity in the sense that for every $p$-polar set $K \subseteq \partial \Omega$ and every $u \in D(\phi)$ one has $\int_K B(x,u) \, d\mu = 0$. If the functional $\phi$ given by (3.4) is convex, then $\phi$ is lower semicontinuous on $L^p(\Omega)$.

**Proof.** We have to show that for every $c \in \mathbb{R}$ the set $\{ \phi \leq c \}$ is closed in $L^2(\Omega)$. So fix $c \in \mathbb{R}$. Let $\mathscr{A}$ be a closed (bounded) ball in $L^2(\Omega)$ and let $\mathscr{C} := \{ \phi \leq c \} \cap \mathscr{A}$. Let $(u_n) \subseteq \mathscr{C}$ and $u \in W^{1,p}(\Omega) \cap L^2(\Omega)$ be such that $\lim_{n \to \infty} \| u_n - u \|_{W^{1,p}(\Omega) \cap L^2(\Omega)} = 0$. The convergence in $L^2(\Omega)$ implies that $u \in \mathscr{A}$. The convergence in $W^{1,p}(\Omega)$ implies, after passing to a subsequence, that $u_n \to u$ $p$-quasi-everywhere, that is, $u_n \to u$ everywhere except possibly on a $p$-polar set $K \subseteq \partial \Omega$. Hence, by assumption on $B$ and $\mu$,

$$\phi(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p + \int_{\partial \Omega} B(x,u) \, d\mu$$

$$= \frac{1}{p} \int_{\Omega} |\nabla u|^p + \int_{\partial \Omega \setminus K} B(x,u) \, d\mu + \int_{K} B(x,u) \, d\mu = \int_{K} B(x,u) \, d\mu = 0$$

(by Fatou’s lemma)
This shows $u \in \{ \varphi \leq c \}$. In particular, we have shown that $\mathcal{C}$ is closed in $W^{1,p}(\Omega) \cap L^2(\Omega)$. By convexity of $\varphi$, the set $\mathcal{C}$ is in addition convex. Hence, by Mazur’s theorem, $\mathcal{C}$ is weakly closed in $W^{1,p}(\Omega) \cap L^2(\Omega)$. Next, since $B$ is nonnegative, the norm $u \mapsto \|\nabla u\|_{L^p(\Omega)} + \|u\|_{L^2(\Omega)}$ is bounded on $\mathcal{C}$. This norm is equivalent to the canonical norm on $W^{1,p}(\Omega) \cap L^2(\Omega)$: for $p \leq 2$, this is always true, while for $p > 2$ we may use that $\Omega$ has a Lipschitz boundary and apply [23, Section 1.1, Theorem]. Since the embedding $W^{1,p}(\Omega) \cap L^2(\Omega) \hookrightarrow L^2(\Omega)$ is continuous, we obtain that $\mathcal{C}$ is bounded and weakly closed, and hence closed, in $L^2(\Omega)$. Since $\mathcal{A}$ was an arbitrary closed ball in $L^2(\Omega)$, this shows that $\{ \varphi \leq c \}$ is closed in $L^2(\Omega)$.

$\square$  

4. PROOF OF THEOREM 2.3

In this section, we prove Theorem 2.3. We start by proving the implication in Theorem 2.3 which is relatively straightforward.

Proof of Theorem 2.3, (ii) $\Rightarrow$ (i). Assume that assertion (ii) holds. The monotonicity of the function $B(x, \cdot)$ (for $\mu$-almost every $x \in \bar{\Omega}$, assumption $(H^+)$) and the monotonicity of the integral imply that the functional $\psi$ is monotone.

We show that $\psi$ is lower semicontinuous. Let $(u_n) \subseteq W^{1,p}(\Omega)^+$ be a sequence which converges to $u \in W^{1,p}(\Omega)^+$. By considering a subsequence, if necessary, we may assume that $(u_n)$ converges to $u$ $p$-quasi-everywhere, that is, there exists a $p$-polar set $A \subseteq \Omega$ such that $(u_n)$ converges to $u$ everywhere on $\bar{\Omega} \setminus A$ (where possibly $A$ is a larger $p$-polar set).

Since, for $\mu$-almost every $x \in \bar{\Omega}$, the function $B(x, \cdot)$ is lower semicontinuous, we obtain $B(x, u(x)) \leq \liminf_{n \to \infty} B(x, u_n(x))$ for every $x \in \bar{\Omega} \setminus A$. Using Fatou’s lemma and the fact that, by assumption, the measure $\mu$ is absolutely continuous with respect to $\text{Cap}_p$ (this implies that $\int_K B(x, u) \, d\mu = 0$ for every $p$-polar set $K \subseteq \bar{\Omega}$ and every $u \in D(\psi)$), we therefore obtain that

$$\psi(u) = \int_{\Omega} B(x, u) \, d\mu = \int_{\Omega \setminus A} B(x, u) \, d\mu \leq \int_{\Omega \setminus A} \liminf_{n \to \infty} B(x, u_n(x)) \, d\mu \leq \liminf_{n \to \infty} \int_{\Omega \setminus A} B(x, u_n(x)) \, d\mu = \liminf_{n \to \infty} \psi(u_n).$$

Hence, $\psi$ is lower semicontinuous.

Let $u$, $v \in D(\psi) \subseteq W^{1,p}(\Omega)^+$. Clearly, $u \vee v$, $u \wedge v \in W^{1,p}(\Omega)^+$. From the equality

$$\psi(u \vee v) + \psi(u \wedge v) = \int_{\Omega} B(x, u \vee v) \, d\mu + \int_{\Omega} B(x, u \wedge v) \, d\mu$$

$$= \int_{\{ u \leq v \}} B(x, v) \, d\mu + \int_{\{ u \leq v \}} B(x, u) \, d\mu$$

$$+ \int_{\{ u > v \}} B(x, u) \, d\mu + \int_{\{ u > v \}} B(x, v) \, d\mu$$

$$= \int_{\Omega} B(x, u) \, d\mu + \int_{\Omega} B(x, v) \, d\mu$$

$$= \psi(u) + \psi(v)$$

we obtain that $u \vee v$, $u \wedge v \in D(\psi)$ and that (2.8) holds (even with equality).

