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ABSTRACT
In this work we discuss the extension of the xtroem-fv code to relativistic hydrodynamics and
magnetohydrodynamics. xtroem-fv is a simulation package for computational astrophysics
based on very high order finite-volume methods on Cartesian coordinates. Arbitrary spatial
high order of accuracy is achieved with a WENO reconstruction operator, and the time evo-
lution is carried out with a strong-stability preserving Runge–Kutta scheme. In xtroem-fv
has been implemented a cheap, robust, and accurate shock capturing strategy for handling
complex shock waves problems, typical in an astrophysical environment. The divergence con-
straint of the magnetic field is tackled with the generalized Lagrange multiplier divergence
cleaning approach. Numerical computations of smooth flows for the relativistic hydrodynam-
ics and magnetohydrodynamics equations are performed and confirm the high order accuracy
of the main reconstruction algorithm for such kind of flows. xtroem-fv has been subject to
a comprehensive numerical benchmark, especially for complex flows configurations within
an astrophysical context. Computations of problems with shocks with very high order re-
construction operators up to seventh order are reported. For instance, one-dimensional shock
tubes problems for relativistic hydrodynamics and magnetohydrodynamics, as well as two-
dimensional flows like the relativistic double Mach reflection problem, the interaction of a
shock wave with a bubble, the relativistic Orszag–Tang vortex, the cylindrical blast wave
problem, the rotor problem, the Kelvin–Helmholtz instability, and an astrophysical slab jet.
xtroem-fv represents a new attempt to simulate astrophysical flow phenomena with very high
order numerical methods.
Key words: MHD – hydrodynamics – relativity – shock waves – methods: numerical.

1 Introduction

High energy astrophysical phenomena involve, in many cases, rel-
ativistic flows. Typical examples are superluminal motion of rel-
ativistic jets in extragalactic radio sources, accretion flows around
massive compact objects, pulsarwinds and gamma-ray bursts.When
the magnetic fields are not considered in a first approximation, such
flows are very well described with the equations of the relativistic
hydrodynamics (SRHD). The special relativistic magnetohydrody-
namics (SRMHD) equations provide a more accurate description
of the underlying dynamics of many astrophysical plasma moving
with speeds close to the speed of light. SRMHD plays a very impor-
tant role when describing astrophysical jets emerging from super-
massive black holes (Begelman et al. 1984). In fact, astronomical
observations suggest that astrophysical jets emerging from com-
pact objects involve significant magnetic fields and flows travelling
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with relativistic speeds. General relativistic effects can be neglected
when no strong gravitational fields are involved. The equations of
the SRMHD describe the behaviour of relativistic, conducting flu-
ids subject to electromagnetic fields. The main assumption is that
the mean free-path of the electrons is much smaller than the charac-
teristic length scale of the problem. This leads to a high-collisional
frequency of the electrons. For numerically solving the SRHD and
SRMHD equations, the so-called high-resolution shock-capturing
(HRSC) schemes have provided the necessary tools in developing
stable and robust relativistic fluid dynamical codes (for an excellent
review, see Martí & Müller (2003, 2015)). Also see the references
Schneider et al. (1993); Dolezal &Wong (1995);Martí et al. (1996);
Aloy et al. (1999a,b); Mignone &Bodo (2005); Choi & Ryu (2005);
Ryu et al. (2006); Dönmez & Kayali (2006); Dönmez (2006). The
common feature of these schemes is that they are at most third-order
accurate in space when they use the piecewise-parabolic method
as reconstruction operator (Woodward & Colella 1984; Martí &
Müller 1996). The SRHD has received a lot of attention over the
last years from the high-order methods community. Some effort
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2 J. Núñez-de la Rosa, and C.-D. Munz

has been put into solving the equations with methods based on
the WENO reconstruction procedure, as in, for example, the finite-
volume code by Tchekhovskoy et al. (2007), the finite-difference
code by Radice & Rezzolla (2012), or the discontinuous Galerkin
by Dumbser et al. (2008) and by Radice & Rezzolla (2011). The nu-
merical solution of the SRMHD equations received a boost with the
development of finite-volume based codes by Komissarov (1999),
and Balsara (2001). The authors used second order TVD schemes
for solving the SRMHD equations written in conservation form.
Further work for solving these equations has been done for several
authors, which enormously improved the quality of the employed
Riemann solvers (Mignone & Bodo 2006; Mignone & McKinney
2007; Mignone et al. 2009; Beckwith & Stone 2011), implemented
high-order reconstruction operators in order to enhance the accu-
racy of the schemes (del Zanna et al. 2003; Anderson et al. 2006;
del Zanna et al. 2007; Mignone et al. 2007; Dumbser et al. 2008),
or developed robust adaptive mesh refinement (AMR) algorithms
for SRMHD (Mignone et al. 2012; Keppens et al. 2012).

High-order numerical methods for conservation laws are nu-
merical techniques with accuracy higher than second-order (Wang
et al. 2013), and are used for solving hyperbolic systems of equa-
tions. Several schemes are available in computational fluid dynam-
ics for structured and unstructured meshes. The conservative finite-
difference method (Shu &Osher 1988, 1989), and the finite-volume
method (Godunov 1959; van Leer 1979;Woodward&Colella 1984;
Shu 2009) can achieve arbitrary spatial high-order accuracy pro-
vided the reconstruction operator is a high-order operator. This
high-order accuracy can be only achieved in those regions with
smooth flows. Among the available high order reconstruction oper-
ators, the WENO schemes are the most known and the most used in
the computational fluid dynamics community. TheWENO schemes
are based on the ENO schemes from Harten et al. (1987), and were
initially introduced by Liu et al. (1994). They have been extensively
used in the last years for solving a wide spectrum of conserva-
tion laws (Shu 2009). They have been constructed for structured
meshes (Liu et al. 1994; Balsara & Shu 2000) and also unstruc-
tured meshes (Dumbser & Käser 2007; Dumbser et al. 2007, 2013).
xtroem-fv makes use of the high-order WENO operators on struc-
tured meshes in order to achieve very high-order accuracy in the
finite-volume scheme for solving the SRHDand SRMHDequations.

One of the main features of hyperbolic conservation laws is the
presence of solution discontinuities. For high-order schemes, the
appearance of discontinuities represents a major difficulty in or-
der to achieve a higher-order accuracy. For that reason high-order
methods are not widely used in computational fluid dynamics and
computational astrophysics. The spurious oscillations originated
around discontinuities produce unphysical states. Shock capturing
strategies are necessary for handling such flow features if a high-
order scheme is used. The slope/flux limiters used in the context of
finite-difference and finite-volume schemes (Harten 1983; Harten
et al. 1983) are mainly used for second-order methods. In this work,
the higher-order methods use an adaptive strategy based on shock
detection and order reduction of the reconstruction operator. This
approach seems to be more robust and efficient, because it does
not require the reconstruction of the characteristic variables, and
the states in the region around the discontinuities are reconstructed
with a very robust operator. Numerical computations of flow prob-
lems in SRHD and SRMHD confirm the reliability of the strat-
egy (Mignone et al. 2007; Tchekhovskoy et al. 2007; Beckwith &
Stone 2011; Radice & Rezzolla 2011, 2012).

The finite-volume scheme requires an additional layer for control-
ling the solenoidal constraint ∇ · B = 0 because this is not satisfied

from the numerical point of view. Actually, the spatial reconstruc-
tion and the time discretization generate errors in∇·B. These errors
grow with time, and lead to unphysical states (Brackbill & Barnes
1980; Powell 1994). xtroem-fv controls the solenoidal constraint
with the generalized Lagrange multiplier (GLM) approach (Dedner
et al. 2002; Mignone et al. 2010). This divergence cleaning scheme
removes errors in ∇ ·B in a very cheap manner, in comparison with
the Hodge projection (Chorin 1967; Brackbill & Barnes 1980), be-
cause this scheme has to solve a Poisson equation at each time step in
order to maintain the divergence constraint up to machine accuracy.
The GLM approach introduces a scalar field ψ which couples the
solenoidal constraint with the evolution equation of the magnetic
field. The implementation of this approach is straightforward, and at
the same time, conservation of all physical variables is maintained.
We avoid the use of the constrained transport scheme (Evans &
Hawley 1988) due to the complexity of the treatment of the stag-
gered fields.

This paper is organized as follows: in Section 2 we present the
SRHD and SRMHD equations. The eigenvalues of the Jacobian of
the physical fluxes and the mapping from conservative to primitive
variables are briefly discussed for both equation systems. In Sec-
tion 3 an overviewof the high order finite-volumemethod alongwith
the WENO schemes for discretizing conservation laws is provided.
In Section 4 are shown and discussed numerical computations for the
SRHD and SRMHD equations in one- and two-dimensional spaces.
The standard benchmark consists mainly of one-dimensional Rie-
mann problems, and two-dimensional flows with shocks. Finally, in
Section 5 the conclusions of this work are presented.

2 Governing equations

xtroem-fv solves systems of conservation laws of special interest in
astrophysics. In Núñez-de la Rosa &Munz (2016) we presented the
xtroem-fv code for the classical magnetohydrodynamics (MHD)
equations. In this work we consider the extension to the SRHD
and SRMHD equations. These equations describe the flow of fluid
moving where the effects of special relativity cannot be neglected
(Lichnerowicz 1967; Anile 1989; Martí & Müller 2003; Rezzolla
& Zanotti 2013).

2.1 SRHD equations

The SRHD equations written as a system of conservation laws are
given by (Font et al. 1994; Mignone et al. 2005; Ryu et al. 2006)

∂D
∂t
+ ∇ · (Dv) = 0, (1a)

∂S
∂t
+ ∇ · (S ⊗ v + pI) = 0, (1b)

∂E
∂t
+ ∇ · S = 0. (1c)

The five conserved quantities D, Sx , Sy , Sz and E are the mass
density, the three components of the momentum density, and the
total energy density, respectively. They are all measured in the lab-
oratory frame, and are related to quantities in the local rest frame
of the fluid (the primitive variables ρ, vx , vy , vz , and p) through

D = ρΓ, (2a)

S = ρhΓ2v, (2b)

E = ρhΓ2 − p. (2c)

MNRAS 000, 1–24 (2016)
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The three-velocity v of the fluid is related with the four-velocity u
through

u = Γ
(
1, v

)
, (3)

where Γ is the Lorentz factor defined by

Γ =
1

√
1 − v2

, (4)

ρ is the rest-mass density, p is the isotropic gas pressure and h is the
specific enthalpy. The velocity v = (vx, vy, vz ) of a fluid element is
defined as the velocity of the rest frame of this fluid element with
respect to the laboratory frame. The fluid velocity is a function of
(t, x, y, z), as are the thermodynamic quantities ρ, p.

The system (1) of partial differential equations is closed with an
equation of state (EOS) h = h(p, ρ) or p = p(ρ, ε). The system (1)
is hyperbolic for causal equations of state (Anile 1989; Rezzolla &
Zanotti 2013), i.e., for those where the local sound speed satisfies
cs < 1, where cs is defined by

hc2s = −ρ
∂h
∂ρ

(
ρ
∂h
∂p
− 1

)−1
. (5)

In this work, we employ the most commonly used EOS, the ideal
gas EOS, which is given by

p = (γ − 1)(ε − ρ), or h = 1 +
γ

γ − 1
p
ρ
. (6)

Here γ = cp/cv is the ratio of specific heats and ε is the sum of
the internal and rest-mass energy densities in the local frame and is
related to the specific enthalpy as

h =
ε + p
ρ

. (7)

In this way, the speed of sound is given by

c2s =
γp
ρh
. (8)

2.1.1 Eigenvalues of the SRHD system

The Jacobian matrices Ai for the SRHD equations are defined by

Ai =
∂Fi (u)
∂u

, (i = x, y, z), (9)

where u is the state vector of conservative variables, and F =
[f, g, h] the tensor of physical fluxes. Assuming an ideal gas EOS,
the eigenvalues of the matrix Ax are given by

λ1 =
1

1 − v2c2s

{
vx (1 − c2s )

− cs
√

(1 − v2)
[
1 − vxvx − (v2 − vxvx )c2s

]} (10)

λ2 =vx, λ3 = vx, λ4 = vx (11)

λ5 =
1

1 − v2c2s

{
vx (1 − c2s )

+ cs
√

(1 − v2)
[
1 − vxvx − (v2 − vxvx )c2s

]}
.

