T. Manolio, F. Collins, N. Cox, D. Goldstein, L. Hindorff et al., Finding the missing heritability of complex diseases, Nature, vol.41, issue.7265, 2009.
DOI : 10.1038/nature08494

D. Haig, Does heritability hide in epistasis between linked SNPs?, European Journal of Human Genetics, vol.461, issue.2, p.123
DOI : 10.1038/ejhg.2010.161

O. Zuk, E. Hechter, S. Sunyaev, and E. Lander, The mystery of missing heritability: Genetic interactions create phantom heritability, Proceedings of the National Academy of Sciences, vol.109, issue.4, 2012.
DOI : 10.1073/pnas.1119675109

C. Niel, C. Sinoquet, C. Dina, and G. Rocheleau, A survey about methods dedicated to epistasis detection, Frontiers in Genetics, vol.39, issue.51, p.285, 2015.
DOI : 10.1038/ng2110

URL : https://hal.archives-ouvertes.fr/hal-01205577

W. Wei, G. Hemani, and C. Haley, Detecting epistasis in human complex traits, Nature Reviews Genetics, vol.460, issue.11, pp.722-733, 2014.
DOI : 10.1186/1471-2105-13-164

K. Steen, Travelling the world of gene-gene interactions, Briefings in Bioinformatics, vol.13, issue.1, pp.1-19
DOI : 10.1093/bib/bbr012

N. Chatterjee, Z. Kalaylioglu, R. Moslehi, U. Peters, and S. Wacholder, Powerful Multilocus Tests of Genetic Association in the Presence of Gene-Gene and

T. Wang, G. Ho, K. Ye, H. Strickler, and R. Elston, A partial least-square approach for modeling gene-gene and gene-environment interactions when multiple markers are genotyped, Genetic Epidemiology, vol.79, issue.1, pp.6-15, 2009.
DOI : 10.1002/gepi.20351

J. Li, R. Tang, J. Biernacka, and M. De-andrade, Identification of gene-gene interaction using principal components, BMC Proceedings, vol.3, issue.Suppl 7, 2009.
DOI : 10.1186/1753-6561-3-s7-s78

J. He, K. Wang, A. Edmondson, D. Rader, C. Li et al., Gene-based interaction analysis by incorporating external linkage disequilibrium information, European Journal of Human Genetics, vol.31, issue.2, pp.164-172, 2011.
DOI : 10.1038/ejhg.2010.164

I. Rajapakse, M. Perlman, P. Martin, J. Hansen, and C. Kooperberg, Multivariate Detection of Gene-Gene Interactions, Genetic Epidemiology, vol.79, issue.Suppl 7, p.2012
DOI : 10.1002/gepi.21656

Q. Peng, J. Zhao, and F. Xue, A gene-based method for detecting gene???gene co-association in a case???control association study, European Journal of Human Genetics, vol.20, issue.5, pp.582-587, 2010.
DOI : 10.1038/21441

N. Larson, G. Jenkins, M. Larson, R. Vierkant, T. Sellers et al., Kernel canonical correlation analysis for assessing gene???gene interactions and application to ovarian cancer, European Journal of Human Genetics, vol.42, issue.1, 2014.
DOI : 10.1016/j.csda.2006.08.034

Z. Yuan, Q. Gao, Y. He, X. Zhang, F. Li et al., Detection for gene-gene co-association via kernel canonical correlation analysis, BMC Genetics, vol.13, issue.1, p.83
DOI : 10.1002/gepi.20392

URL : http://doi.org/10.1186/1471-2156-13-83

S. Li and Y. Cui, Gene-centric gene???gene interaction: A model-based kernel machine method, The Annals of Applied Statistics, vol.6, issue.3, pp.1134-1161, 2012.
DOI : 10.1214/12-AOAS545

URL : http://arxiv.org/abs/1209.6502

D. Angelo, G. Rao, D. Gu, and C. , Combining Least Absolute Shrinkage and Selection Operator (LASSO) and Principal-Components Analysis for Detection of Gene-Gene Interactions in Genome-Wide Association Studies

X. Wang, D. Zhang, and J. Tzeng, Pathway-Guided Identification of Gene-Gene Interactions, Annals of Human Genetics, vol.101, issue.3, pp.478-491, 2014.
DOI : 10.1111/ahg.12080

M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.58, issue.1, pp.49-67, 2006.
DOI : 10.1198/016214502753479356