Finally, let $u$, $v \in W^{1,p}(\Omega)^+$ be such that $u \wedge v = 0$. Then $u = v = 0$ on $\text{supp}[u] \cap \text{supp}[v]$. Since $B(x, 0) = 0$, we obtain that

$$\psi(u + v) = \int_{\Omega} B(x, u + v) \, d\mu$$
For each $u \in D(\psi)$ we define
$$K^\delta := \{ x \in \bar{\Omega} : d(x, K) \leq \delta \}.$$ 
With this definition, for every compact subset $K \subseteq \mathcal{K}$ we define
$$\mathcal{R}(K) := \{ \rho \in W^{1,\infty}(\mathbb{R}^N) : \text{there exists } \delta > 0 \text{ such that } \rho \geq 1 \text{ on } K^\delta \}.$$ 
Note that every function $\rho \in W^{1,\infty}(\mathbb{R}^N)$ admits a Lipschitz continuous representative; the condition $\rho \geq 1$ is to be understood as a pointwise inequality everywhere for this unique representative.

**Definition 4.1.** For each $u \in D(\psi)$ we define a nonnegative set function $\mu_u(\cdot)$ on $\mathcal{K}$ by setting
$$\mu_u(K) = \inf_{\rho \in \mathcal{R}(K)} \psi(u \rho) \quad (K \in \mathcal{K}).$$

We remark that for every $\rho \in \mathcal{R}(K)$ one has $\rho \wedge 1 \in \mathcal{R}(K)$. Therefore, in the definition of $\mu_u(K)$ it suffices to take the infimum over all functions $\rho \in \mathcal{R}(K)$ satisfying $0 \leq \rho \leq 1$ everywhere and $\rho = 1$ on some $K^\delta$. In particular, by the monotonicity of $\psi$, $\mu_u(K)$ is finite for every compact $K \subseteq \bar{\Omega}$.

**Lemma 4.2** (Finite additivity). Let $u \in D(\psi)$, and let $K_1, K_2 \subseteq \bar{\Omega}$ be two compact sets such that $K_1 \cap K_2 = \emptyset$. Then
$$\mu_u(K_1 \cup K_2) = \mu_u(K_1) + \mu_u(K_2).$$

**Proof.** Let $K_1, K_2 \subseteq \bar{\Omega}$ be two compact sets such that $K_1 \cap K_2 = \emptyset$. Then $d(K_1, K_2) > 0$. We can therefore find two functions $\rho_i \in \mathcal{R}(K_i)$ ($i = 1, 2$) such that $0 \leq \rho_i \leq 1$ and $\rho_1 \wedge \rho_2 = 0$; such a pair of functions $\rho_1, \rho_2$ can easily be constructed by taking appropriate convolutions of characteristic functions and test functions.

Let $\rho \in \mathcal{R}(K_1 \cup K_2)$. The monotonicity and locality of $\psi$ implies
$$\psi(u \rho) \geq \psi(u \rho \rho_1 + \rho_2) \\
= \psi(u \rho \rho_1) + \psi(u \rho_2) \\
\geq \mu_u(K_1) + \mu_u(K_2).$$
Since $\rho \in \mathcal{R}(K_1 \cup K_2)$ was arbitrary, this implies $\mu_u(K_1 \cup K_2) \geq \mu_u(K_1) + \mu_u(K_2)$. 

Hence, $\psi$ is local. □

To prove the converse implication (i) $\Rightarrow$ (ii), we proceed stepwise, in the form of several lemmas.

Throughout the following, we denote by $\mathcal{B}$ the Borel $\sigma$-algebra of $\bar{\Omega}$. The set of all compact subsets of $\bar{\Omega}$ is denoted by $\mathcal{K}$. We assume also that the functional $\psi$ satisfies the condition (i) in Theorem 2.3.

For $\delta > 0$ and every subset $K \subseteq \bar{\Omega}$ we define
$$K^\delta := \{ x \in \bar{\Omega} : d(x, K) \leq \delta \}.$$
Now let $\rho'_i \in \mathcal{D}(K_i)$ ($i = 1, 2$). Then, again by monotonicity and locality,
\[
\psi(u\rho'_1) + \psi(u\rho'_2) \geq \psi(u\rho'_1 + \rho'_2) = \psi(u(\rho'_1 + \rho'_2)) \geq \mu_u(K_1 \cup K_2).
\]
Since $\rho'_i \in \mathcal{D}(K_i)$ ($i = 1, 2$) were arbitrary, this implies $\mu_u(K_1) + \mu_u(K_2) \geq \mu_u(K_1 \cup K_2)$. □

**Lemma 4.3** (Monotonicity). Let $u \in D(\psi)$ and let $K_1, K_2 \subseteq \bar{\Omega}$ be two compact sets such that $K_1 \subseteq K_2$. Then
\[
\mu_u(K_1) \leq \mu_u(K_2).
\]
**Proof.** This follows immediately from the definition of $\mu_u$ and the inclusion $\mathcal{D}(K_1) \supseteq \mathcal{D}(K_2)$.

**Lemma 4.4.** Let $u \in D(\psi)$ and let $K_1, K_2 \subseteq \bar{\Omega}$ be two compact sets. Then
\[
\mu_u(K_1 \cup K_2) + \mu_u(K_1 \cap K_2) \leq \mu_u(K_1) + \mu_u(K_2).
\]
**Proof.** Let $\rho_i \in \mathcal{D}(K_i)$ ($i = 1, 2$). Then, by assumption (2.8),
\[
\psi(u\rho_1) + \psi(u\rho_2) \geq \psi(u(\rho_1 \vee \rho_2)) + \psi(u(\rho_1 \wedge \rho_2)) \geq \mu_u(K_1 \cup K_2) + \mu_u(K_1 \cap K_2).
\]
Since $\rho_i \in \mathcal{D}(K_i)$ ($i = 1, 2$) were arbitrary, this implies $\mu_u(K_1) + \mu_u(K_2) \geq \mu_u(K_1 \cup K_2) + \mu_u(K_1 \cap K_2)$. □