(12)

The cases for the matrices Ay and Az easily follows from symmetry.
The eigenvalues of Ax represent the five characteristic speeds asso-
ciated with two sound wave modes (λ1 and λ5) and three entropy
modes (λ2, λ3, λ4). The eigenvalues satisfy the following relation:
λ1 < λ2 = λ3 = λ4 < λ5.

2.1.2 Conservative to primitive variables conversion

Compared to the classical hydrodynamics equations, in the SRHD
system, the relation between the primitive and conservative vari-
ables is not so simple. In this work, two strategies for expressing the
primitive variables in terms of the conservative ones were followed:
the first one, by solving iteratively an equation for the pressure
and then determining the other variables from this (Mignone et al.
2005). The second one, which is more robust, consists in solving
a quartic equation on the velocity v (as it is outlined in Schneider
et al. (1993); Duncan & Hughes (1994), and Ryu et al. (2006)).
Though this last one is more computationally expensive, it provides
more accurate results and does not have the problem of the iterative
method with the initial guess of the pressure. In our algorithm, we
combine both strategies in such way, that when the first one fails to
iteratively find a root, we proceed to use the second algorithm. Only
in very rare cases, for instance, when strong shocks are involved,
the second algorithm is employed. This approach seems to be the
most robust even for multidimensional flow simulations.

Solving numerically with Newton–Raphson. Here we follow the
approach described inMignone et al. (2005). The primitive variables
(ρ, vx, vy, vz, p) are computed from the conservative quantities by
solving with the one-dimensional Newton–Raphson algorithm

∂ f n (p)
∂p

δpn+1 = f n (p), (13)

the implicit equation

f (p) = DhΓ − E − p = 0, (14)

with f ′(p) given by

d f (p)
dp

=
γ

γ − 1
Γ
2 −

S2Γ3

(E + p)3

(
D +

γ

γ − 1
2pΓ

)
− 1, (15)

where the Lorentz factor is defined by

Γ∗ =
1

√
1 − v∗ · v∗

, (16)

and the components of the velocity are

v∗ =
S

E + p
. (17)

Solving analytically a quartic polynomial on |v|. Here we follow
the approach initially presented in Schneider et al. (1993) and further
used in Choi & Ryu (2005), and Ryu et al. (2006). The quartic
polynomial in v we solve is given by

f (v) =
[
γv (E − Sv) − S

(
1 − v2

)]2

−
(
1 − v2

)
v2

(
γ − 1

)2 D2 = 0.
(18)

Schneider et al. (1993) showed that the physically meaningful so-
lution for v is between the lower limit, v1, and the upper limit, v2,

v1 =
γE −

√(
γE

)2
− 4

(
γ − 1

)
S2

2
(
γ − 1

)
S

, v2 =
S
E
, (19)

and that the solution is unique. Once v is known, the quantities ρ,
vi , and ε can be straightforwardly calculated from the following
relations

ρ =
D
Γ
, vx =

Sx
S
v, vy =

Sy
S
v, vz =

Sz
S
v, (20a)

p = (γ − 1)
[
(E − Sxvx − Syvy − Szvz ) − ρ

]
. (20b)

MNRAS 000, 1–24 (2016)
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2.2 SRMHD equations

Considering the Minkowski spacetime with Cartesian coordinates
(t, x, y, z), the equations of the SRMHD form a system of conser-
vation laws, which can be written as follows (Komissarov 1999;
Balsara 2001)
∂D
∂t
+ ∇ · (Dv) = 0, (21a)

∂S
∂t
+ ∇ · (S ⊗ v + P) = 0, (21b)

∂E
∂t
+ ∇ · S = 0, (21c)

∂B
∂t
+ ∇ ·

(
B ⊗ v − v ⊗ B

)
= 0, (21d)

where the tensor P is defined as

P =

(
p +
|B|2

2Γ2
+

(v · B)2

2

)
I −

(
B
Γ2
+ (v · B)v

)
⊗ B. (22)

The quantity in the first bracket is the total pressure (which has
contributions from the thermal and magnetic pressure). An EOS is
used to close the system. We make use of the ideal gas EOS with
adiabatic exponent γ

p = (γ − 1)(ε − ρ) = (γ − 1)
(
E −

1
2
ρ |v|2 −

1
2
|B|2

)
. (23)

The system (21) must satisfy an additional constraint: the solenoidal
property of the magnetic field,

∇ · B = 0, (24)

which is the same as in classical MHD. The eight conserved quan-
tities D, Sx , Sy , Sz , E, Bx , By , and Bz are the mass density, the
three components of the momentum density, the total energy den-
sity, and the three components of the magnetic field, respectively.
They are all measured in the laboratory frame, and are related to the
quantities in the local rest frame of the fluid, the so-called primitive
variables ρ, vx , vy , vz , p, Bx , By , Bz , through

D = ρΓ, (25a)

S =
(
ρhΓ2 + |B|2

)
v − (v · B)B , (25b)

E = ρhΓ2 − p +
|B|2

2
+
|v|2 |B|2

2
−

(v · B)2

2
, (25c)

B = B. (25d)

The rest-mass density is the quantity ρ, p is the thermal pressure
of the gas, and h is the specific enthalpy. The system (21) of partial
differential equations is closed with an EOS h = h(p, ρ) or p =
p(ρ, ε). Like the SRHD equations, the system (21) is hyperbolic for
a causal EOS (Anile 1989; Rezzolla & Zanotti 2013). In this work,
we employ the ideal gas EOS, which is given by (6).

Others quantities of interest are the relativistic total (gas + mag-
netic) enthalpy

htot = (ρh + b2), (26)

and the magnetic field in the fluid frame

bα = Γ
{

v · B,
Bi

Γ2
+ vi (v · B)

}
. (27)

2.2.1 Eigenvalues of the SRMHD system

The characteristic structure of the SRMHD system was first studied
by Anile & Pennisi (1987); more details can be found in Anile

(1989). These authors derived the eigenvalues and eigenvectors of
the associated Jacobian Ax (u) = ∂f/∂u, with f the physical flux in
x-direction, by using the covariant notation.

xtroem-fv does not require the left and right eigenvectors of
the Jacobian matrices. Only the fastest and slowest characteristic
speeds are needed. The eigenvectors have been reported in Anile &
Pennisi (1987); Anile (1989); Antón et al. (2006), and Antón et al.
(2010). Following del Zanna et al. (2003), the eigenvalues are: one
entropy wave

λ0 = vx, (28)

two Alfvén waves

λ±A =
ux ± b̃x

u0 ± b̃0
, (29)

and four magneto-sonic waves (two fast and two slow waves). These
are found by solving the non-linear quartic equation

(1 − ε2)(u0λ − ux )4

+ (1 − λ2)[(c2s (b̃0λ − b̃x )2 − ε2(u0λ − ux )2] = 0,
(30)

where c2s = γp/ρh is the sound speed squared, b̃α = bα/
√

htot
(|b̃|2 = b̃α b̃α = |b|2/htot), and ε2 = c2s + |b̃|

2 − c2s |b̃|
2.

2.2.2 Conservative to primitive variables conversion

Although the numerical scheme evolves the conservative variables
u, for the calculation of several quantities necessary for the execution
of the code (for example, the physical fluxes, the fastest waves,
the characteristic variables, etc), the primitive variables have to be
calculated at least once every time step. The equations (25) express
the relation between the conservative variables and the primitive
variables. As it is clearly noticed from these equations, such relation
is highly non-linear, and a procedure to find the primitive variables
has to be developed. Following the algorithms discussed in Noble
et al. (2006), and Mignone & McKinney (2007), we employ in our
codes the strategies presented in those works. In this work we solve
iteratively an equation for the pressure and then we determine the
other variables from this (Mignone & McKinney 2007).

Solving numerically withNewton–Raphson. Herewewill outline
the approach presented by Mignone & McKinney (2007), consid-
ering only an ideal gas EOS and omitting the more general case
when non-relativistic speeds are present (more details can be found
in Mignone & McKinney (2007)). From equations (25), we take in
consideration those for the energy and for the square modulus of the
momentum. Defining the scalars x̂ = DhΓ and ŷ = S · B, we get

E = x̂ − p +
1 + |v|2

2
|B|2 −

ŷ2

2x̂2
, (31)

and

|S|2 =
(
x̂ + |B|2

)2
|v|2 −

ŷ2

x̂2
(
2x̂ + |B|2

)
. (32)

From the last equation, one can express |v|2 as a function of the
unknown x̂

|v|2 =
ŷ2(2x̂ + |B|2) + |S|2 x̂2

( x̂ + |B|2)2 x̂2
. (33)

The next step is to insert this result into the expression for the energy
(31)

E = x̂ − p +
|B|2

2
+
|B|2 |S|2 − ŷ2

2
(
|B|2 + x̂

)2 . (34)

MNRAS 000, 1–24 (2016)
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This equation will be solved using a Newton–Raphson iterative
scheme, where the (k + 1)-th approximation to x̂ is calculated as

x̂(k+1) = x̂(k ) −
f ( x̂)

d f ( x̂)/ dx̂
����x̂=x̂ (k )

. (35)

The functional f ( x̂) is derived from the equation (34)

f ( x̂) = x̂ − E − p +
|B|2

2
+
|B|2 |S|2 − ŷ2

2
(
|B|2 + x̂

)2 . (36)

Computing the derivative d f ( x̂)/ dx̂ ≡ dE/ dx̂, yields

dE
dx̂
= 1 −

dp
dx̂
−
|B|2 |S|2 − ŷ2(
|B|2 + x̂

)3 . (37)

Let us assume that p = p(ρ, ẑ), with

ẑ ≡ ρ(h − 1) =
ρΓ

Γ
(h − 1) =

DhΓ − DΓ
Γ2

=
x̂ − DΓ
Γ2

. (38)

Applying the chain rule, we are able to calculate the derivative
dp/ dx̂,

dp
dx̂
=
∂p
∂ ẑ

����ρ
dẑ
dx̂
+
∂p
∂ρ

����ẑ
dρ
dx̂
. (39)

Calculating the derivatives dẑ/ dx̂, dρ/ dx̂, yields

dẑ
dx̂
=

1
Γ2
−
Γ
(
D + 2ẑΓ

)
2

d|v|2

dx̂
, (40)

and

dρ
dx̂
= −

DΓ
2

d|v|2

dx̂
, (41)

where

d|v|2

dx̂
= −

2
x̂3

ŷ2
[
3x̂( x̂ + |B|2) + |B|4

]
+ |S|2 x̂3(

x̂ + |B|2
)3 . (42)

For the ideal gas EOS, we have

p(ρ, ẑ) =
γ − 1
γ

ẑ. (43)

From the expression p( ẑ, ρ) we get easily

∂p
∂ ẑ
=
γ − 1
γ

,
∂p
∂ρ
= 0. (44)

Once x̂ has been determined to some accuracy with the Newton–
Raphson procedure, we complete the inversion process by com-
puting the velocities from an inversion of equation (21b) to obtain

vi =
1

x̂ + |B|2

(
Si +

ŷ

x̂
Bi

)
, (45)

From the velocity, we can calculate the Lorentz factor Γ, and then
we get directly ẑ from equation (38),

ẑ =
x̂ − DΓ
Γ2

. (46)

The pressure is obtained from the relation

p(ρ, ẑ) =
γ − 1
γ

ẑ. (47)

The rest-mass density is obtained from

ρ =
D
Γ
, (48)

and the magnetic field are the same as in the primitive variables.

