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Abstract

There is a strategic importance for the steel rolling industry to get a better understanding of the strip-roll inter-
action to improve roll-gap models, increase strip quality and decrease roll degradation. This requires roll-gap
sensors able to measure this interaction under industrial rolling conditions and in real time in order to propose a
feed-back control of process parameters. To reach these goals, this paper proposes a new roll-gap friction sen-
sor based on an inverse method that interprets Optical FiberBragg Gratings (FBG) strain measurements under
the roll surface (fully embedded), which enables to evaluate contact stresses with very short computation times,
compatible with real-time interpretation. This elastic inverse method is analytical and relies on plane-strain and
isothermal assumptions. The experimental apparatus is detailed, technical issues are clearly exposed as well as
calibration procedures. Several pilot cold rolling tests have been performed at various rolling speeds and different
strip thicknesses in order to demonstrate the industrial feasibility. Resulting evaluations of contact stresses are
then compared with numerical simulations. Reasonable agreement is obtained for normal stress (i.e., pressure)
but not for shear stress (only an order of magnitude is obtained).
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Table 1: Nomenclature

Rs Outer radius (radius of the roll)
Rm Inner radius (radius of the measurements by Optical Fiber)
d Depth of Optical Fiber Bragg Grating Sensors
L Roll width
l Strip width
r, θ Polar coordinates
z= r exp(iθ) Complex coordinate
Φ,Ψ Holomorphic potential
εmrr , ε

m
45, ε

m
θθ

Measured strains at the inner radiusRm

εrr , εrθ, εθθ Strain tensor in the roll
σrr , σrθ, σθθ Stress tensor in the roll
λ, µ Lamé coefficients
E, ν Young and Poisson moduli
ω Rotation speed
f Data acquisition frequency
t0 Strip entry thickness
t1 Strip exit thickness

T =
t0 − t1

t1
Thickness reduction ratio

lC Contact length
FR Rolling force
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σT
0 Strip entry tension
σT

1 Strip exit tension

1. Introduction

Future customer requirements for higher quality of flat rolled products (i.e. strip thickness, strip flatness and
strip surface free from defects) need a better understanding of the interaction between strip deformation in the
roll bite and work roll surface (Figure 1). This need is also due to the current trend of rolling mills to combine
higher rolling speeds, larger reduction, harder steel grades and thinner rolled strips, that all affect the three strip
qualities (thickness, flatness and surface). The final goal is to decrease product yield associated to these rolled
strip quality defects and to improve mill productivity by minimizing roll degradation. Typically, three main rolling
conditions are used to produce flat steel products: hot, coldand temper rolling. Thick strips (thickness from 30 cm
to 1 cm) are rolled at around 1500 K under hot rolling conditions. The contact between the strip and the roll is a
few centimeters long. Thinner strips (thickness from 5 mm to1 mm) are rolled at around 400 K under cold rolling
conditions. Shorter contact lengths are obtained (around 10 mm). Finishing steps, for packing for instance, are
done under temper rolling conditions for very thin strips (afew hundreds of micrometers) with very short contact
lengths (a few millimeters). Product quality is quantified by terms of flatness, defect free surface and thickness
homogeneity. The different rolled materials (low or high alloy steels, low or highcarbon steels, stainless or special
steels) behave differently with respect to defects. Rotation speed of work rolls, rolling force (pressure applied by
backup rolls), incoming strip speed, strip temperature, cooling and lubrication systems orientation are significant
parameters regarding quality issues. Modern rolling millscombine higher rolling speeds, larger reduction ratios,
harder steel grades and thinner rolled strips. Empirical settings do not apply anymore, thus to ensure a better
product quality, knowledge of friction and lubrication in the roll gap becomes a very significant issue. Indeed,
unknown shear stress and normal pressure as well as lubrication conditions take place in the strip/roll contact,
where plastic deformations are generated, determining product quality. Many numerical simulations have been
developed in order to characterize contact conditions as a function of rolling parameters. An interesting review of
numerical simulations dedicated to the rolling process hasbeen published by Montmitonnet (2006). For example,
Jiang and Tieu (2001) proposed a rigid plastic/visco-plastic FEM and Hacquin (1996) published a 3D thermo-
mechanical strip/roll stack coupled model called LAM3/TEC3 developed by Cemef, Transvalor, ArcelorMittal
Research and Alcan. Abdelkhalek et al. (2011) computed the post-bite buckling of the strip, which is added to the
older simulation of Hacquin (1996), in order to predict accurately flatness defects. Shahani et al. (2009) simulated
a hot rolling process of aluminum by FEM and used an artificialneural network in order to predict the behavior
of the strip during the rolling process (the artificial neural network being trained by the simulation). Numerical
simulations adapted for particular hot rolling of large rings have been proposed by Wang et al. (2009).