**Lemma 4.5** (Outer regularity). Let $u \in D(\psi)$, let $(K_m)$ be a decreasing sequence of compact subsets of $\bar{\Omega}$, and let $K := \bigcap_m K_m$. Then
\[
\lim_{m \to \infty} \mu_u(K_m) = \mu_u(K).
\]
**Proof.** First, the monotonicity of the set function $\mu_u$ (Lemma 4.3) implies that $\lim_{m \to \infty} \mu_u(K_m)$ exists and $\lim_{m \to \infty} \mu_u(K_m) \geq \mu_u(K)$. In order to prove the converse inequality, observe that for every $\delta, \delta' > 0$ there exists $m_0 \in \mathbb{N}$ such that for every $m \geq m_0$ one has $K_m \subseteq K_{m_0}$ (here we use that $(K_m)$ is decreasing and $K = \bigcap_m K_m$). In particular, for every $\rho \in \mathcal{D}(K)$ there exists $m_0 \in \mathbb{N}$ such that for every $m \geq m_0$ one has $\rho \in \mathcal{D}(K_m)$. As a consequence
\[
\psi(u\rho) \geq \mu_u(K_m) \quad \text{for every } m \geq m_0,
\]
or,
\[
\psi(u\rho) \geq \lim_{m \to \infty} \mu_u(K_m).
\]
Since this inequality holds for every $\rho \in \mathcal{D}(K)$, this proves $\mu_u(K) \geq \lim_{m \to \infty} \mu_u(K_m)$. □

**Lemma 4.6.** For every $u \in D(\psi)$ the set function $\mu_u$ can be uniquely extended to a finite, regular Borel measure on $\bar{\Omega}$ (denoted again by $\mu_u$ in the following). Moreover, $\mu_u(\bar{\Omega}) = \psi(u)$ and $\supp[\mu_u] \subseteq \supp[\psi]$.

**Proof.** By Lemmas 4.2, 4.3, 4.4 and 4.5, $\mu_u$ is a regular content on $\mathcal{H}$. The fact that $\mu_u$ extends to a regular Borel measure (which we denote again by $\mu_u$) follows from standard measure theory, including the theory of measures on topological spaces (see, for example, [4, Kapitel I §3, Kapitel IV]). The set $\bar{\Omega}$ is compact and every function in $\mathcal{D}(\bar{\Omega})$ is greater or equal to 1 on $\bar{\Omega}$. From here and the definition of $\mu_u$ follows easily that $\mu_u(\bar{\Omega}) = \psi(u) < +\infty$ for every $u \in D(\psi)$. The inclusion $\supp[\mu_u] \subseteq \supp[\psi]$ is a straightforward consequence of the definition of $\mu_u$ and the definition of the effective support of $\psi$. □
Lemma 4.7 (Monotonicity of $\mu_u$). Let $u, v \in D(\psi)$ be such that $u \leq v$. Then $\mu_u \leq \mu_v$.

Proof. The monotonicity of $\psi$ and the definition of the measures $\mu_u$ and $\mu_v$ imply $\mu_u(K) \leq \mu_v(K)$ for every compact subset $K \subseteq \bar{\Omega}$. The claim then follows from the inner regularity of $\mu_u$ and $\mu_v$. \hfill \Box

Lemma 4.8. Let $(u_n) \subseteq D(\psi)$ and $u \in D(\psi)$ be such that $u_n \leq u$ and $\lim_{n \to \infty} u_n = u$ in $W^{1, p}(\Omega)$. Then

\begin{align}
\lim_{n \to \infty} \mu_{u_n}(G) &= \mu_u(G) \quad \text{for every } G \in \mathcal{B}.
\end{align}

Proof. By Lemma 4.7, the domination $u_n \leq u$ implies $\mu_u(G) - \mu_{u_n}(G) \geq 0$ for every $G \in \mathcal{B}$. Hence, for every $G \in \mathcal{B}$,

\begin{align*}
0 &\leq \limsup_{n \to \infty} (\mu_u(G) - \mu_{u_n}(G)) \\
&\leq \limsup_{n \to \infty} (\mu_u(G) - \mu_{u_n}(G) + \mu_u(G^c) - \mu_{u_n}(G^c)) \\
&= \limsup_{n \to \infty} (\mu_u(G) - \mu_{u_n}(G^c)) \\
&= \limsup_{n \to \infty} (\psi(u) - \psi(u_n)) \\
&\leq 0,
\end{align*}

where in the last inequality we have used the lower semi-continuity of $\psi$. The preceding chain of inequalities implies the claim. \hfill \Box

Lemma 4.9. For every $u \in D(\psi)$ the measure $\mu_u$ is absolutely continuous with respect to the $p$-capacity.

Proof. Let $K \subseteq \bar{\Omega}$ be a $p$-polar set, that is, $\text{Cap}_p(K) = 0$. We have to show that $\mu_u(K) = 0$. By inner regularity of $\mu_u$, we may assume $K$ to be compact. Moreover, by replacing $u$ by $u \wedge n \in D(\psi)$ (with $n \in \mathbb{N}$ large enough), and by using Lemma 4.8, we see that we may in addition assume that $u$ is essentially bounded. We assume both in the following.

Since $\text{Cap}_p(K) = 0$, there exists a sequence $(O_n)$ of open sets in $\mathbb{R}^N$ and a sequence $(w_n) \subseteq W^{1, p}(\mathbb{R}^N) \cap C(\mathbb{R}^N)$ such that

\begin{align*}
0 &\leq w_n \leq 1, \quad w_n = 1 \text{ on } O_n \supseteq K, \text{ and } \lim_{n \to \infty} \|w_n\|_{W^{1, p}(\mathbb{R}^N)} = 0.
\end{align*}

We claim that we can choose $(O_n)$ and $(w_n)$ such that

\begin{align*}
K &\subseteq O_{n+1} \subseteq \bar{O}_{n+1} \subseteq O_n, \\
K &= \bigcap_{n} O_n, \text{ and} \\
\text{supp}[w_{n+1}] &\subseteq O_n.
\end{align*}

First, observe that by replacing $O_n$ by the smaller set $O_1 \cap \cdots \cap O_n$, we may assume that the sequence $(O_n)$ is decreasing. Clearly $K \subseteq \bigcap_{n} O_n$. If there exists $x \in (\bigcap_{n} O_n) \setminus K$, then we may replace $O_n$ by the smaller open set $O_n \setminus B(x, r)$, where $r > 0$ is sufficiently small so that one still has $K \subseteq O_n \setminus B(x, r)$ (recall that $K$ is compact and that $x$ has positive distance to $K$). In this way we can eliminate every $x \in (\bigcap_{n} O_n) \setminus K$ and finally have $K = \bigcap_{n} O_n$. By using that $K$ is compact and that the sets $O_n$ are open, it is straightforward to construct a subsequence of $(O_n)$ (which we still denote by $O_n$) such that $K \subseteq O_{n+1} \subseteq \bar{O}_{n+1} \subseteq O_n$. Now let $(z_k) \subseteq W^{1, \infty}(\mathbb{R}^N)$ be a sequence of functions satisfying $0 \leq z_k \leq 1$, $z_k = 1$ on $O_{k+1}$ and $\text{supp}[z_k] \subseteq O_k$.