2.3 Divergence cleaning with the GLM method

In the SRMHD equations, the solenoidal constraint of the mag-
netic field (24) is satisfied analytically but not numerically. There-
fore a strategy for maintaining this constraint from the numerical
point of view has to be used. The divergence cleaning proposed
by Munz et al. (1999), and Dedner et al. (2002) is used in this
work, specifically the mixed hyperbolic/parabolic approach. Within
this scheme, the solenoidal constraint is coupled with the induction
equation (21d) through the potential ψ. The induction equation and
the solenoidal constraint are replaced by

∂B
∂t
+ ∇ ·

(
B ⊗ v − v ⊗ B + ψI

)
= 0, (49a)

∂ψ

∂t
+ ∇ ·

(
c2hB

)
= −

c2
h

c2p
ψ. (49b)

Equations (21a), (21b), (21c), (49a), and (49b), constitute the so-
called GLM–SRMHD system.

3 Numerical methods

In this section we are going to briefly review the main ingredients of
the numerical scheme: the finite-volume method, theWENO recon-
struction schemes, the divergence cleaning, and the shock capturing
approach followed in this work.

3.1 Finite-volume methods

We are interested in discretizing systems of conservation laws. We
start by considering the system

∂u
∂t
+
∂f (u)
∂x

+
∂g(u)
∂y

+
∂h(u)
∂z

= 0. (50)

Finite-volume methods are numerical methods based on the weak
solution of conservation laws in integral form. The semi-discrete
scheme is obtained after integration of the Eq. (50) over the cell
Ωi jk =

[
xi− 1

2
, xi+ 1

2

]
×

[
y j− 1

2
, y j+ 1

2

]
×

[
zk− 1

2
, zk+ 1

2

]
,

dui jk
dt
= −

f̂ i+ 1
2 , jk
− f̂ i− 1

2 , jk

∆x

−

ĝi, j+ 1
2 ,k
− ĝi, j− 1

2 ,k

∆y
−

ĥi j,k+ 1
2
− ĥi j,k− 1

2

∆z
.

(51)

The quantity ui jk is the spatial average of u in the cell Ωi jk at the
time t

ui jk =
1

��Ωi jk
��

∫
Ωi jk

u(x, y, z) dz dy dx, (52)

with the volume of the cell Ωi jk given by ���Ωi jk
��� = ∆x∆y∆z.

The spatial averages of the physical fluxes f̂ i± 1
2 , jk

, ĝi, j± 1
2 ,k

, and

ĥi j,k± 1
2
, over the cell faces xi± 1

2
, y j± 1

2
, and zk± 1

2
, respectively are

defined by

f̂ i± 1
2 , jk

=
1

��σ jk
��

∫
σ jk

f
(
u(xi± 1

2
, y, z)

)
dz dy,

ĝi, j± 1
2 ,k
=

1
��σik

��

∫
σik

g
(
u(x, y j± 1

2
, z)

)
dz dx,

ĥi j,k± 1
2
=

1
��σi j

��

∫
σi j

h
(
u(x, y, zk± 1

2
)
)
dy dx,

(53)
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The surface elements in a Cartesian mesh are defined by σi j =[
xi− 1

2
, xi+ 1

2

]
×

[
y j− 1

2
, y j+ 1

2

]
, σ jk =

[
y j− 1

2
, y j+ 1

2

]
×

[
zk− 1

2
, zk+ 1

2

]
,

and σik =
[
xi− 1

2
, xi+ 1

2

]
×

[
zk− 1

2
, zk+ 1

2

]
. The area of the faces are

then ��σi j
�� = ∆x∆y, ��σ jk

�� = ∆y∆z, and ��σik
�� = ∆x∆z. Observe that

the numerical fluxes defined as
f̂ i+ 1

2 , jk
= f̂ (ui−p, jk, . . . , ui+q, jk ),

ĝi, j+ 1
2 ,k
= ĝ(ui, j−p,k, . . . , ui, j+q,k ),

ĥi j,k+ 1
2
= ĥ(ui j,k−p, . . . , ui j,k+q ),

(54)

constitute an approximation of the physical fluxes and they are con-
sistent with them in the sense that f̂ (u, . . . , u) = f (u), ĝ(u, . . . , u) =
g(u), and ĥ(u, . . . , u) = h(u) (see LeVeque (1992); Bressan (2000);
LeVeque (2002), and Toro (2009)).

The semi-discrete scheme (51) is written in conservative form.
The Lax–Wendroff theorem guarantees that if the scheme (51) is
convergent, then it converges to the weak solution (Lax &Wendroff
1960). Observe that the equation (51) is an exact relation as well as
the averaged quantities (52) and (53).

In the finite-volume scheme the fluxes (53) have to be approxi-
mated. These integrals are discretized with a Gaussian quadrature.
In order to achieve a very high order of accuracy in space, a high-
order Gaussian quadrature is required. For Cartesian meshes, the
integrals are then given by

f̂ i± 1
2 , jk

=
1
∆y

1
∆z

NGP∑
α=1

NGP∑
β=1

f
(
u(xi± 1

2
, yα, zβ )

)
ωαωβ,

ĝi, j± 1
2 ,k
=

1
∆x

1
∆z

NGP∑
α=1

NGP∑
β=1

g
(
u(xα, y j± 1

2
, zβ )

)
ωαωβ,

ĥi j,k± 1
2
=

1
∆x

1
∆y

NGP∑
α=1

NGP∑
β=1

h
(
u(xα, yβ, zk± 1

2
)
)
ωαωβ .

(55)

The point-wise values of u at the Gaussian integration points at
the faces are obtained through a high-order reconstruction. The
reconstruction operator takes as input the cell averages ui jk at the
cell barycenter, and produces the reconstructed values at the cell
faces. Observe that at a given face, two sets of reconstructed values
are available: those obtained through the use of the cell Ωi jk as the
main cell in the reconstruction procedure and those obtained with
the neighbouring cell. These are the so-called left and right values at
the face interface: uL and uR . The fluxes are computed by replacing
f , g, andh by amonotone flux (or an exact or approximatedRiemann
solver (Toro 2009)). The Riemann solvers used in xtroem-fv for
the SRHD and SRMHD equations are the very well known Rusanov
numerical flux (Rusanov 1961), and the HLL Riemann solver (Toro
2009). The Rusanov numerical flux is given by

f̂ (uL, uR ) =
1
2
(
f (uL ) + f (uL ) − |λmax |(uL − uR )

)
, (56)

where λmax is the largest local wave speed, which guarantees the
stability of the scheme.

3.2 Discretization of the GLM method

From the equations (49), we can observe that the quantities Bx

and ψ are decoupled from the GLM–SRMHD system, yielding the
linear system

∂

∂t

(
Bx

ψ

)
+

(
0 1
c2
h

0

)
∂

∂x

(
Bx

ψ

)
=

*.
,

0

−
c2
h

c2p
ψ

+/
-
. (57)

The solution for the local Riemann problemwith left and right states
(Bx,l, ψl )T , (Bx,r , ψr )T , respectively, is given by

Bx,m =
1
2

(Bx,r + Bx,l ) −
1

2ch
(ψr − ψl ), (58a)

ψm =
1
2

(ψr + ψl ) −
ch
2

(Bx,r − Bx,l ). (58b)

Following Dedner et al. (2002), we use the exact solution (58) of
the linear Riemann problem (57) as input for the Riemann solver
used in the solution of the other conserved quantities. In order to
deal with the source term in equation (49b), we follow the idea
presented in Dedner et al. (2002): we first solve the homogeneous
GLM–SRMHD system in a so-called hyperbolic step, and then we
consider the source term in the source step. The scalar field ψ is
then

ψ (∆t ) = ψ (0) exp
(
−αp

ch
∆h/∆t

)
, with αp = ∆h

ch
c2p
, (59)

where ψ (0) has been computed in the hyperbolic step, and ∆h =
min

(
∆x,∆y,∆z

)
is the minimum mesh size. This approach is very

simple to implement and is unconditionally stable (Dedner et al.
2002).

3.3 WENO schemes

In this section we are going to outline the principles of the WENO
schemes. For a more detailed description, see Shu (2009). The
WENO schemes are numerical methods that produce adaptive high-
order reconstruction polynomials from cell average data in order to
compute pointwise values at appropriate points, as for example at
Gaussian integration points in the context of finite-volumemethods.
Provided a main stencil around a main cell, this is subdivided in to
several small stencils, each containing the main cell. For every sub-
stencil a reconstruction polynomial is built from the cell average of
the cells in the substencil. These polynomials are then weighted in
order to construct a higher-order polynomial. The final reconstruc-
tion polynomial has the following properties: in smooth regions,
the polynomial is the highest order polynomial obtained from the
cell averages; in regions with discontinuities, it remains essentially
non-oscillatory. The weights used in the reconstruction are got from
each polynomial in each substencil, and they provide information
about the smoothness of every polynomial.

In the case of structured meshes, the dimension-by-dimension
WENO reconstruction procedure is the most efficient among all
WENO approaches (Casper & Atkins 1993; Shu 2009), although
the methodology introduced in Buchmüller & Helzel (2014) in the
context of finite-volume methods makes the reconstruction proce-
dure as simple as for finite difference methods.

In the three-dimensional case, the cell averages of the function
u = u(x, y, z) in the cell Ωi jk is given by

ui jk =
1

���Ωi jk
���

∫
Ωi jk

u(x, y, z) dz dy dx. (60)

The WENO scheme reconstructs point values of u at the Gaus-
sian integration points (xi± 1

2
, y j+α, zk+β ), (xi+α, y j± 1

2
, zk+β ),

(xi+α, y j+β, zi± 1
2

) from the cell averages ui jk . We employ a two-
points Gaussian quadrature rule (Titarev & Toro 2004, 2005)∫ +1

−1
f (x) dx ≈

2∑
i=1

wi f (xi ) = f
(
−

1
√
3

)
+ f

(
+

1
√
3

)
, (61)

for calculating the surface integrals (55). These integration
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points are given by (xi± 1
2
, y j+α ) and (xi+α, y j± 1

2
) in 2D and

(xi± 1
2
, y j+α, zk+β ), (xi+α, y j± 1

2
, zk+β ), (xi+α, y j+β, zi± 1

2
) in 3D,

with α, β = ±1/2
√
3. Titarev & Toro (2004, 2005) claim that

the high-order accuracy of the scheme is provided by the high-
order reconstruction of the function values at the Gaussian inte-
gration points. The two-points Gaussian quadrature employed by
xtroem-fv leads to a formal fourth order of accuracy. But several
numerical experiments performed by Titarev & Toro (2004), and
Titarev & Toro (2005) show that the accuracy is not affected with
this choice.

For completeness reasons, we describe the dimension-by-
dimension algorithm for the reconstruction at the Gaussian integra-
tion points (xi± 1

2
, y j+α, zk+β ), also the points at faces xi± 1

2
of the

cell Ωi jk . A similar procedure is used for reconstructing the point
values of the function u(x, y, z) at points (xi+α, y j± 1

2
, zk+β ), and

(xi+α, y j+β, zi± 1
2

), which correspond to the faces y j± 1
2
and zk± 1

2
.