Work roll

Backup roll

Cooling

Lubrication 
water/oil emulsion

Product

Figure 1: Rolling process

Such predictive models are necessary to understand phenomena (material flow in the roll gap, strain, stress
and temperature rate fields) in order to establish rolling strategies for better productivity and quality. However,
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contact conditions (friction) of these numerical simulations do not have experimental validation in industrial or
semi-industrial conditions. Moreover, the roll-strip contact is usually described by Coulomb or Tresca friction laws
which are over-simplified to describe the complexity of the interface. Furthermore, a closed-loop control of rolling
parameters depending on real-time measurements of contactconditions would be a substantial improvement of the
process. Thus, the development of one-line roll gap sensorsadapted for measuring in real-time contact stresses
(pressure and shear stresses) is motivated by this double issue: model validation on the one hand and monitoring
and controlling rolling parameters through feed back control on the other hand. To reach these goals, a European
project RFS-PR-08051 (2014) has been launched with the aim to develop three complementary roll gap sensors
for measuring simultaneously the mechanical, thermal and lubrication conditions at the roll-strip interface. The
present work, which is part of this European project, presents the development of the mechanical sensor for
measuring contact stress during pilot rolling tests. Pin sensors already provide measurements of contact stresses,
although the presence of the pin disturbs the local lubricant flow at the interface, and the contact strongly marks
the strip; industrial use is therefore impossible. Nevertheless, many investigators have designed direct friction
pin sensors such as Jeswiet and Rice (1982) for normal stressor Lu et al. (2002) for shear stress or Andersen
et al. (2001) who developed a commercial transducer. An indirect measurement that does not degrade contact
conditions has been preferred in this study. More preciselyan inverse method, that interprets strain measurements
under the roll surface performed by Optical Fiber Sensors fully embedded inside the roll body, has been developed.
Consequently, marks on the strip are limited and contact conditions are preserved. Technical issues related to
Optical Fiber Sensors insertion under the roll surface, as well as equipment and design are detailed. A calibration
procedure is proposed and clearly exposed. Then, pilot rolling tests are presented and the evaluation of contact
stresses obtained by inverse method is compared with numerical simulations done with LAM3/TEC3 proposed by
Hacquin (1996). In previous works, Weisz-Patrault et al. (2011) developed an analytical inverse method adapted
for rolling processes that interprets stresses at only one position under the roll surface, in order to obtain contact
stresses. Weisz-Patrault et al. (2012a) also proposed an inverse method that interprets temperature data under
the roll surface in order to infer heat fluxes in the roll gap, and a thermoelastic coupling have been proposed
by Weisz-Patrault et al. (2013a). An extension in three dimensions (with several points aligned along the roll
axis) has been also developed by Weisz-Patrault et al. (2013b) for stresses and Weisz-Patrault et al. (2014b) for
temperature. Pilot tests have been performed for thermal inverse problems dedicated to heat flux determination
in the roll gap by Weisz-Patrault et al. (2012b) and Legrand et al. (2012a) with detailed experimental apparatus
(insertion of the thermocouple under the roll surface etc...) and calibration procedures, and by Legrand et al. (2013)
with a specific study on thermal fatigue of rolls. More recently, Weisz-Patrault (2015) proposed a semi-analytical
inverse method based on conformal mapping techniques applied for latent flatness defect detection during rolling
process. In this paper, contact stresses are evaluated through strain measurements obtained by several Optical
Fiber Sensors inserted into the roll, at only one location under the roll surface (around 2 mm under the surface).
An isothermal assumption is made since cold rolling tests are studied here: temperature increase in the roll bite is
sufficiently moderate not to propagate at sub-surface so that these sensors measure only the mechanical roll strain.
The inverse method used for inputs interpretation is based on the isothermal inverse method proposed by Weisz-
Patrault et al. (2011), however a substantial adaptation was required in order to deal with some measurement
issues of an Optical Fiber Sensor (radial strain measurement). Thus, additional mathematical developments are
detailed in this study. In the field of inverse methods dedicated to rolling processes, one can mention the work of
Schnur and Zabaras (1990) and Bezerra and Saigal (1995), respectively based on Finite Element Method (FEM)
and Boundary Element Method (BEM) and iterative calculation. However, computation times exhibited by these
methods are incompatible with real-time interpretation, and no conclusive tests have been done with severe rolling
conditions (i.e., small contact length and steep stress gradient). An analytical inverse method has been proposed by
Meierhofer and Stelson (1987) and evaluated by simulation by Legrand et al. (2012b) on severe rolling conditions.
Results are acceptable, however computation times are incompatible with real-time interpretation and technical
issues are very limiting because two sets of Optical Fiber Sensors are needed at two different radii under the roll
surface. On the contrary, the inverse method proposed by Weisz-Patrault et al. (2011) and adapted in this paper,
enables a real-time computation and simplifies significantly the instrumentation of the work roll with only one set
of Optical Fiber Sensors inserted under the roll surface.