For every $k$ we can find $m_k \geq k + 1$ such that, for every $m \geq m_k$,
\[ \| z_k w_m \|_{W^{1,p}(\mathbb{R}^N)} \leq \frac{1}{k}. \]

Note that, for every \( m \geq m_k \), \( 0 \leq z_k w_m \leq 1 \), \( z_k w_m = 1 \) on \( O_m \), and \( \text{supp}[z_k w_m] \subseteq O_k \). Now, by replacing \( w_n \) by \( z_k w_m \) for some appropriate sequences \((k_n)\), \((m_n)\) (so that \( k_{n+1} \geq m_{n+1} \)), we obtain the desired claim.

By passing to a further subsequence, if necessary, we may finally assume that \((w_n)\) and \((\nabla w_n)\) converge pointwise almost everywhere to \(0\). Then it is straightforward to check that \( \lim_{n \to \infty} \| u w_n \|_{W^{1,p}(\Omega)} = 0 \). Moreover, for every \( n \in \mathbb{N} \),

\[
\psi(u) \geq \psi(u - uw_n + w_{n+1}) \quad (\text{by monotonicity of } \psi)
\]

\[
= \psi(u - uw_n) + \psi(w_{n+1}) \quad (\text{by locality of } \psi)
\]

\[
\geq \psi(u - uw_n) + \mu(K) \quad (\text{by definition of } \mu).
\]

Since \( \lim_{n \to \infty} (u - uw_n) = u \) and \( u - uw_n \leq u \), the monotonicity and the lower semi-continuity of \( \psi \) imply

\[
\lim_{n \to \infty} \psi(u - uw_n) = \psi(u).
\]

Hence, by passing to the limit in the inequality (4.4), we obtain \( \psi(u) \geq \psi(u) + \mu(K) \), that is, \( \mu(K) = 0 \). Since \( K \) was an arbitrary \( p \)-quasi-set, this shows that \( \mu \) is absolutely continuous with respect to the \( p \)-capacity.

\[ \square \]

**Lemma 4.10.** For every \( u \in D(\psi) \) one has \( \mu(u(\{u = 0\}) = 0 \) (here \( \{u = 0\} \) denotes the null-set of a \( p \)-quasi-continuous representative of \( u \); it is unique up to a \( p \)-polar set).

**Proof.** Let \( u \in D(\psi) \). By replacing \( u \) by \( u \wedge n \in D(\psi) \) (for \( n \in \mathbb{N} \) sufficiently large) and by using Lemma 4.8, we see that we may assume that \( u \) is essentially bounded. This will be done in the following.

We show that we can find a sequence \((u_n) \subseteq D(\psi) \) such that \( u_n \leq u \), \( \lim_{n \to \infty} u_n = u \) in \( W^{1,p}(\Omega) \) and \( u_n = 0 \) in a neighborhood of \( \{u = 0\} \). In fact, for every \( n \in \mathbb{N} \) the set \( U_n := \{u < 1/n\} \) is \( p \)-quasi-open, that is, there exists a sequence \((O_j)\) of open sets such that \( U_n \cup O_j \) is open and \( \lim_{j \to \infty} \text{Cap}_p(O_j) = 0 \). Associated with \((O_j)\) there exists a sequence \((w_j) \subseteq W^{1,p}(\mathbb{R}^N) \) such that \( 0 \leq w_j \leq 1 \), \( w_j = 1 \) on \( O_j \) and \( \lim_{j \to \infty} \| w_j \|_{W^{1,p}(\mathbb{R}^N)} = 0 \). Note that \( \lim_{j \to \infty} \| (u - 1/n)^+ w_j \|_{W^{1,p}(\mathbb{R}^N)} = 0 \) for every \( n \in \mathbb{N} \). Now, for \( n \in \mathbb{N} \), one may take \( u_n = (u - 1/n)^+ (1 - w_j) \) with \( j_n \in \mathbb{N} \) large enough and one obtains the desired sequence.

Let \( K \subseteq \{u = 0\} \) be a compact set. Since \( u_0 = 0 \) in a neighborhood of \( \{u = 0\} \), it follows that \( K \subseteq \Omega \setminus \text{supp}[u_0] \). By definition of \( \mu(u_0) \), since \( \Omega \setminus \text{supp}[u_0] \) is relatively open (i.e. open with respect to the relative topology), and since \( \psi(0) = 0 \), one has \( \mu(u_0)(K) = 0 \). By Lemma 4.8, \( \mu(u_0)(K) = \lim_{n \to \infty} \mu(u_0)(K) = 0 \). The claim then follows from the inner regularity of \( \mu \).

\[ \square \]

**Lemma 4.11.** Let \( u, v \in D(\psi) \). Then \( \mu_u(G) \leq \mu_v(G) \) for every Borel set \( G \subseteq \{u \leq v\} \).