The dimension-by-dimension algorithm employs three sweeps in
the three-dimensional case and two sweeps in the two-dimensional
case. Following Titarev & Toro (2004), the stencils used to recon-
struct ui± 1

2 , j+α,k+β
with a WENO scheme of (2N + 1)th order

(where the polynomials used in every substencil are of degree N),
we require the stencil to be formed by the cells Ωix iy iz , with the
indices ix , iy , and iz satisfying

i − N ≤ ix ≤ i + N,

j − N ≤ iy ≤ j + N,

k − N ≤ iz ≤ k + N .

(62)

The sweeps for the WENO scheme are the followings:

(1) First Sweep: From the cell averages ui jk , a one-dimensional
reconstruction in the x-direction is carried out for all values of the
indices iy , iz from the stencil. Two-dimensional averages at faces
xi± 1

2
are obtained from this procedure

¯̄uiy iz
����x

i± 12

=
1
∆y

1
∆z

∫ y
iy+

1
2

y
iy−

1
2

∫ z
iz+

1
2

z
iz−

1
2

u(xi± 1
2
, y, z) dz dy.

(2) Second Sweep: From the obtained two-dimensional averages
¯̄uiy iz , a one-dimensional reconstruction in the y-direction is carried
out for all values of the index iz from the stencil. One-dimensional
averages at lines y j± 1

2
√
3
on the faces xi± 1

2
are obtained from this

procedure

ūiz
����xi± 12
y
j± 1

2
√
3

=
1
∆z

∫ z
iz+

1
2

z
iz−

1
2

u(xi± 1
2
, y j± 1

2
√
3
, z) dz.

(3) Third Sweep: In the last sweep, a one-dimensional recon-
struction in the z-direction is carried out from all line averages ū
of every line (x = xi± 1

2
, y = y j± 1

2
√
3

). In this step, all point-wise
values u(xi± 1

2
, y j± 1

2
√
3
, zk± 1

2
√
3

) are reconstructed.

3.4 Shock capturing for high order finite-volume methods

In Núñez-de la Rosa&Munz (2016) we presented a shock capturing
strategy for high order finite-volume schemes. Shock capturing al-
gorithms are required in high-order numericalmethodswhen shocks
waves, or strong rarefactions are present in the simulation. If this
kind of features are not properly tackled from the numerical point
of view, it may typically generate unphysical states, like negative
densities or pressures, or even superluminal speeds in relativistic

hydrodynamics. These unphysical states are found especially in the
reconstruction step, and the conservative-to-primitive variables al-
gorithm. Here we show again the shock capturing steps included in
the base algorithm of the numerical scheme.

(1) The first step consists in checking quantities with physical
restrictions and applying a correction mechanism. For example, we
check the positivity of the density and the pressure, and check that
there are no superluminal speeds

(2) In the second step we proceed with the detection of regions
with strong shocks or discontinuities. For that purpose we use a
shock indicator, and flag those troubled cells and their direct neigh-
bours.

(3) In the third and last step, a special treatment in the troubled
regions is applied. We employ robust Riemann solvers, and apply a
robust second/third order reconstruction scheme.

We have to point out that a similar approach has been used by
Mignone et al. (2007); Tchekhovskoy et al. (2007); Beckwith &
Stone (2011); Radice & Rezzolla (2011), and Radice & Rezzolla
(2012). This approach is usually refereed as the fallback approach
because the reconstruction order is reduced in order to properly
handle the shocks and discontinuities. After flagging the cells con-
taining the shocks or discontinuities, we reduce the order of the
reconstruction operator, and typically we employ the WENO3 al-
gorithm and the MUSCL scheme. The shock indicator we use is the
Jameson indicator in the pressure (Jameson et al. 1981),

ηi =
��pi+1 − 2pi + pi−1��

��pi+1�� + 2��pi �� + ��pi−1��
. (63)

If the Jameson indicator is larger than a certain threshold value (in
xtroem-fv this value is η = 5.0 × 10−3 for all computations), then
the cell is flagged, and the robust scheme is employed.

3.5 Time discretization

The time discretization is explicitly carried out with the family of
strong-stability preserving Runge–Kutta (SSPRK) methods (Shu &
Osher 1988; Shu 1988; Gottlieb & Shu 1998). The semi-discrete
scheme (51) comprises a system of ordinary differential equations
that is solved using the method of lines with a fourth-order SSPRK
scheme. The SSPRK methods are used in hyperbolic problems
where shocks and discontinuities arise in a natural way. As a time
integrator, the SSPRK methods do not introduce additional oscil-
lations because they preserve strong stability under the TVD norm
(Ruuth & Spiteri 2002; Spiteri & Ruuth 2002, 2003; Hundsdorfer
et al. 2003; Gottlieb 2005; Hesthaven & Warburton 2008; Gottlieb
et al. 2009; Shu 2009).

If we write the system of ordinary differential equations (51) as

du
dt
= L(u, t), u(t0) = u0, t ∈ [t0, t f ], (64)

where −L(u, t) is the spatial discretization operator, then the fourth-
order SSPRK with five stages as derived in Spiteri & Ruuth (2002)
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8 J. Núñez-de la Rosa, and C.-D. Munz

is given by

u(0) = un

u(1) = u(0) + 0.39175222700392∆tL
(
u(0), tn

)
u(2) = 0.44437049406734u(0) + 0.55562950593266u(1)

+ 0.36841059262959∆tL
(
u(1), tn + 0.39175222700392∆t

)
u(3) = 0.62010185138540u(0) + 0.37989814861460u(2)

+ 0.25189177424738∆tL
(
u(2), tn + 0.58607968896780∆t

)
u(4) = 0.17807995410773u(0) + 0.82192004589227u(3)

+ 0.54497475021237∆tL
(
u(3), tn + 0.47454236302687∆t

)
u(5) = 0.00683325884039u(0) + 0.51723167208978u(2)

+ 0.12759831133288u(3) + 0.34833675773694u(4)

+ 0.08460416338212∆tL
(
u(3), tn + 0.47454236302687∆t

)
+ 0.22600748319395∆tL

(
u(4), tn + 0.93501063100924∆t

)
un+1 = u(5) .

(65)

This scheme has an SSP coefficient c = 1.50818004975927. The
SSP coefficient satisfies ∆t ≤ c∆tE , where ∆tE is the time step
restricted by the Courant-Friedrichs-Levy (CFL) condition for the
first-order forward Euler method. The CFL condition is a necessary
condition for stability of the numerical scheme, and it is applied to
constraint the time step (Courant et al. 1928; Blazek 2005). In the
one-dimensional case this is given by

∆t = CCFLmin
k

(
∆x
|λk,x |

)
, (66)

with λk the maximum eigenvalue of the physical x-flux Jacobian
over all computational cells. The number CCFL depends on the
spatial discretization and on the time-stepping scheme used for
solving the hyperbolic equation, and besides it satisfies CCFL ≤
1. Only approximated values of the CFL condition are available
for non-linear equations in the multidimensional case. Following
Titarev & Toro (2005), the CFL condition is given by

∆t =
CCFL
2

min
k

(
∆x
|λk,x |

,
∆y

|λk,y |

)
, (67)

for a two-dimensional space, and

∆t =
CCFL
3

min
k

(
∆x
|λk,x |

,
∆y

|λk,y |
,
∆z
|λk,z |

)
, (68)

for a three-dimensional space. Observe that the number CCFL cor-
responds to the one-dimensional case.

4 Numerical Computations

4.1 Relativistic hydrodynamics

4.1.1 Convergence test

With this test we want to check the order of accuracy of the
xtroem-fv code for solving the SRHD equations when the RKFV
method with WENO reconstruction is used. For this purpose, we
solve a two-dimensional smooth problem where a wave is propa-
gating in the physical domain [0, 2/

√
2] × [0, 2] at an angle θ = 30°

Table 1. Convergence rates for the SRHD equations with initial condition
given by the smooth flow problem. The base numerical methods is the RKFV
scheme. In these calculations we have employed the Rusanov Riemann
solver. Results for L2 norm error of the rest-mass density are provided, with
reconstruction operator WENO3, WENO5 and WENO7. Simulation time
was set to t = 1.0.

Method Cells L2 error L2 order

WENO3

40 × 20 2.895 × 10−04
80 × 40 3.984 × 10−05 2.86
160 × 80 5.278 × 10−06 2.92
320 × 160 6.383 × 10−07 3.05

WENO5

40 × 20 3.542 × 10−06
80 × 40 1.123 × 10−07 4.98
160 × 80 3.543 × 10−09 4.99
320 × 160 9.698 × 10−11 5.19

WENO7

40 × 20 9.274 × 10−08
80 × 40 6.845 × 10−10 7.08
160 × 80 5.345 × 10−12 7.00
320 × 160 3.856 × 10−14 7.12

relative to the horizontal axis. Following He & Tang (2012a), the
initial profile is given by

ρ = 1 + A sin
(
φ(0)

)
, (69)

vx = v0, (70)
vy = 0, (71)
p = 1, (72)

with A = 0.2, and v0 = 0.2. The function φ(t) is defined as follows

φ(t) = 2π
(
(x cos θ + y sin θ) − (vx cos θ + vy sin θ)t

)
. (73)

This problem has the exact solution

ρ = 1 + A sin
(
φ(t)

)
, (74)

vx = v0, (75)
vy = 0, (76)
p = 1. (77)

The discretization of the computational domain satisfy Ny = 2Nx ,
and periodic boundary conditions are set at all four faces of the
domain. In the Table 1 are shown the convergence rates for the
RKFV method. The numerical scheme converges to the theoretical
order of convergence.

4.1.2 One-dimensional Riemann problems

In this section we consider some standard one-dimensional Rie-
mann problems extensively used in relativistic hydrodynamics. The
Riemann problem is an initial-value problem for a conservation law
defined as
∂u
∂t
+
∂f (u)
∂x

= 0,

u(x, 0) =



uL (x) for x < xm,
uR (x) for x > xm,

(78)

where xm is the position of the initial discontinuity. For all examples
here discussed, the one-dimensional domain is the closed interval
[0, 1]. The membrane is localized in the point xm = 0.5. The initial
condition for the Riemann problems is characterized for the two
constant states written in conservative variables uL and uR at left
and right sides of the membrane, respectively. After the breakup of
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the membrane, different shock patterns are originated. The prob-
lems below discussed have been used as benchmark in most of the
relativistic codes found in the literature. We refer to Martí &Müller
(2003, 2015) for a comprehensive review of relativistic hydrody-
namics in special relativity, with a special chapter dedicated to the
Riemann problems used here as benchmark, and additionally a de-
tailed literature survey about the numerical methods employed for
their solution.

The numerical calculations with high-order schemes are con-
trasted with the exact solution obtained by using the exact Riemann
solver provided by Rezzolla & Zanotti (2001). In the following,
we will write all initial states in primitive variables. The left state
will be represented by wL =

(
ρ, vx, vy, p

)
L and the right state by

wR =
(
ρ, vx, vy, p

)
R , where vy can be interpreted as the tangen-

tial velocity in the problem. For all simulations it was necessary
to reduce the reconstruction/interpolation order at the vicinity of a
strong shock, typically three cells around this point and the adopted
reconstruction was the very robust and stable third-order WENO
scheme.

Riemann problem 1 (RP-1). This test is called also mildly rela-
tivistic blast wave. The initial condition is determined by the fol-
lowing left and right states

wL =
(
10, 0, 0, 40/3

)
,

wR =
(
1, 0, 0, 0

)
.