2. Inverse method

In this section, general principles that underlie the inverse method are presented as well as specific develop-
ments, considering the fact that the radial Optical Fiber Sensor was not usable as explained in Section 4. The
original inverse method published by Weisz-Patrault et al.(2011) was to measure radial and shear stresses under
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the roll surface (at a radiusRm wheremmeansmeasured) with three Optical Fiber Sensors: radial, circumferential
and at 45 degrees, so that a strain gauge is obtained and the local sub-surface strain tensor of the work roll can be
measured at one inner roll radius. The three sensors are sufficiently close to each other, so that only one measure-
ment point can be considered, thus successive measurementsare performed during each cycle using the rotation
of the work roll, as presented in Figure 2a. It is assumed thatcontact stresses evolution is sufficiently slow, so that
during each cycle, contact stresses are roughly time-independent even though it can evolve from cycle to cycle.
An analytical solution based on series expansion is determined in the sub-domain defined by the disk of radiusRm.
Since the solution exists in the whole domain (disk of radiusRs > Rm), fields are extended by continuity towards
the roll surface, and especially at radiusRs, where contact stresses are inferred as shown in Figure 2b.

(a) Successive measurements (b) Extension by continuity

Figure 2: Principle of inner roll successive measurements andtheir extension by continuity to roll surface

The analytical solution relies on plane strain assumption and elastic calculations. Muskhelishvili (1953)
demonstrated, on the basis of Airy’s potential theory, thatelastic plane problems can be written with complex
formalism. Weisz-Patrault et al. (2014a) published recently an extension in 3D of this classical elastic complex
formalism, using the 4D quaternionic algebra and the concept of monogenic functions (extension of holomorphy
in quaternionic algebra). However, since only one set of Optical Fiber Sensors is inserted under the roll surface
at the middle of the axial direction, the classical complex formulas under plane strains assumption are used as
follows:

{

σrr + σθθ = 2
(

Φ(z) + Φ(z)
)

−σrr + σθθ + 2iσrθ = 2 exp(2iθ) (Ψ(z) + zΦ′(z))
(1)

whereσrr , σrθ andσθθ represent the stress field,z= r exp(iθ) represents the complex coordinates andΦ andΨ are
two holomorphic potentials to be determined by means of the measurements. The holomorphy of both potentials
on a disk enables to write power series expansions:

Φ(z) =
+∞∑

k=0

Φk

(

z
Rm

)k

and Ψ(z) =
+∞∑

k=0

Ψk

(

z
Rm

)k

(2)