J. Bécu, Y. Grandvalet, C. Ambroise, and C. Dalmasso, Beyond support in two-stage variable selection, Statistics and Computing, vol.76, issue.1, pp.169-79, 2017.
DOI : 10.1007/s11222-015-9614-1

F. Zhang and D. Wagener, An approach to incorporate linkage disequilibrium structure into genomic association analysis, Journal of Genetics and Genomics, vol.35, issue.6, pp.381-385, 2008.
DOI : 10.1016/S1673-8527(08)60055-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746675

T. Wu, Y. Chen, T. Hastie, E. Sobel, and K. Lange, Genome-wide association analysis by lasso penalized logistic regression, Bioinformatics, vol.25, issue.6, 2009.
DOI : 10.1093/bioinformatics/btp041

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732298

A. Cortes, J. Hadler, J. Pointon, P. Robinson, T. Karaderi et al., Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci, Nature Genetics, vol.447, issue.7, 2013.
DOI : 10.1002/gepi.20533

B. Luzón-toro, M. Bleda, E. Navarro, L. García-alonso, M. Ruiz-ferrer et al., Identification of epistatic interactions through genome-wide association studies in sporadic medullary and juvenile papillary thyroid carcinomas, BMC Medical Genomics, vol.8, issue.1, p.83, 2015.
DOI : 10.1186/1750-1172-8-187

J. Sieper, J. Braun, M. Rudwaleit, A. Boonen, and A. Zink, Ankylosing spondylitis: an overview, Annals of the Rheumatic Diseases, vol.61, issue.Supplement 3, pp.8-18, 2002.
DOI : 10.1136/ard.61.suppl_3.iii8

L. Schlosstein, P. Terasaki, R. Bluestone, and C. Pearson, High Association of an HL-A Antigen, W27, with Ankylosing Spondylitis, New England Journal of Medicine, vol.288, issue.14, pp.704-706, 1973.
DOI : 10.1056/NEJM197304052881403

J. Woodrow and C. Eastmond, HLA B27 and the genetics of ankylosing spondylitis., Annals of the Rheumatic Diseases, vol.37, issue.6, pp.504-509, 1978.
DOI : 10.1136/ard.37.6.504

G. Thomas and M. Brown, Genetics and genomics of ankylosing spondylitis, Immunological Reviews, vol.69, issue.Suppl., pp.162-180, 2010.
DOI : 10.1111/j.0105-2896.2009.00852.x

F. Tsui, H. Tsui, A. Akram, N. Haroon, and R. Inman, The Genetic Basis of Ankylosing Spondylitis: New Insights into Disease Pathogenesis. The Application of Clinical Genetics, pp.105-120, 2014.

. Genome-wide, Association Study of Ankylosing Spondylitis Identifies Non- MHC Susceptibility Loci, Nat Genet. Feb, vol.42, issue.2, pp.123-127, 2010.

S. Melville and . Package, Available online at: https://cran.rproject .org/src, Accessed 16, 2017.

I. Landa, C. Boullosa, L. Inglada-pérez, A. Sastre-perona, S. Pastor et al., An Epistatic Interaction between the PAX8 and STK17B Genes in Papillary Thyroid Cancer Susceptibility, PLoS ONE, vol.13, issue.9, p.74765, 2013.
DOI : 10.1371/journal.pone.0074765.s004

A. Martinez-chamorro, A. Moreno, M. Gómez-garcía, M. Cabello, J. Martin et al., Epistatic interaction between TLR4 and NOD2 in patients with Crohn???s Disease: relation with risk and phenotype in a Spanish cohort, Immunobiology, vol.221, issue.9, pp.927-933, 2016.
DOI : 10.1016/j.imbio.2016.05.015

X. Gene1, Gene2 Gene6 Gene5 Gene4 Gene3 Gene2 Gene1 Cadre C ; R 2 =0

X. Gene1, Gene2 Gene6 Gene5 Gene4 Gene3 Gene2 Gene1 Cadre E ; R 2 =0

X. Gene1, Gene2 Gene6 Gene5 Gene4 Gene3 Gene2 Gene1 Cadre D ; R 2 =0

X. Gene1, Gene2 Gene6 Gene5 Gene4 Gene3 Gene2 Gene1 Cadre F ; R 2 =0

S. Figure, Discoveries under a realistic context Heatmaps of the ratio of the number of times where each variable was significant to the total number of simulations for R 2 = 0