(79)

We have employed the ideal gas EOS with adiabatic index γ = 5/3.
The CFL number we have used for the computation is CCFL = 0.95.
The interval is discretized with 500 computational cells. Transmis-
sive boundary conditions are set at both sides of the interval. The
final simulation time is set to t = 0.4. In the right state the pressure
was set to be 2/3 × 10−6 for numerical reasons. This test problem
has been considered for many authors in the past (Schneider et al.
1993;Martí &Müller 1996; Donat et al. 1998), but it was inMartí &
Müller (1994) that an exact solution was first presented. The waves
present in this problem are a left-going transonic rarefaction wave, a
contact discontinuity and a right-going shockwave. The fluid behind
the shock is moving with a mildly relativistic speed v = 0.72c to the
right. In this dense shell behind the shock, the fluid is compressed.
Because of that, the fluid is heated to values of the internal energy
much larger than the rest-mass energy. This means that the fluid is
thermodynamically relativistic, but mildly relativistic dynamically.
Plots of the rest-mass density, pressure, and the x-component of the
velocity are depicted in the Fig. 1 (first row, from top to bottom).
Computations withWENO3,WENO5, andWENO7 reconstruction
operators are reported. The shock is captured in around 3–4 cells
with the WENO3 reconstruction operator.

Riemann problem 2 (RP-2). The initial state for the highly rela-
tivistic blast wave is given by

wL =
(
1, 0, 0, 103

)
,

wR =
(
1, 0, 0, 10−2

)
.

(80)

We have employed the ideal gas EOS with adiabatic index γ = 5/3,
and CFL number CCFL = 0.95. The interval is discretized with
500 computational cells. Transmissive boundary conditions have
been utilized at domain edges. The final simulation time is set to
t = 0.4. The decay of the initial discontinuity gives rise to a dense
intermediate state located between a right-going shock wave and a
rarefaction wave propagating to the left. The shock wave and the
contact discontinuity are very close to each other. The very thin
shell is a very challenging feature for any numerical method solving
this problem. Actually, in these simulations, and because of the

smearing at the contact discontinuity, this shell is not well resolved.
Plots of the rest-mass density, pressure, and the x-component of the
velocity are depicted in the Fig. 1 (second row, from top to bottom).
Computations withWENO3,WENO5, andWENO7 reconstruction
operators are reported.

Riemann problem 3 (RP-3). In the transverse blast wave prob-
lem, the initial conditions are similar to the RP-2, but with the
difference that in this problem a non-zero transverse velocity in the
right state is introduced. That is, the initial condition is determined
by the following left and right states

wL =
(
1, 0, 0, 103

)
,

wR =
(
1, 0, 0.99, 10−2

)
.

(81)

We have employed the ideal gas EOS with adiabatic index γ = 5/3.
We have used CCFL = 0.95. The interval is discretized with 500
computational cells. The final simulation time is set to t = 0.4.
Unlike Newtonian hydrodynamics, where the transverse momen-
tum is not coupled with the longitudinal one and it thus is simply
advected, the momentum equations in relativistic hydrodynamics
are coupled each other through the Lorentz factor. As consequence
of that, a non-zero transverse velocity imprints in the solution of
the Riemann problem new physical effects that are not present in
classical hydrodynamics (Pons et al. 2000; Rezzolla et al. 2003).
Plots of the rest-mass density, pressure, and the x-component of the
velocity are depicted in the Fig. 1 (third row, from top to bottom).
The solution was computed by using a finite-volume method with
WENO3, WENO5, and WENO7 reconstruction operators. No os-
cillations are observed in the computed numerical approximations
with the WENO3 scheme. A light overshooting is obtained with the
WENO5 and WENO7 schemes in the dense intermediate shell.

Riemann problem 4 (RP-4). The planar shock reflection consists
in an ideal cold fluid colliding a wall, a shock wave propagates
backwards, leaving the gas behind at rest. The reflecting wall is
located in x = 1. At x = 0 transmissive boundary conditions are
set. The initial state is given by

w =
(
1, 0.99999, 0, 0.01

)
(82)

We have employed the ideal gas EOS with adiabatic index γ = 4/3.
We have used CCFL = 0.95. The interval is discretized with 500
computational cells. The final simulation time is set to t = 1.5. The
exact solution of this Riemann problemwas first obtained by Bland-
ford & McKee (1976). Plots of the rest-mass density, pressure, and
the x-component of the velocity computed with the finite volume
WENO scheme are depicted in the Fig. 1 (fourth row, from top to
bottom). We can see that close to the wall (x = 1), the numerical so-
lution of the rest-mass density shows an undershooting, which is due
to the wall heating phenomenon (Noh 1987). The shock has been
very well captured using around 3–4 cells with the WENO3 recon-
struction, but some small oscillations are clearly visible around this
discontinuity, although only for theWENO5 andWENO7 schemes.

4.1.3 Two-dimensional Riemann problems

In this section we consider two-dimensional Riemann problems,
which initial conditions were taken from del Zanna & Bucciantini
(2002); Tchekhovskoy et al. (2007), and He & Tang (2012a). The
computational domain is the box [−1, 1] × [−1, 1], divided in four
quadrants. The membranes are localized along the lines x = 0 and
y = 0. These Riemann problems simulate practically all essential
features found in a two-dimensional flow, for example, shock re-
flections, vortex, shock interactions, etc. In the two-dimensional
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Figure 1. Solution to four one-dimensional Riemann problems in SRHD. The left and right states, and the description of the flow patterns are given in the text.
Plots of the rest-mass density, pressure, and the x-component of the velocity are depicted. The solution was computed with a high order finite-volume WENO
scheme, with WENO3, WENO5, and WENO7 reconstruction operators.

Riemann problems, the initial states are defined in the quadrants Q1, Q2, Q3, and Q4, which are the sets

Q1 :=
{
(x, y) ∈ [−1, 1]2 �� x ≥ 0, y ≥ 0

}
,

Q2 :=
{
(x, y) ∈ [−1, 1]2 �� x < 0, y ≥ 0

}
,

Q3 :=
{
(x, y) ∈ [−1, 1]2 �� x < 0, y < 0

}
,

Q4 :=
{
(x, y) ∈ [−1, 1]2 �� x ≥ 0, y < 0

}
.

(83)
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Riemann problem 5 (RP-5). The box [−1, 1] × [−1, 1] is initially
filled with a gas with adiabatic index γ = 5/3. This domain is sub-
divided into four quadrants, where the states in primitive variables
are defined by

wQ1 =
(
0.035145216124503, 0, 0, 0.162931056509027

)
,

wQ2 =
(
0.1, 0.7, 0, 1

)
,

wQ3 =
(
0.5, 0, 0, 1

)
,

wQ4 =
(
0.1, 0, 0.7, 1

)
.

(84)

Transmissive boundary conditions are used in all faces of the com-
putational domain. The final simulation time is t = 0.8. Contour
plots of the rest-mass density and pressure are depicted in the Fig. 2.
After the breakup of the membranes, two contact discontinuities ap-
pear on the left and bottom of the domain, and in the first quadrant
we can identify two curved front shocks. In the third quadrant it is
visible a like-jet structuremoving in south-west direction (del Zanna
& Bucciantini 2002). The computations are in excellent agreement
with those reported in the literature.

Riemann problem 6 (RP-6). The domain is filled with a gas,
which initial condition is determined by the following states in
primitive variables in the quadrants Q1, Q2, Q3, and Q4

wQ1 =
(
0.5, 0.5,−0.5, 5

)
,

wQ2 =
(
1, 0.5, 0.5, 5

)
,

wQ3 =
(
3,−0.5, 0.5, 5

)
,

wQ4 =
(
1.5,−0.5,−0.5, 5

)
.

(85)

As in the RP-5, the adiabatic index of the gas is γ = 5/3 and the final
simulation time is t = 0.8. Contour plots of the rest-mass density
and the Lorentz factor are depicted in the Fig. 3. Here we can see
the interaction of four vortex sheets, forming a spiral with very low
rest-mass density in the centre of the domain (the typical cavitation
in gas dynamics). Observe the very well behaviour of the hybrid
WENO7/WENO3 scheme in the very low density region, that is the
scheme does not produce a negative density or pressure.

Riemann problem 7 (RP-7). In our last two-dimensional Rie-
mann problem, we set the initial condition as the states in primitive
variables in the quadrants Q1, Q2, Q3, and Q4 given by

wQ1 =
(
1, 0, 0, 1

)
,

wQ2 =
(
0.5771,−0.3529, 0, 0.4

)
,

wQ3 =
(
1,−0.3529,−0.3529, 1

)
,

wQ4 =
(
0.5771, 0,−0.3529, 0.4

)
.

(86)

The adiabatic index of the gas is γ = 5/3, and the final simulation
time is t = 0.8. Contour plots of the rest-mass density and the Mach
number are depicted in the Fig. 4. This problem is about the inter-
action of planar rarefaction waves. The initial discontinuities evolve
into rarefaction waves, interacting each other. This interaction gen-
erates two symmetric shock waves in the zone where the rarefaction
waves have interplayed.

4.1.4 Double Mach reflection problem

The double Mach reflection problem was introduced by Woodward
& Colella (1984) for Newtonian hydrodynamics. This problem was
extended to the equations of relativistic hydrodynamics by Zhang
& MacFadyen (2006). The problem consists basically in a shock
wave travelling horizontally and collides with an inclined wedge. It
is formulated equivalently by sending a shock wave diagonally into
a reflecting wall. The computational domain is the box [0, 4]×[0, 1].

We represent the wedge by a reflecting boundary starting at x = 1/6
along the x-axis. The strong shock moving initially from the left
boundary toward the right makes a 60° angle with the x-axis. Due
to the original setup of the problem can not be used in the relativistic
case, Zhang & MacFadyen (2006) proposed a new initial state that
allows the formation of waves patterns present in the Newtonian
version. In fact, they showed that by choosing an ultra-relativistic
shock, no Mach reflection is generated. The adiabatic index is set
to γ = 7/5, and the initial state is given by

w(x, y)��t=0 =



wL, for y > h(x, 0),
wR, for y < h(x, 0),

(87)

where the left and right states of the shock wave, and the exact
position of the shock at the time t are, respectively (see also He &
Tang (2012a)),

wL = (8.564, 0.4247 sin 60°,−0.4247 cos 60°, 0.3808),

wR = (1.4, 0, 0, 0.0025),

h(x, t) =
√
3 (x − x0) − 2vs t, x0 =

1
6
, vs = 0.4984.

(88)

Regarding the boundary conditions, we set them as follows: a re-
flecting wall is placed at x > x0, y = 0, as we mentioned before. At
the top boundary and depending of the position of the shock wave,
we set the boundary conditions to either the post-shock state wL or
the pre-shock statewR . At the right face of the domain the boundary
condition is set to the exact pre-shock conditionwR . For x < x0, the
left and part of the bottom boundaries are set to the exact post-shock
state wL . A contour plot of the rest-mass density at simulation time
t = 4.0 is depicted in the Fig. 5. The computational domain is made
of 1600 × 400 cells. The WENO7 reconstruction is used in smooth
parts of the flow and the WENO3 in regions with shocks. No car-
buncle phenomenon is observed because we employed a Rusanov
numerical flux (Woodward & Colella 1984).

4.1.5 Cloud-shock interaction

The simulation setup is given after He & Tang (2012a): we employ
an EOS with adiabatic index γ = 5/3. The computational domain
is the box [0, 2] × [0, 1] with transmissive boundary conditions at
all faces. The centre of the cylindrical cloud is located in the point
(1.4, 0.5) and the radius is r = 0.15. The initial state for the cloud is
wc = (3.1538, 0, 0, 0.05). The left moving shock wave at time t = 0
is located at x = 1.6, with left and right states given by

wL = (1, 0, 0, 0.05),

wR = (1.86522508063118,−0.19678110737829, 0, 0.15).
(89)

The computational domain is decomposed into 800 × 400 cells.
Contour plots of the rest-mass density and Mach number at sim-
ulation time t = 3.0 are depicted in the Fig. 6. The combination
of WENO3 and WENO7 reconstruction operators makes possible
to obtain such profile of the bubble after the interaction with the
shock wave. Lower-order schemes require a higher mesh resolution
in order to get a similar solution (He & Tang 2012a).