Hence:





σrr (r, θ) + σθθ(r, θ) = 2
+∞∑

k=0

(

r
Rm

)k (

Φk exp(ikθ) + Φk exp(−ikθ)
)

−σrr (r, θ) + σθθ(r, θ) + 2iσrθ(r, θ) = 2
+∞∑

k=0

(

r
Rm

)k
(

Ψk exp(i(k+ 2)θ) + kΦk exp(ikθ)
)

(3)

Unknown coefficients are determined with the measured condition, that is to say that at the inner radiusRm radial
and shear stressesσrr (Rm, θ) andσrθ(Rm, θ) should match measured radial and shear stresses denoted byσm

rr (θ)
andσm

rθ(θ) (wheremmeansmeasured). Since:

1
2π

∫ 2π

0
exp(ikθ) dθ =

{

1 if k = 0
0 if k , 0

(4)
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coefficients are evaluated as follows:





Φ0 =
1
4π

∫ 2π

0
σm

rr (θ)dθ

k ≥ 1 Φk =
1
2π

∫ 2π

0

σm
rr (θ) + iσm

rθ(θ)

exp(ikθ)
dθ

k ≥ 0 Ψk = −
1
2π

∫ 2π

0

(2+ k)σm
rr (θ) + ikσm

rθ(θ)

exp(i(k+ 2)θ)
dθ

(5)

These latter integrals can be computed very efficiently using Fast Fourier Transform (fft) as detailed by Weisz-
Patrault et al. (2011), which is the main reason of the very short computation times obtained with the presented
method (time displayed by Scilab Enterprises (2012): 0.05 second for a quadcore CPU running at 2.8 GHz). How-
ever, Optical Fiber Bragg Gratings do not directly measure stresses, but strains and with three strain measurements
in different directions, one can obtain stresses. However, as detailed in Section 4, the radial Fiber Bragg Grating
measurements are not consistent with the two other strain measurements (circumferential and at 45 degrees), and
cannot be used with confidence (this is mainly due to some gluing issues). Therefore to overcome this difficulty,
the inverse method must be modified in order not to use the radial strain measurement. From (3) the stress tensor
is obtained component wisely:






σrr (r, θ) =
1
2

+∞∑

k=0

(

r
Rm

)k (

(2− k)Φk exp(ikθ) + (2− k)Φk exp(−ikθ) − Ψk exp(i(k+ 2)θ) − Ψk exp(−i(k+ 2)θ)
)

σrθ(r, θ) = −
1
2i

+∞∑

k=0

(

r
Rm

)k (

−kΦk exp(ikθ) + kΦk exp(−ikθ) − Ψk exp(i(k+ 2)θ) + Ψk exp(−i(k+ 2)θ)
)

σθθ(r, θ) =
1
2

+∞∑

k=0

(

r
Rm

)k (

(2+ k)Φk exp(ikθ) + (2+ k)Φk exp(−ikθ) + Ψk exp(i(k+ 2)θ) + Ψk exp(−i(k+ 2)θ)
)

(6)

The isotropic behavior is given by:

2µε = σ −
λ

3λ + 2µ
tr

(

σ

)

1 (7)

where bold symbols are vectors, bold underlined symbols are2nd order tensors,σ is the stress tensor,ε is the
strain tensor,1 is the identity tensor, (λ, µ) are Laḿe coefficients. Thus, the strain tensor is obtained component
wisely as a function of the unknown coefficientsΦk andΨk:






2µεrr (r, θ) =

+∞∑

k=0





1
2

(

r
Rm

)k (

(2− k)Φk exp(ikθ) + (2− k)Φk exp(−ikθ) − Ψk exp(i(k+ 2)θ) − Ψk exp(−i(k+ 2)θ)
)

−

(

r
Rm

)k
λ

λ + µ

(

Φk exp(ikθ) + Φk exp(−ikθ)
)




2µεrθ(r, θ) = −
1
2i

+∞∑

k=0

(

r
Rm

)k (

−kΦk exp(ikθ) + kΦk exp(−ikθ) − Ψk exp(i(k+ 2)θ) + Ψk exp(−i(k+ 2)θ)
)