**Proof.** Step 1. We first prove the inequality \( \mu_u(G) \leq \mu_v(G) \) for every Borel set \( G \subseteq \{u < v\} \). By \( p \)-quasi-continuity of \( u \) and \( v \), the set \( U := \{u < v\} \) is quasi-open. For every \( n \in \mathbb{N} \), let \( O_n \) be an open set with \( \text{Cap}_p(O_n) < 1/n \) and \( U_n := U \cup O_n \) is open. Associated with \((O_n)\) there exists a sequence \((w_n) \subseteq W^{1,p}(\mathbb{R}^N) \) such that \( 0 \leq w_n \leq 1 \), \( w_n = 1 \) \( p \)-quasi-everywhere on \( O_n \) and \( \lim_{n \to \infty} \| w_n \|_{W^{1,p}(\mathbb{R}^N)} = 0 \). Let \( u_n := (u \wedge n)(1 - w_n) \) and \( v_n := (v \wedge n)(1 - w_n) \). Then \( u_n \leq v_n \) on the open set \( U_n \) with \( u_n = v_n = 0 \) \( p \)-quasi-everywhere on \( O_n \). Moreover, \( u_n \leq u \) and \( v_n \leq v \). Since \( U_n \) is open, then for every compact set \( K \subseteq U \subseteq U_n \) there exists \( \delta > 0 \) such that \( K^\delta \subseteq U_n \). It follows from the monotonicity of \( \psi \) and the definition of the measures \( \mu_u \) and \( \mu_v \) that \( \mu_u(K) \leq \mu_v(K) \) for every compact subset \( K \subseteq U \). Passing to the limit and using Lemma 4.8, we obtain that \( \mu_u(K) \leq \mu_v(K) \) for every compact set.
Lemma 4.14. Let $u \subseteq \{ u < v \}$. The inequality $\mu_u(G) \leq \mu_v(G)$ for Borel sets $G \subseteq \{ u < v \}$ then follows from the inner regularity of $\mu_u$ and $\mu_v$.

Step 2. Let now $G$ be a Borel set in $\{ u \leq v \text{ and } 0 < v \}$. Let $(\lambda_n) \subseteq \mathbb{R}_+$ be a sequence such that $\lambda_n \to 1$ and $\lim_{n \to \infty} \lambda_n = 1$. Then, for every $n$ one has
\[
\{ u \leq v \text{ and } 0 < v \} \subseteq \{ \lambda_n u < v \}.
\]
Hence, by Step 1, for every $n$,
\[
\mu_{\lambda_n u}(G) \leq \mu_v(G).
\]
Clearly, $\lambda_n u \leq u$ and $\lim_{n \to \infty} \lambda_n u = u$ in $W^{1,p}(\Omega)$. Hence, by Lemma 4.8,
\[
\mu_u(G) = \lim_{n \to \infty} \mu_{\lambda_n u}(G) \leq \mu_v(G).\]

Step 3. Finally, let $G$ be an arbitrary Borel set in $\{ u \leq v \}$. Then, by Step 2 and by Lemma 4.10,
\[
\mu_u(G) = \mu_u(G \cap \{ 0 < v \}) + \mu_u(G \cap \{ 0 = v \}) \\
\leq \mu_v(G \cap \{ 0 < v \}) + \mu_v(G \cap \{ 0 = v \}) \\
= \mu_v(G),
\]
which is the claim. \qed

In the remainder of this section, fix a sequence $(w_n) \subseteq D(\psi)$ such that $(w_n : n)$ is dense in $D(\psi)$ (such a sequence exists since the space $W^{1,p}(\Omega)$ is separable). Then we define a measure $\mu$ on $\mathcal{B}$ by
\[
\mu(G) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\mu_{w_n}(G)}{1 + \mu_{w_n}(\Omega)} \quad (G \in \mathcal{B}).
\]

It is clear that $\mu$ is a finite, regular Borel measure on $\tilde{\Omega}$.

Lemma 4.12. The measure $\mu$ is absolutely continuous with respect to the $p$-capacity.

Proof. This follows directly from Lemma 4.9 and the definition of the measure $\mu$. \qed

Lemma 4.13. Every measure $\mu_u (u \in D(\psi))$ is absolutely continuous with respect to $\mu$.

Proof. Let $G \in \mathcal{B}$ be such that $\mu(G) = 0$. It follows from the definition of $\mu$ and the positivity of $\mu_{w_0}$ that $\mu_{w_0}(G) = 0$ for every $n \in \mathbb{N}$.

Now let $u \in D(\psi)$. There exists a subsequence $(w_{n_k})$ such that $\lim_{k \to \infty} w_{n_k} = u$ in $W^{1,p}(\Omega)$. Define $u_k := w_{n_k} \wedge u$. Then $u_k \leq w_{n_k}$ and Lemma 4.7 implies that $\mu_{u_k}(G) = 0$. Moreover, $u_k \leq u$ and $\lim_{k \to \infty} u_k = u$ in $W^{1,p}(\Omega)$. From this and Lemma 4.8 we obtain $\mu_u(G) = \lim_{k \to \infty} \mu_{u_k}(G) = 0$. Hence, $\mu_u$ is absolutely continuous with respect to $\mu$. \qed

By the preceding lemma and by the Radon-Nikodym theorem, for every $u \in D(\psi)$ there exists a nonnegative Borel measurable function $B_u = B_u(x)$ such that
\[
\mu_u(G) = \int_G B_u(x) d\mu(x) \quad (G \in \mathcal{B}).
\]

Lemma 4.14. Let $u_n, u, v \in D(\psi)$. Then:
(a) If $u_n \leq u$ and $\lim_{n \to \infty} u_n = u$ in $W^{1,p}(\Omega)$, then $\lim_{n \to \infty} B_{u_n} = B_u$ $\mu$-almost everywhere.
(b) $B_u = 0$ $\mu$-almost everywhere on $\{ u = 0 \}$.
(c) $B_u \leq B_v$ $\mu$-almost everywhere on $\{ u \leq v \}$.  

Proof. This lemma is an immediate consequence of Lemma 4.8, Lemma 4.10 and Lemma 4.11. \hfill \square

Recall that we identify each function \(w_n \in D(\phi)\) with a \(p\)-quasi-continuous representative; note that we may assume that this representative is nonnegative everywhere. For every \(x \in \Omega\) we define the set \(W(x) := \{w_n(x) : n \in \mathbb{N}\}\). Let \(I(x)\) be the closed convex hull of \(W(x)\), that is, the smallest, closed interval which contains \(W(x)\). Then, for every \(x \in \Omega\) and every \(s \in \mathbb{R}_+\), we define

\[
B(x,s) = \begin{cases} 
\sup_n B_{w_n}(x)1_{\{w_n < s\}}(x) & \text{if } s \in I(x), \\
+\infty & \text{if } s \notin I(x).
\end{cases}
\]

Lemma 4.15. The function \(B : \Omega \times \mathbb{R}_+ \to [0, +\infty]\) defined above satisfies the hypothesis \((H^+)\) of Theorem 2.3. Moreover, for every \(u \in D(\psi)\) one has \(B(\cdot, u(\cdot)) = B_u(\cdot) \mu\)-almost everywhere on \(\Omega\).