4.1.6 Relativistic slab jet propagation

It is widely known that there are three classes of highly collimated
and supersonic jets from dense central objects with accretion disks,
which depend on the central object, protostars, binary stars, or active
galactic nuclei. AGN jets are the largest scale phenomena, and the
velocity of the jet beam is highly relativistic, at least close to the
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Figure 2. Two-dimensional Riemann problem RP-5. Contour plots of the rest-mass density (left) and pressure (right) at t = 0.8. The solution was obtained
with a high order finite-volume method with WENO7 reconstruction. The domain [−1, 1] × [−1, 1] was decomposed into 600 × 600 cells.
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Figure 3. Two-dimensional Riemann problem RP-6. Contour plots of the rest-mass density (left) and Lorentz factor (right) at t = 0.8. The solution was
obtained with a high order finite-volume method with WENO7 reconstruction. The domain [−1, 1] × [−1, 1] was decomposed into 600 × 600 cells.

central object (Peterson 1997). The jet, which originates near an
accretion disk that surrounds an AGN, can propagate over a long
distance, up to a few Mpc, while remaining well collimated. There
are two shocks at the end of the jet. One is a bow shock (or a
forward shock), which accelerates the ambient gas. The other is a
terminalMach shock (or a reverse shock) at which the beam ends. At
the terminal Mach shock, non-thermal particles are accelerated and
emit photons through synchrotron radiation and inverse Compton
scattering. The gas that crosses the terminal Mach shock into a hot
spot is hot and pressurized, and expands laterally, enveloping the
beam with the shocked ambient gas, creating a so-called cocoon
structure. At the contact discontinuity between the ambient gas and
the jet in the cocoon, Kelvin–Helmholtz instabilities develop.

Cygnus A is a suitable object in which to see these features, be-
cause it is one of the closest radio galaxies, and the beam propagates

perpendicularly to the line of sight. From observations, its size is
about 120 kpc, the beam velocity is ∼ 0.4 − 1c, and the hot spot’s
ram pressure advance speed is 0.03c.

Analytical studies and numerical simulations of the morphology
and the dynamics of jets have been performed for the past thirty
years. Blandford & Rees (1974) discussed the structure of jets with
a theoretical relativistic beam model. The difficulty of numerical
relativistic hydrodynamics has delayed the investigation of the rel-
ativistic effects on the morphology and the dynamics of jets. Only
in the past 20 years stable codes, with or without external magnetic
fields, have been developed for the ultra-relativistic regime (Duncan
& Hughes 1994; Aloy et al. 1999a).

We solve the SRHD equations (1) with the two-dimensional ver-
sion of our relativistic hydrodynamic code, based on a high-order
RKFVmethod. We use a two-dimensional Cartesian computational
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Figure 4. Two-dimensional Riemann problem RP-7. Contour plots of the rest-mass density (left) and Mach number (right) at t = 0.8. A high-order WENO7
reconstruction was employed for calculating the solution. The domain [−1, 1] × [−1, 1] is made of 600 × 600 cells.
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Figure 5. Relativistic double Mach reflection problem. Contour plot of the rest-mass density at t = 4.0. A high-order WENO7 reconstruction was used along
with a WENO3 operator for the shock capturing. A Rusanov numerical flux was employed for computing the intercell fluxes. The domain was decomposed
into 1600 × 400 cells. Only the region [0, 3] × [0, 1] is shown.

region. The grid size is uniform, namely ∆x = ∆y = constant. We
assume that the ambient gas is homogeneous initially. A relativistic
beam flow (vb), is injected at x = 0 in the direction of the positive
x-axis through a circular nozzle defined by x2 + y2 ≤ R2

b , where
Rb is the beam radius, and is in pressure equilibrium with the ambi-
ent medium. Outflow boundary conditions are imposed everywhere
except at the plane x = 0, where injection is assumed through the
nozzle and the rest of the plane has a reflecting boundary, that is,
at x = 0 with x2 + y2 > R2

b . The boundary condition at x = 0 is
crucial for dynamics and the outer shape of the jets. The radius of
the injected beam, Rb, is used as a scaling unit in this study.

The relativistic jet simulation can be fully specified by only set-
ting the following parameters:

• the beam density, ρb;
• the beam pressure, pb;
• the flow speed of the beam, vb;
• the ratio of the rest mass densities of the beam fluid and the

ambient medium, η;

• the ratio of the pressures of the beam fluid and the ambient
medium, κ.

For the example considered in this work, the initial parameters
are listed in the following. An ideal gas EOS with adiabatic index
γ = 5/3 is used. The ratio of the pressures of the beam fluid and
the ambient medium is set to κ = 1. The density and pressure of
the beam are ρb = 1.0 and pb = 1.0 × 10−3. The speed of the beam
is given by vb = 0.999c. The jet nozzle has a radius rb = 0.2. The
computational domain has a size 450rb×150rb, and it is discretized
with 2400 × 800 and 3600 × 1200 cells. The simulations were per-
formed with a finite-volume scheme with WENO5 reconstruction
operator.

From our simulations, we find that the overall morphology and
dynamics of the jets are similar to those discussed in previous works
in the literature. The Fig. 7 shows contour plots of the logarithm of
the rest-mass density of the jets simulated with the RKFV-WENO5
scheme at two different mesh resolutions. There are some differ-
ences in the inner structure of the jets and in the form of the head,
mainly because the deceleration phase of the jets, which is caused
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Figure 6.Relativistic cloud-shock interaction. Contour plots of the rest-mass
density (top), andMach number (bottom) at time t = 3.0. The computations
were done with a finite-volume scheme with WENO7 reconstruction. The
computational domain is the box [0, 2]× [0, 1], discretized by using a mesh
of 800 × 400 cells.

by the generation and separation of vortices at the head of the jet,
is different for the resolutions used in the simulations. All beams
remain collimated from the nozzle, where the beam is injected into
the computational region, to the head of the jets. It is also impor-
tant to note that the beam radius does not increase from the nozzle
to the head of the jet. At the end of the beam, a strong ‘terminal
Mach shock’ is present. One of the most active points is called a
‘hot spot’, into which shocked beam gas enters through the terminal
Mach shock at the head of the jet. The pressure in the hot spot is very
high, because of the energy dissipation at the terminal Mach shock,
and is matched by ambient gas compressed at the bow shock. It is
also observed a back flow that creates a shear flow, and the contact
surface becomes unstable because of Kelvin–Helmholtz instabili-
ties. The surface between the back flow and the shocked ambient gas
flow also becomes unstable and causes the appearance of vortices
in the larger cocoon.

4.2 Relativistic magnetohydrodynamics

4.2.1 Convergence test

The convergence test is carried out with the computation of the
propagation of large amplitude circularly polarized Alfvén waves.
This test was first proposed by del Zanna et al. (2007), and it con-
sists of a periodic Alfvén wave which is an exact solution of the
SRMHD equations, therefore it is used to check the accuracy of the
numerical scheme in smooth flows regimes. As initial condition,
the primitive variables are set as follows: ρ = 1, p = 1, vx = 0,
vy = −vABy/B0, vz = −vABz/B0, Bx = 0, By = ηB0 cos(2πx),
and Bz = ηB0 sin(2πx). The two-dimensional computational do-
main is the box [0, 1] × [0, 1] (Dumbser et al. 2008), with periodic
boundary conditions at all faces of the box. The adiabatic index of
the EOS is set to γ = 4/3. We set B0 = 1, and η = 1. In del Zanna

Table 2. Convergence rates for the SRMHD equations. The propagation
of large amplitude circularly polarized Alfvén waves is computed. In these
calculations we have employed the Rusanov Riemann solver. Results for
L2 norm error of the z-component of magnetic field are given, with re-
construction operators WENO3, WENO5 and WENO7. Simulation time is
t = 2.618033988.

Method Cells L2 error L2 order

WENO3

20 × 20 3.291 × 10−03
40 × 40 4.303 × 10−04 2.93
80 × 80 4.993 × 10−05 3.10
160 × 160 5.430 × 10−06 3.20
320 × 320 6.129 × 10−07 3.14

WENO5

20 × 20 4.624 × 10−05
40 × 40 1.429 × 10−06 5.02
80 × 80 4.293 × 10−08 5.06
160 × 160 1.228 × 10−09 5.13
320 × 320 3.357 × 10−11 5.19

WENO7

20 × 20 4.295 × 10−06
40 × 40 3.236 × 10−08 7.05
80 × 80 2.359 × 10−10 7.10
160 × 160 1.654 × 10−12 7.16
320 × 320 1.120 × 10−14 7.21

et al. (2007) is shown that the speed of the Alfvén wave is given by
the formula

v2A =
B2
0

ρh + B2
0 (1 + η2)



1
2

*...
,

1 +

√√√√
1 − *

,

2ηB2
0

ρh + B2
0 (1 + η2)

+
-

2+///
-



−1

.

With the parameters of the initial condition, the speed of the Alfvén

wave is vA =
√
2/(7 +

√
45) = 0.38196601125. The final sim-

ulation time is then t = 1/vA = 2.618033988 (one period). In
the Table 2 are shown the errors and convergence rates in the L2
norm for the RKFV method. The variable used for this analysis is
the z-component of the magnetic field. Observe that the numerical
scheme converges to the theoretical order of convergence.

4.2.2 One-dimensional Riemann problems

The benchmark for the SRMHD equations involves the solution
of one-dimensional Riemann problems. Two fluids with different
conditions are separated with a membrane at point xm. After the
membrane is removed, the flow is characterized by the appear-
ance of different shock waves and discontinuities. The solution
is computed up to certain end time t. The considered tests are
those discussed by Balsara (2001), and Giacomazzo & Rezzolla
(2006). For all these tests, we have used CCFL = 0.95, and we set
transmissive boundary conditions. The one-dimensional domain is
the closed interval [0, 1] was decomposed into 500 computational
cells, and the membrane separating the left and right initial states
is localized in the point xm = 0.5. The left state will be repre-
sented by wL =

(
ρ, vx, vy, vz, p, Bx, By, Bz

)
L and the right state

by wR =
(
ρ, vx, vy, vz, p, Bx, By, Bz

)
R . Both states are written in

terms of the primitive variables. The exact solution is computed us-
ing the exact Riemann solver developed by Giacomazzo & Rezzolla
(2006).

Riemann problem 1 (RP-1). The initial condition is determined
by the following left and right states
uL =

(
1, 0, 0, 0, 1, 0.5, 1, 0

)
,

uR =
(
0.125, 0, 0, 0, 0.1, 0.5,−1, 0

)
.

(90)
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Figure 7. Relativistic astrophysical jet simulation. The logarithm of rest-mass density at simulation time t = 120. The RKFV method with WENO5 is used in
the simulation. The mesh is made of 1800 × 600 cells cells (top), and 2400 × 800 (bottom).

This test involves the so-called compound structures, that is, struc-
tures that involve a shock and a rarefaction of the same wave family
moving together. Their existence was first discussed in Brio & Wu
(1988) for the MHD equations. This test involves a left-going slow
compound wave. In the analytic solution the slow composed wave
is absent. Other structures appearing after the breakup of the mem-
brane are two fast rarefactions waves propagating in opposite direc-
tions, two slow shocks also propagating in opposite directions, and
a contact discontinuity. For this problem we have assumed γ = 2.
Plots of the rest-mass density, total pressure, and the y-component
of the magnetic field are depicted in the Fig. 8 (first row, from top
to bottom) at time t = 0.4. Computations with WENO3, WENO5,
and WENO7 reconstruction operators are rather similar, but with
a light undershooting present in the solution computed with the
higher-order operators WENO5 and WENO7.