2µεθθ(r, θ) =

+∞∑

k=0





1
2

(

r
Rm

)k (

(2+ k)Φk exp(ikθ) + (2+ k)Φk exp(−ikθ) + Ψk exp(i(k+ 2)θ) + Ψk exp(−i(k+ 2)θ)
)

−

(

r
Rm

)k
λ

λ + µ

(

Φk exp(ikθ) + Φk exp(−ikθ)
)




(8)

Fiber Bragg Gratings enable to measure at the inner radiusRm the following strains:εmrr (θ), ε
m
45(θ) andεm

θθ
(θ) as

shown in Figure 3. Thus, a simple tensorial calculation gives:

ε45 = −εrθ +
εrr + εθθ

2
(9)
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εrr

εθθ

45°

ε
45

Figure 3: Optical Fiber Bragg Grating Sensors orientation

Thus, strains according to the available directions (ε45 andεθθ) are written as follows:





2µεθθ(r, θ) =

+∞∑

k=0





1
2

(

r
Rm

)k (

(2+ k)Φk exp(ikθ) + (2+ k)Φk exp(−ikθ) + Ψk exp(i(k+ 2)θ) + Ψk exp(−i(k+ 2)θ)
)

−

(

r
Rm

)k
λ

λ + µ

(

Φk exp(ikθ) + Φk exp(−ikθ)
)




2µε45(r, θ) =

+∞∑

k=0





1
2i

(

r
Rm

)k (

−kΦk exp(ikθ) + kΦk exp(−ikθ) − Ψk exp(i(k+ 2)θ) + Ψk exp(−i(k+ 2)θ)
)

+

(

r
Rm

)k
µ

λ + µ

(

Φk exp(ikθ) + Φk exp(−ikθ)
)




(10)

The measured condition, which requires that calculated strains match measured strains, is introduced. Thus, mea-
sured strains are expressed at the inner radius in corresponding directions as a function of the unknown coefficients
Φk andΨk:

∀k ≥ 1,






µ

π

∫ 2π

0
εmθθ(θ) exp(−ikθ) dθ = Φk

(

2+ k
2
−
λ

λ + µ

)

+
Ψk−2

2
µ

π

∫ 2π

0
εm45(θ) exp(−ikθ) dθ = Φk

(

−
k
2i
+
µ

λ + µ

)

−
Ψk−2

2i

(11)

Hence:





Φ0 =
λ + µ

2π

∫ 2π

0
εmθθ(θ)dθ =

λ + µ

2π

∫ 2π

0
εm45(θ)dθ

∀k ≥ 1 Φk =
(1+ i)(λ + µ)

2π

∫ 2π

0

εm45(θ) − iεm
θθ

(θ)

exp(ikθ)
dθ

∀k ≥ 0 Ψk = −
(1+ i)

2π

∫ 2π

0

(2µ + (k+ 2)(λ + µ))εm45(θ) − (2µ + i(k+ 2)(λ + µ))εm
θθ

(θ)

exp(i(k+ 2)θ)
dθ

(12)

This latter expression (12) of coefficientsΦk andΨk depends only on exploitable measured strains and replaces
the expression (5). Obviously, the Fast Fourier Transform can be used as well for very efficient computations.
Finally contact stresses (i.e., pressure and shear stresses) are determined by takingr = Rs in (6).

Nevertheless, all inverse methods are ill-posed, in other words, there is a lack of stability: thus very small input
variations (for example measurement noise or even quadrature errors) can lead to very large output variations. As
explained by Weisz-Patrault et al. (2011), this inverse method using series expansions, the ill-posedness is easily
identifiable. Indeed, the computation of coefficientsΦk andΨk according to (12) leads to quadrature errors. Let
explain the underlying ideas with a random error of order of magnitudee > 0: for each term of sums involved
in (6), the error is amplified by(Rs/Rm)k, thus the resulting stress components are roughly affected by the following
error:

e×
N∑

k=0

(

Rs

Rm

)k

→
N→+∞

+∞ (13)