Proof. For every \(s \in \mathbb{R}_+\) the set \(\{x \in \Omega : s \in I(x)\} = \{x \in \Omega : s \leq \sup_n w_n(x)\}\) is a Borel set. From this and from the definition of \(B\) one obtains that for every \(s \in \mathbb{R}_+\) the function \(B(\cdot, s)\) is measurable.

It follows readily from the definition of \(B\) that \(B(x,0) = 0\) for every \(x \in \Omega\) (since the sets \(\{w_n < 0\}\) are empty and therefore \(1_{\{w_n < 0\}} = 0\) for every \(n\)). Moreover, since the sets \(\{w_n < s\}\) are increasing with \(s \in \mathbb{R}_+\), the function \(B(x,\cdot)\) is monotone for every \(x \in \Omega\). Finally, for every \(x \in \Omega\), every \(s \in I(x)\setminus\{0\}\) and every \(\varepsilon > 0\) there exists, by definition of the supremum, \(n\) such that \(w_n(x) < s\) and \(B(x,s) - \varepsilon \leq B_{w_n}(x) \leq B(x,s)\). This implies \(B(x,s) - \varepsilon \leq B(x,s') \leq B(x,s)\) for every \(w_n(x) < s' \leq s\). As a consequence, \(B(x,\cdot)\) is lower semicontinuous for every \(x \in \Omega\). Thus, \(B\) satisfies hypothesis \((H^+)\) of Theorem 2.3.

Next, we show the second part of the statement. Let \(u \in D(\psi)\). By Lemma 4.14 (c), there exists a set \(A_0\) of \(\mu\)-measure zero such that for every \(n\) and every \(x \in \{w_n \leq u\} \setminus A_0\) one has \(B_{w_n}(x) \leq B_u(x)\). As a consequence, \(B(\cdot, u(\cdot)) \leq B_u(\cdot)\) \(\mu\)-almost everywhere on \(\Omega\). In order to show the converse inequality we first note that, by Lemma 4.14 (b), \(B_u(\cdot) = 0 = B(\cdot,0)\) \(\mu\)-almost everywhere on \(\{u = 0\}\). Hence, it remains to show that the inequality \(B(\cdot, u(\cdot)) \geq B_u(\cdot)\) holds almost everywhere on \(\{u > 0\}\).

Let \((\lambda_m) \subseteq [0,1]\) be a strictly increasing sequence such that \(\lim_{m \to \infty} \lambda_m = 1\). Recall that the sequence \((w_n)\) is dense in the effective domain \(D(\psi)\) (with respect to the \(W^{1,p}(\Omega)\) topology) and that every sequence converging in \(W^{1,p}(\Omega)\) admits a subsequence which converges \(p\)-quasi-everywhere. Hence, for every \(m\) there exists a subsequence \((w_{\lambda_m n}(n))_n\) such that \(\lim_{n \to \infty} W_{\lambda_m n}(n) = \lambda_m u\) \(p\)-quasi-everywhere. In particular,

\[
u(\cdot) = \lim_{n \to \infty} w_{\lambda_{m+1} n}(n) - \lambda_{m+1} u = \lambda_m u\]

Thus, \(\mu\) is absolutely continuous with respect to the \(p\)-capacity, the above convergence holds \(\mu\)-almost everywhere. As a consequence, by Lemma 4.14 (c), for every \(m\)

\[
B(x,u(x)) = \sup_{w_n(x) < u(x)} B_{w_n}(x) \geq \limsup_{n \to \infty} B_{w_{\lambda_{m+1} n}(n)}(x) \geq B_{\lambda_m u}(x) \mu\text{-almost everywhere on }\{u > 0\}.
\]

Since \(B_{\lambda_m u} \to B_u\) \(\mu\)-almost everywhere on \(\Omega\) by Lemma 4.14 (a), we thus obtain the remaining inequality \(B_u(\cdot) \leq B(\cdot, u(\cdot))\) \(\mu\)-almost everywhere on \(\{u > 0\}\). \hfill \square
Proof of Theorem 2.3, (i) ⇒ (ii). Let \((w_n) \subseteq D(\psi)\) be dense in \(D(\psi)\) and let \(\mu\) be the Borel measure and \(B : \overline{\Omega} \times \mathbb{R} \to [0, +\infty]\) be the function defined above. It follows from Lemma 4.6, that \(\text{supp}[\mu] \subseteq \text{supp}[\psi]\). By Lemma 4.12, \(\mu\) is absolutely continuous with respect to the \(p\)-capacity. By Lemma 4.15, the function \(B\) satisfies hypothesis (\(H^+\)) of Theorem 2.3. Now, by Lemma 4.15, for every \(u \in D(\psi)\) we have \(B(\cdot, u(\cdot)) = B_u(\cdot)\) \(\mu\)-almost everywhere on \(\overline{\Omega}\). By the definition of \(B_u\) this means
\[
\psi(u) = \int_{\Omega} B_u(x) \, d\mu(x) = \int_{\Omega} B(x, u(x)) \, d\mu(x) \quad \text{for every} \quad u \in D(\psi).
\]
Theorem 2.3 is completely proved.

5. PROOF OF THEOREM 2.1

In this section we give the proof of Theorem 2.1. We call a functional \(\psi : W^{1,p}(\Omega) \to [0, +\infty] \) bi-monotone if for every \(u, v \in D(\psi)\)
\[
0 \leq u \leq v \quad \Rightarrow \quad \psi(u) \leq \psi(v) \quad \text{and} \quad \psi(u) \geq \psi(v).
\]

Proof of Theorem 2.1, (ii) ⇒ (i). Let \(\varphi, \mu\) and \(B\) be as in (ii).

Since \(B(x, 0) = 0\) for \(\mu\)-a.e. \(x \in \partial \Omega\), then it is clear that the functional \(\varphi\) is local and hence, \(S\) is a local semigroup.