Riemann problem 2 (RP-2). The initial condition is determined
by the following left and right states

uL =
(
1, 0, 0, 0, 30, 5, 6, 6

)
,

uR =
(
1, 0, 0, 0, 1, 5, 0.7, 0.7

)
.

(91)

The solution to this Riemann problem features two left-moving fast
and slow rarefactions waves, a contact discontinuity and two right-
moving fast and slow shocks. We have employed the ideal gas EOS
with adiabatic index γ = 5/3. Plots of the rest-mass density, total
pressure, and the y-component of the magnetic field are depicted
in the Fig. 8 (second row, from top to bottom) at time t = 0.4.
TheWENO3,WENO5, andWENO7 reconstruction operators were
employed for these computations. No oscillations are present, but
the dense intermediate shell is not perfectly resolved.

Riemann problem 3 (RP-3). The initial condition is determined
by the following left and right states

uL =
(
1.08, 0.4, 0.3, 0.2, 0.95, 2, 0.3, 0.3

)
,

uR =
(
1,−0.45,−0.2, 0.2, 1, 2,−0.7, 0.5

)
.

(92)

The solution involves a left-going fast shock, a left-going Alfvén
discontinuity, a left-going slow rarefaction, a contact discontinuity,
a right-going slow shock, a right-going Alfvén discontinuity and a
right-going fast shock. We used an ideal gas EOS with adiabatic
index γ = 5/3. Plots of the rest-mass density, total pressure, and
y-component of the magnetic field are depicted in the Fig. 8 (third
row, from top to bottom) at simulation time t = 0.55. Computations
were donewith differentWENO schemes, but theWENO3was used
exclusively in regions with shocks/discontinuities. Observe the light
overshootings obtained with the WENO5 and WENO7. Shocks are
captured in around 3–4 cells.

Riemann problem 4 (RP-4). The initial condition is determined
by the following left and right states

uL =
(
1, 0, 0.3, 0.4, 5, 1, 6, 2

)
,

uR =
(
0.9, 0, 0, 0, 5.3, 1, 5, 2

)
.

(93)

The solution to this Riemann problem features a left-moving fast
rarefaction, a left-moving Alfvén discontinuity, a left-moving slow
shock, a contact discontinuity, a right-moving slow shock, a right-
moving Alfvén discontinuity and a right-moving fast shock. The
gas has an adiabatic index γ = 5/3. The final simulation time is
set to t = 1.5. Plots of the rest-mass density, total pressure, and the
y-component of the magnetic field are depicted in the Fig. 8 (fourth
row, from top to bottom). The shock are verywell resolved, but some
overshooting is observed for the WENO5 and WENO7 schemes,
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Figure 8. Solution to four one-dimensional Riemann problems for the SRMHD equations. The left and right initial states, and the description of the flow
patterns are given in the text. From top to bottom, RP-1, RP-2, RP-3, and RP-4. Plots of the rest-mass density, total pressure, and the y-component of the
magnetic field are depicted. The solution was computed with a high order finite-volume WENO scheme, with WENO3, WENO5, and WENO7 reconstruction
operators. The computational domain is the interval [0, 1], and it was decomposed into 500 cells.
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meanwhile for the WENO3 scheme undershooting is present in the
region between the dense shell.

4.2.3 Magnetic field loop advection

This test has been extensively used for the MHD equations. With
this problem one can observe whether the algorithm is able to
preserve ∇ · B = 0. In this test a cylindrical current distribution
is advected along some direction of the computational domain not
aligned with the grid. The magnetic loop remains in magnetostatic
balance. For that reason, after some periods, the profile should be
preserve its shape. Multidimensional SRMHD codes that do not
include algorithms for preserving the constraint ∇ · B = 0, or if
they use numerical methods too much diffusive, the magnetic loop
will smear over the time (Tóth 2000; Stone et al. 2008; Mignone &
Tzeferacos 2010; Beckwith & Stone 2011).

Following the description to this problem given by Beckwith &
Stone (2011), the computational domain is the box [−1.0,+1.0] ×
[−0.5,+0.5]. We set the density to ρ = 1, and the pressure p = 1
in the whole computational domain. The components of the initial
velocity satisfy

vx = v0nx, vy = v0ny, vz = 0, (94)

where v0 is the magnitude of the velocity (we use v0 = 2/
√
5), nx

and ny are the components of the unit vector in the direction of
movement of the loop (we use nx = 2/

√
5 and ny = 1/

√
5). The

magnetic field is constant everywhere, except for the loop structure
of radius R = 0.3). For r ≤ R we have

Bx = −B0y/r, By = +B0x/r, Bz = 0, (95)

where r =
√

x2 + y2, B0 is the magnitude of the magnetic field.
We use a small value of this quantity in order to keep the magnetic
pressure smaller than the gas pressure (we use B0 = 10−3). An adi-
abatic EOS with γ = 5/3 is considered to close the system. Periodic
boundary conditions are set in all four edges of the computational
domain. We run the simulation up to time t = 5.0. In the Fig. 9 is
depicted the magnetic field magnitude at times t ∈

{
0.0, 5.0

}
. We

discretize the computational domain into 800 × 400 cells. The high
order finite-volume method with WENO7 reconstruction is used in
smooth parts of the flow. A shock capturing method was not neces-
sary for this test. The divergence cleaning of Dedner et al. (2002)
was used, with cr = 0.18, and ch determined by the maximum
propagation speed in the system. Observe that the loop profile is
only kept when the divergence cleaning is used in order to preserve
the solenoidal constraint.

4.2.4 Current sheet

The current sheet problem was first discussed by Hawley & Stone
(1995) for the MHD equations, and its extension to SRMHD can
be found in Beckwith & Stone (2011). This problem comprises
a region which is uniformly filled with a gas at rest. The initial
configuration for the magnetic field switches signs at the slices
x = +0.25 and x = −0.25. A perturbation to the system with a
sinusoidal velocity function in y is added, which generates non-
linear, linearly polarized Alfvén waves. These Alfvén waves turn
into magnetosonic waves because the magnetic pressure does not
remain constant. Magnetic reconnection occurs because of the two
current sheets at x = ±0.25. Moreover, since the parameter β < 1,
the magnetic reconnection drives highly over-pressurised regions,
which launch magnetosonic waves transverse to the field, causing

magnetic energy to be transformed into thermal energy (Hawley &
Stone 1995). Close to the place where the magnetic reconnection
takes place are produced large magnetic field gradients.

The computational domain is the box [−0.5,+0.5]×[−0.5,+0.5].
The density and pressure are set uniform in the whole domain, with
ρ = 1.0, and p = 0.5β, where the parameter β represents the ratio
of gas pressure to magnetic energy density. The velocity has the
profile given by vy = vz = 0, and vx = A sin(2πy), where the
parameter A is used to test the robustness of the algorithm (Hawley
& Stone 1995). The components of the magnetic field are given by
Bx = Bz = 0, and By = 1 for |x | > 0.25 and By = −1 otherwise. In
our simulation we set A = 0.1 and β = 0.1. An adiabatic EOS with
γ = 5/3 is considered. Periodic boundary conditions are used in all
faces of the computational domain. The simulation time is t = 10.0.
The computational domain is decomposed into 600×600 cells. The
WENO7 reconstruction operator is used along with the WENO3
reconstruction as shock capturing strategy. The divergence cleaning
of Dedner et al. (2002) was used, with cr = 0.18, and ch determined
by the maximum propagation speed in the system. In the Fig. 10
are depicted the rest-mass density at simulation times t ∈

{
5.0, 7.5

}
.

For this very complex problem, the hybridWENO7/WENO3 recon-
struction operator yields excellent results, showing the robustness
and stability of the considered numerical scheme for problems in-
volving magnetic reconnection.

4.2.5 Orszag–Tang vortex

The Orszag–Tang vortex problem was first studied by Orszag &
Tang (1979) for the incompressible MHD equations. Many authors
have used this problem for the compressible MHD equations in
order to know how robust is the used numerical scheme at handling
the formation and the interactions of MHD shocks (Zachary et al.
1994; Ryu & Jones 1995; Ryu et al. 1998; Dai & Woodward 1998;
Helzel et al. 2011; Jiang & Wu 1999; Tóth 2000; Londrillo & del
Zanna 2000). The initial flow profile consists of smooth initial data,
and it is obtained by the superposition of a velocity vortex with a
magnetic vortex. This initial configuration is highly unstable, which
generates a broad range of MHD waves, which interact with each
other, making a transition towards turbulence. The extension to
SRMHD has been studied by Dumbser et al. (2008), and Beckwith
& Stone (2011).

The computational domain is the box [0, 1] × [0, 1]. The density
and pressure are set uniform in the whole domain, with ρ = γ2 and
p = γ. With this choice of the density and pressure, the sound speed
is cs = (γ − 1)/γ. The velocity has the following profile

vx = −A sin(2πy), vy = +A sin(2πx), vz = 0, (96)

where A = 0.5. The magnetic field is given by

Bx = − sin(2πy), By = + sin(4πx), Bz = 0. (97)

An adiabatic EOS with γ = 5/3 is considered. At the boundaries of
the domain we consider periodic boundary conditions. The simula-
tion time is t = 1.0, and in the Fig. 11 are depicted the rest-mass
density and thermal pressure at time t = 1.0. The computational
domain is decomposed into 600 × 600 cells. A high order finite-
volume schemewithWENO7 reconstruction is used in smooth parts
of the flow, and the WENO3 in regions with shocks/discontinuities.
The divergence cleaning of Dedner et al. (2002) was used, with
cr = 0.18. We set the CFL condition to CCFL = 0.95. All used
schemes (namely, WENO3, WENO5, and WENO7) are very sta-
ble and robust when simulating this very challenging problem. The

MNRAS 000, 1–24 (2016)



18 J. Núñez-de la Rosa, and C.-D. Munz

Magnetic Pressure, t = 0.0

2.0

4.0

·10−7 Magnetic Pressure, t = 5.0

2.0

4.0

·10−7

Magnetic Pressure, t = 0.0

2.0

4.0

·10−7 Magnetic Pressure, t = 5.0

2.0

4.0

·10−7

Figure 9. Relativistic magnetic field loop advection. Contour plots of the magnetic pressure without divergence cleaning (top) and with divergence cleaning
(bottom) at time t = 0.0 (left) and at time t = 5.0 (right). The solution was calculated with a finite-volume method with WENO7 reconstruction. The
computational domain is the rectangle [−1.0, +1.0] × [−0.5, +0.5], and it was discretized by using a mesh of 800 × 400 cells.
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Figure 10. Relativistic current sheet problem. Contour plots of the rest-mass density at times t = 5.0 (left) and t = 7.5 (right). The calculations were done
with a finite-volume scheme with WENO7 reconstruction. The computational domain is the box [−0.5, +0.5] × [−0.5, +0.5], discretized by using a mesh of
600 × 600 cells.

xtroem-fv code was able to capture the shock waves and their in-
teractions with the other flow structures emerging in the evolution
of this configuration. In the Fig. 12 is plotted the pressure along the
slices y = 0.4277 and y = 0.3125 at time t = 1.0 for different mesh
resolutions and differentWENO reconstruction operators.We stress
the absence of spurious oscillations in these slices for all WENO
reconstructions.