We show that \(S\) is order preserving. Since the functional \(\varphi\) is nonnegative, by Theorem 2.2 (b), it suffices to show that \(\varphi\) satisfies (2.4) for every \(u, v \in L^2(\Omega)\). Since the inequality (2.4) trivially holds if \(u\) or \(v\) does not belong to \(D(\varphi)\), we may assume that \(u, v \in D(\varphi)\). Then, by Stampacchia’s lemma,
\[
\int_{\Omega} |\nabla(u \vee v)|^p \, dx + \int_{\Omega} |\nabla(u \wedge v)|^p \, dx = \int_{\{u \leq v\}} (|\nabla v|^p + |\nabla u|^p) \, dx + \int_{\{u > v\}} (|\nabla u|^p + |\nabla v|^p) \, dx
\]
\[
\quad + \int_{\{u = v\}} (|\nabla v|^p + |\nabla u|^p) \, dx = \int_{\Omega} (|\nabla u|^p + |\nabla v|^p) \, dx.
\]

and
\[
\int_{\partial \Omega} B(x, u \vee v) \, d\mu + \int_{\partial \Omega} B(x, u \wedge v) \, d\mu = \int_{\{u \leq v\}} (B(x, v) + B(x, u)) \, d\mu + \int_{\{u > v\}} (B(x, u) + B(x, v)) \, d\mu + \int_{\{u = v\}} (B(x, u) + B(x, v)) \, d\mu
\]
\[
\quad = \int_{\partial \Omega} (B(x, u) + B(x, v)) \, d\mu.
\]
Combining (5.2) and (5.3) we get that
\[
\varphi(u \vee v) + \varphi(u \wedge v) = \varphi(u) + \varphi(v).
\]
Hence, by Theorem 2.2 (b), \(S\) is order-preserving.

We show that \(S_D \leq S\). Since the semigroup \(S\) is order preserving, it suffices to show that \(\varphi_D\) and \(\varphi\) satisfy (2.5). Let \(u, v \in L^2(\Omega), v \geq 0\). If \(u \notin W^{1,p}_0(\Omega)\) or \(v \notin D(\varphi)\), then the
inequality (2.5) is trivially satisfied. So assume that \( u \in W^{1,p}_0(\Omega) \cap L^2(\Omega) \) and \( v \in D(\varphi) \). Note that \( u = 0 \) \( p \)-quasi-everywhere on \( \partial \Omega \). Proceeding similarly as above, we thus obtain that

\[
\varphi_D((|u| \wedge v) \cdot \text{sgn}(u)) + \varphi((|u| \vee v) = \\
= \frac{1}{p} \int_{[|u| < v]} (|\nabla u|^p + |\nabla v|^p) \, dx + \int_{\partial \Omega \cap [|u| < v]} B(x, v) \, d\mu \\
+ \frac{1}{p} \int_{[|u| \geq v]} (|\nabla (v \text{sgn}(u))|^p + |\nabla (|u|)|^p) \, dx + \int_{\partial \Omega \cap [|u| \geq v]} B(x, |u|) \, d\mu \\
\leq \varphi_D(u) + \varphi(v).
\]

Hence, \( S \subseteq S_N \).

Finally, we show that \( S \subseteq S_N \). Since \( S_N \) is order preserving, it suffices to show that \( \varphi \) and \( \varphi_N \) satisfy (2.5). Indeed, let \( u \in D(\varphi) \), \( v \in W^{1,p}_0(\Omega) \cap L^2(\Omega) \), \( v \geq 0 \). Then it is clear that \( (|u| \wedge v) \text{sgn}(u) \), \( |u| \vee v \in W^{1,p}_0(\Omega) \cap L^2(\Omega) \). Since

\[
\int_{\partial \Omega} B(x, (|u| \wedge v) \text{sgn}(u)) \, d\mu = \int_{[|u| \leq v]} B(x, u) \, d\mu + \int_{[|u| > v]} B(x, v \text{sgn}(u)) \, d\mu \\
\leq \int_{[|u| \leq v]} B(x, u) \, d\mu + \int_{[|u| > v]} B(x, u) \, d\mu \\
= \int_{\partial \Omega} B(x, u) \, d\mu < \infty
\]

(where we have used the fact that \( B \) is bi-monotone), we have that \( (|u| \wedge v) \text{sgn}(u) \in D(\varphi) \).

Now, calculating, we get that

\[
\varphi((|u| \wedge v) \cdot \text{sgn}(u)) + \varphi_N((|u| \vee v) = \\
= \frac{1}{p} \int_{[|u| < v]} (|\nabla u|^p + |\nabla v|^p) \, dx + \int_{\partial \Omega \cap [|u| < v]} B(x, u) \, d\mu \\
+ \frac{1}{p} \int_{[|u| \geq v]} (|\nabla (v \text{sgn}(u))|^p + |\nabla (|u|)|^p) \, dx + \int_{\partial \Omega \cap [|u| \geq v]} B(x, v \text{sgn}(u)) \, d\mu \\
\leq \varphi_N(v) \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx + \int_{\partial \Omega \cap [|u| < v]} B(x, u) \, d\mu + \int_{\partial \Omega \cap [|u| \geq v]} B(x, v \text{sgn}(u)) \, d\mu \\
\leq \varphi(u) + \varphi_N(v),
\]

where we have again used the fact that \( B \) is bi-monotone. Hence, \( S \) is dominated by \( S_N \).

The implication (ii) \( \Rightarrow \) (i) of Theorem 2.1 is completely proved.

\[\square\]

**Proof of Theorem 2.1, (i) \( \Rightarrow \) (ii).** Let \( S \) be the semigroup on \( L^2(\Omega) \) generated by a convex and lower semicontinuous functional \( \varphi : L^2(\Omega) \to [0, +\infty] \). Assume that \( S \) is local, order preserving and \( S_D \subseteq S \subseteq S_N \).

Define the functional \( \psi : W^{1,p}_0(\Omega) \cap L^2(\Omega) \to [0, +\infty] \) by

\[
(5.4) \quad \psi(u) = \begin{cases} 
\varphi(u) - \varphi_N(u) & \text{if } u \in D(\varphi), \\
+\infty & \text{otherwise}.
\end{cases}
\]

**Step 1.** We claim \( \psi \) is lower semicontinuous, local, bi-monotone and for every \( u, v \in W^{1,p}_0(\Omega) \cap L^2(\Omega) \) one has

\[
(5.5) \quad \psi(u \vee u) + \psi(u \wedge v) \leq \psi(u) + \psi(v).
\]

First, since \( \varphi \) is lower semicontinuous on \( W^{1,p}_0(\Omega) \cap L^2(\Omega) \) and since \( \varphi_N \) is continuous on that same space, it follows that \( \psi \) is lower semicontinuous on \( W^{1,p}_0(\Omega) \cap L^2(\Omega) \).
Second, since $\varphi_N$ is local and since, by assumption, $\psi$ is local, it follows that $\psi$ is local, too.