4.2.6 Cylindrical blast wave

The cylindrical blast wave problem comprises a cylindrical region
located in the centre of a domain, and filled with a magnetized

over-pressured gas. After the system is allowed to evolve, a strong
shock wave moving outwards is formed. Because of the formation
of unphysical values in quantities like the rest-mass density, the
pressure, and the magnitude of the velocity, a very robust shock
capturing has to be used in order to stabilize the simulation. Due
to the periodic boundary conditions, the interactions of the shock
waves lead to very complex configurations (Zachary et al. 1994;
Londrillo & del Zanna 2000; Stone et al. 2008; Mignone et al.
2010).

For this problem, the computational domain is given by the box
[0, 1] × [0, 1]. We set the rest-mass density and pressure uniform
in the whole domain, with ρ = 1.0 × 10−4 and p = 5.0 × 10−4.
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Figure 11. Relativistic Orszag–Tang vortex problem. Contour plots of the rest-mass density (left) and the pressure (right) at time t = 1.0. Computations were
performed with a finite-volume scheme with WENO7 reconstruction. The computational domain is the box [0, 1] × [0, 1], discretized by using a mesh of
600 × 600 cells.
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Figure 12. Relativistic Orszag–Tang vortex problem. Plots of the pressure
along the slices y = 0.3125 (top) and y = 0.4277 (bottom) at time t = 1.0
for different mesh resolutions and differentWENO reconstruction operators.

The pressure in the cylindrical region (x − xc )2 + (y − yc )2 < R,
with (xc, yc ) = (0.5, 0.5), and R = 0.1, is p = 1.0, and the rest-
mass density ρ = 1.0 × 10−2. Initially, the velocity is set to zero,
that is vx = vy = vz = 0. The magnetic field is set to Bx =

By = Bz = 0.1. An adiabatic EOS with γ = 4/3 is considered.
We consider periodic boundary conditions. The simulation time is
t = 0.5, and in the Fig. 13 are depicted the rest-mass density, the
pressure, the Mach number, and Lorentz factor at time t = 0.3. The
computational domain is made of 600 × 600 cells. A high-order
WENO7 reconstruction is used in smooth parts of the flow, and

the WENO3 in regions with shocks. The divergence cleaning of
Dedner et al. (2002) was also used. In the Fig. 14 is plotted the
pressure along the slices y = 0.5 and x = 0.5 at time t = 0.3
for different mesh resolutions and different WENO reconstruction
operators. Observe the lack of spurious oscillations in these slices
for all WENO reconstructions.

4.2.7 Rotor problem

The rotor problem was first proposed by Balsara & Spicer (1999)
for classical MHD. An extension to SRMHD has been considered
by del Zanna et al. (2003), and Dumbser et al. (2008). The problem
consists of a high-density, rapidly spinning fluid in a low-density
fluid. Initially, both fluids are subject to a uniform magnetic field.
Torsional Alfvén waves are launched into the fluid at rest because
of the rapidly rotating fluid. Then, the rotor decreases its angular
momentum.

The computational domain is the square [−0.5,+0.5] ×
[−0.5,+0.5]. The rest-mass density and the pressure are ρ = 1.0
and p = 1.0 in the ambient medium. The cylindrical rotor (0.0 ≤
(x − xc )2 + (y − yc )2 ≤ 0.1, with (xc, yc ) = (0.5, 0.5)), is filled
with a fluid with rest-mass density ρ = 10.0. The pressure inside
the rotor is the same as in the ambient fluid. The ambient fluid is
initially at rest, that is vx = vy = vz = 0. The rotor has an angular
velocity ω such that v = ωr = 0.995 at r = 0.1. A linear taper is
applied to the velocity and rest-mass density field, however only in a
very small range 0 ≤ r ≤ 1.115 so that the density and the velocity
match those of the ambient fluid at rest at a radius of R = 1.115.
The magnetic field is given by Bx = 5.0, and By = Bz = 0 in the
whole computational domain. An adiabatic EOS with γ = 7/5 is
considered. We apply periodic boundary conditions at the bound-
aries of the domain. The computational domain is decomposed
into 600 × 600 cells. The simulation was carried out with a finite-
volume scheme with WENO7 reconstruction along with WENO3
reconstruction operator in regions with shocks/discontinuities. The
divergence cleaning of Dedner et al. (2002) was employed, with
cr = 0.18, and ch determined by the maximum propagation speed
in the system. In the Fig. 15 are depicted the rest-mass density,

MNRAS 000, 1–24 (2016)



20 J. Núñez-de la Rosa, and C.-D. Munz

Rest-Mass Density, t = 0.3

2.0

3.0

4.0

5.0

6.0

7.0

8.0

·10−4 Pressure, t = 0.3

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
·10−2

Mach Number, t = 0.3

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lorentz Factor, t = 0.3

1.0

1.5

2.0

2.5

3.0

3.5

Figure 13. Relativistic cylindrical blast wave. Contour plots of the rest-mass density (top-left), pressure (top-right), Mach number (bottom-left), and Lorentz
factor (bottom-right) at time t = 0.3. The solution was obtained with a finite-volume scheme with WENO7 reconstruction. The computational domain is the
box [0, 1] × [0, 1], discretized by using a mesh of 600 × 600 cells.

the gas pressure, the Mach number, and the velocity magnitude at
simulation time t = 0.4. We observe that the rotor does launch tor-
sional Alfvén waves, as expected. Inside the rotor, the fluid is still
in uniform rotation, as it is shown in the Mach number plot.

In the Fig. 16 is plotted the pressure along the slices y = 0.5 and
x = 0.5 at time t = 0.4 for different mesh resolutions and different
WENO reconstruction operators. Observe the lack of spurious os-
cillations in these slices for allWENO reconstructions. Observe also
that the profile is almost the same for all schemes and resolutions
considered in the plot.

4.2.8 Cloud–shock interaction

The cloud–shock interaction problem has been used to simulate the
disruption of a high density cloud by a strong shockwave.We follow
the setup presented by He & Tang (2012b), which is based on the
classical MHD version discussed by Dai & Woodward (1994), and
Tóth (2000). The computational domain is the box [0, 2] × [0, 1].

The discontinuity is located at x = 1.2 with the left and right states
in primitive variables given by

wL =

*..............
,

3.86859
0.68
0.0
0.0

1.251148954517
0.0

0.8498108108786
−0.8498108108786

+//////////////
-

, wR =

*..............
,

1.0
0.0
0.0
0.0
0.05
0.0

0.1610642582333
0.1610642582333

+//////////////
-

. (98)

The cloud is represented by a dense cylinder, and it is located at
x = 1.6, y = 0.5. The radius of the cylinder is r = 0.15, and its rest-
mass density is ρ = 30.0. The cloud is in hydrostatic equilibrium
with the ambient gas. An adiabatic EOS with γ = 5/3 is consid-
ered. Transmissive boundary conditions are applied at the domain
boundaries. The simulation time is t = 2.0, and in the Fig. 17 are
depicted the logarithm of the rest-mass density, the gas pressure,
and the Lorentz factor computed with a high order finite-volume
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Figure 14. Relativistic cylindrical blast wave. Plots of the pressure along
the slices y = 0.5 (top) and x = 0.5 (bottom) at time t = 0.3 for different
mesh resolutions and different WENO reconstruction operators.

scheme with WENO7 reconstruction. The physical domain was de-
composed into 800 × 400 cells. The divergence cleaning of Dedner
et al. (2002) was used. The CFL condition used in this simulation
was CCFL = 0.95.

4.2.9 Kelvin–Helmholtz instability

For this test, we use the configuration proposed by Beckwith &
Stone (2011). The Kelvin–Helmholtz instability consists of a per-
turbation applied to a systemwith a velocity shear. Here, we run this
test problem to demonstrate the algorithm’s ability to evolve a lin-
ear perturbation into non-linear magnetohydrodynamic turbulence
(Beckwith & Stone 2011; Radice & Rezzolla 2012).

The computational domain is the box [−0.5,+0.5]×[−1.0,+1.0].
The density is set to ρ = 1.0 for |y | ≤ 0.25, and ρ = 2.0 for
|y | < 0.25. The pressure is uniform in the whole domain, with
p = 2.5. The x-component of the velocity satisfies vx = 0.5 if
|y | ≤ 0.25, and vx = −0.5 if |y | < 0.25. The shear velocity is given
by

vx (x) =



+vshear + A0 sin(2πx), if y ≥ 0.25;
−vshear − A0 sin(2πx), if y < 0.25;

(99)

where vshear = 0.5. The instability is seeded by adding a small
perturbation in the transverse component of the velocity,

vy (x) =



+A0 sin(2πx), if y ≥ 0.25;
−A0 sin(2πx), if y < 0.25;

(100)

where A0 = 0.01 is the perturbation amplitude. The components
of the magnetic field are given by Bx = 0.2, and By = Bz = 0.
An adiabatic EOS with γ = 4/3 is considered. At the boundaries
of the domain we consider periodic boundary conditions. The final
simulation time is t = 5, and in the Fig. 18 is depicted the rest-
mass density at times t ∈

{
3, 4, 5

}
obtained with the finite-volume

WENO7 scheme. The computation was carried out on a mesh made
of 400 × 800 cells.

5 Conclusions

In this work we have discussed the extension of the xtroem-fv
code to the SRHD and SRMHD equations. xtroem-fv is a new
code based on very high order finite-volume methods. Its main goal
is solving hyperbolic conservation laws found in computational as-
trophysics, namely, the MHD, SRHD, and SRMHD equations. In
order to achieve very high order of accuracy on Cartesian meshes,
xtroem-fv makes use of high-order WENO reconstruction oper-
ators. For handling discontinuities and shocks in an efficient and
robust manner, xtroem-fv employs a strategy based on shock de-
tection and further order reduction of the reconstruction operator in
those flow regions with discontinuities. Additional building blocks
of the xtroem-fv code for SRHD and SRMHD include the Rusanov
and HLL Riemann solvers. These solvers are very robust when a
high-orderWENO reconstruction is used, allowing to simulate com-
plex problems in relativistic astrophysics. The time discretization
is carried out with a fourth-order SSPRK, and for the numerical
treatment of the solenoidal constraint xtroem-fv uses the GLM di-
vergence cleaning. These ingredients are the base of a very efficient
and robust numerical framework for solving the MHD, SRHD, and
SRMHD equations under very extreme flow conditions.

We have performed a series of numerical simulations to test the
ability of xtroem-fv to tackle complex flow computations in rela-
tivistic astrophysics. Among these tests, one- and two-dimensional
problems were considered, especially tests to verify the high-order
accuracy of the WENO schemes in smooth flows, one-dimensional
Riemann problems, and two-dimensional problems with different
initial configurations, which after the time evolves, they present
several challenging structures even for low-order schemes, like dis-
continuities, strong rarefactions, shock waves, and the interaction
between all of these features. In this work we mainly report results
obtained with a WENO7 reconstruction operator, with the only ex-
ception of the slab-jet simulation in SRHD, where we have shown
calculations with the WENO5 scheme. All computations confirm
the capacity of xtroem-fv to solve complex flow simulations with
very high order finite-volume methods.

Currently, in xtroem-fv we are implementing the equations of
resistive relativistic magnetohydrodynamics along with appropri-
ate time discretizations for this kind of equations, like the IMEX
schemes. Additional work is being done in the direction of adaptive
mesh refinement in order to efficiently simulate complex and highly
dynamical flow structures. Applications of xtroem-fv for accretion
flow problems and (relativistic) magnetohydrodynamic turbulence
are currently being carried out, emphasizing in the use of high-order
numerical schemes.
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Figure 15. Relativistic rotor problem. Contour plots of the rest-mass density, pressure, Mach number, and the magnitude of the velocity at time t = 0.4. These
calculations were performed with an RKFV with hybrid WENO7/WENO3 reconstruction. The computational domain is the box [0, 1] × [0, 1], discretized by
using a mesh of 600 × 600 cells.
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