Third, it follows from the domination $S \preceq S_N$ and Theorem 2.2 (b) that

$$D(\varphi) \subseteq D(\varphi_N) = W^{1,p}(\Omega) \cap L^2(\Omega),$$

and

$$(\varphi - \varphi_N)(u) \leq (\varphi - \varphi_N)(v) \text{ for all } u, v \in D(\varphi) \text{ with } 0 \leq u \leq v.$$  \hspace{1cm} (5.6)

The domination $S \preceq S_N$ and Theorem 2.2 (b) imply in addition that

$$(\varphi - \varphi_N)(v) \leq (\varphi - \varphi_N)(u) \text{ for all } u, v \in D(\varphi) \text{ with } u \leq v \leq 0.$$  \hspace{1cm} (5.7)

Hence, the functional $\psi$ is bi-monotone.

Finally, let $u, v \in W^{1,p}(\Omega) \cap L^2(\Omega)$. By Stampacchia’s lemma,

$$\varphi_N(u \lor v) + \varphi_N(u \land v) = \varphi_N(u) + \varphi_N(v).$$

Since $S$ is order preserving, we also have

$$\varphi(u \lor v) + \varphi(u \land v) \leq \varphi(u) + \varphi(v).$$

The last two relations yield (5.5).

**Step 2.** Let $\psi_1, \psi_2 : (W^{1,p}(\Omega) \cap L^2(\Omega))^+ \to [0, +\infty]$ be defined by $\psi_1(u) := \psi(u)$ and $\psi_2(u) := \psi(-u)$ ($u \in (W^{1,p}(\Omega) \cap L^2(\Omega))^+$). By Step 1, the functionals $\psi_1$ and $\psi_2$ both satisfy the hypotheses in Theorem 2.3 (i) (with the space $W^{1,p}(\Omega)$ replaced by the space $W^{1,p}(\Omega) \cap L^2(\Omega)$). It follows from Theorem 2.3 together with Remark 2.4 (b) and (c) that there exist a finite, regular Borel measure $\mu$ on $\Omega$ which is absolutely continuous with respect to the $p$-capacity, and two functions $B_1, B_2 : \Omega \times \mathbb{R}_+ \to [0, +\infty]$ satisfying hypothesis (H') in Theorem 2.3 such that

$$(\varphi - \varphi_N)(u) = \int_{\Omega} B_1(x,u(x)) \, d\mu \text{ for every } u \in D(\psi_i), i = 1, 2.$$  \hspace{1cm} (5.8)

For every $x \in \bar{\Omega}$ and every $s \in \mathbb{R}$ we set

$$(\psi - \varphi_N)(u) = \int_{\Omega} B_1(x,u(x)) \, d\mu \text{ for every } u \in D(\psi).$$  \hspace{1cm} (5.9)

It is readily seen that $B$ satisfies the hypothesis (H). Since $\psi$ is local, we obtain for every $u \in D(\psi) = D(\varphi)$

$$\varphi(u) = \varphi(u^+ - u^-) = \psi(u^+) + \psi(-u^-) = \psi_1(u^+) + \psi_2(u^-),$$

and hence, by (5.8) and (5.9),

$$\varphi(u) = \int_{\Omega} B_1(x,u^+(x)) \, d\mu + \int_{\Omega} B_2(x,u^-(x)) \, d\mu = \int_{\Omega} B(x,u) \, d\mu, \text{ for every } u \in D(\varphi).$$

We have just shown that

$$\varphi(u) = \varphi_N(u) + \psi(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx + \int_{\Omega} B(x,u) \, d\mu, \text{ for every } u \in D(\varphi).$$

**Step 3.** It follows from the domination $S_D \preceq S$ and Theorem 2.2 (b) that

$$W_0^{1,p}(\Omega) \cap L^2(\Omega) = D(\varphi_D) \subseteq D(\varphi)$$

and

$$(\varphi_D - \varphi)(u) \leq (\varphi_D - \varphi)(v) \text{ for all } u, v \in W_0^{1,p}(\Omega) \cap L^2(\Omega) \text{ with } 0 \leq u \leq v.$$
The domination $S_D \prec S$ and Theorem 2.2 (b) imply in addition
\[
(\phi_D - \phi)(v) \leq (\phi_D - \phi)(u) \text{ for all } u, v \in W^{1,p}_0(\Omega) \cap L^2(\Omega) \text{ with } u \leq v \leq 0.
\]
These two inequalities together with the inequalities (5.6) and (5.7) imply that the functionals $\phi_D$, $\phi$ and $\phi_N$ coincide on $D(\phi_D) = W^{1,p}_0(\Omega) \cap L^2(\Omega)$, that is,
\[
\phi_D(u) = \phi(u) = \phi_N(u) = \frac{1}{p} \int_\Omega |\nabla u|^p \, dx \quad \text{for every } u \in D(\phi_D) = W^{1,p}_0(\Omega) \cap L^2(\Omega).
\]
It follows that the effective support of the functional $\psi$ is a subset of $\partial \Omega$. In particular, by Theorem 2.3, $\text{supp}[\mu] \subseteq \partial \Omega$. Hence,
\[
\Phi(u) = \frac{1}{p} \int_\Omega |\nabla u|^p \, dx + \int_{\partial \Omega} B(x,u) \, d\mu \quad \text{for every } u \in D(\phi).
\]
Theorem 2.1 is completely proved. \qed

REFERENCES


R. CHILL, UNIVERSITÉ PAUL VERLAINE - METZ ET CNRS, LABORATOIRE DE MATHÉMATIQUES ET APPLICATIONS DE METZ, BÂT. A, ILE DU SAULCY F-57045 METZ CEDEX 1 (FRANCE)

Current address: R. Chill, Institut für Analysis, Fachrichtung Mathematik, TU Dresden, 01062 Dresden (Germany)
E-mail address: chill@univ-metz.fr

M. WARMA, UNIVERSITY OF PUERTO RICO, FACULTY OF NATURAL SCIENCES, DEPARTMENT OF MATHEMATICS (RIO PIEDRAS CAMPUS), PO BOX 70377, SAN JUAN PR 00936-8377 (USA)
E-mail address: warma@uprrp.edu, mjwarma@gmail.com