In order to overcome stability problems, regularization techniques are used. Most of the time for iterative meth-
ods that aim at minimizing a cost function representing the difference between measurements and computations,

6



regularization consists in adding an additional conditionin the cost function; for example the derivatives of the
searched fields, which tend to smooth them, large oscillations being a typical clue of bad conditioning. For analyt-
ical inverse methods with series expansions, it is clear that regularization techniques simply consist in truncating
sums. Two concurrent trends can be mentioned: convergence on the one hand: the truncation order should be
large enough so that truncated sums are good approximationsof corresponding infinite sums, and lack of stability
on the other hand: the truncation order should not be too large so that amplified errors do not affect too much
the solution. A compromise should be found. Weisz-Patraultet al. (2011) proposed a rule of thumb in order to
determine automatically the appropriate truncation orderwith some simple criteria related to the inputs. However,
amplified coefficients|Φk| (Rs/Rm)k and|Ψk| (Rs/Rm)k are more directly related to ill-posedness. Thus, the best op-
tion is likely to truncate sums according to the evolution ofthese amplified coefficients as shown in Figure 14 that
corresponds to pilot tests described in Section 5. In this paper, the truncation order has been determined manually.
No algorithm that automatically selects the appropriate truncation order, according to the amplified coefficients,
has been developed, however this aspect should be investigated for future industrial applications.

3. Experimental apparatus

In this section the measurement loop is described. Its underlying principle relies on Optical Fiber Bragg
Grating (FBG) strain sensors. Mechanical performances of FBG sensors such as tensile and fatigue properties
have been studied recently by Frieling and Walther (2013). In this study, FBG sensors are glued into blind bores
beneath the surface of a� 42 mm diameter cylindrical piece of metal (the plug). This plug is then inserted into
the roll as shown in Figure 4a in order to perform real-time strain measurements during the rolling process, a few
hundreds ofµm close to the roll contact surface. In this section the measurement loop is described. Its underlying
principle relies on Optical Fiber Bragg Grating (FBG) strain sensors. Mechanical performances of FBGs such as
tensile and fatigue properties have been studied glued intoblind bores beneath the surface of a� 42 mm diameter
cylindrical piece of metal (the plug). This plug is then inserted into the roll as shown in Figure 4a in order to
perform real-time strain measurements during the rolling process, a few hundreds ofµm close to the roll contact
surface.

The FBG acts as a local sensor characterized by its Bragg wavelengthλBragg = 2ne f f Λ, wherene f f is the
effective refractive index of the core of the optical fiber, andΛ the pitch of the grating. At a usual scale (a few
tenths of Kelvin and a few hundreds ofµm/m), this sensor is mainly sensitive to both temperature variations∆T
and longitudinal strain variations∆ε, and to a lesser extent, to hydrostatic pressure variations∆P according to the
following relationship (Ferdinand et al. (2009)):

∆λBragg

λBragg
= a∆ε + b∆T + c∆P with:






a ≃ 0.78× 10−6 (µm/m)−1

b ≃ 7.7× 10−6 K−1

c ≃ −2.94× 10−6 bar−1

(

λBragg centered on 1550 nm
)

(14)

In our configuration, the wavelength shifts∆λBragg of the FBGs glued into the plug mainly depend on the
longitudinal strain∆ε, even if an hydrostatic pressure effect could also be observed, but this last component is
usually negligible in most applications, therefore leading to a first and simplified relationship:

∆λBragg{∆ε}

λBragg{∆ε}

≃ a{∆ε}∆ε + b{∆ε}∆T +
✘
✘

✘✘❳
❳

❳❳
c{∆ε}∆P
︸  ︷︷  ︸

neglected

(15)

FBG strain sensitivity calibration experiments are first performed at room temperature on the optical fiber itself
before being glued into the plug. To do so, calibrated massesm are attached to the optical fiber, pulling with
vertical forceF f = mg. In such configuration, the longitudinal strain∆ε and the sensitivitya can be expressed
according to:

∆ε (m) =
4mg

E fπφ
2
f

=⇒ a =
∆λBragg

λBragg

E fπφ
2
f

4mg
with:






g = 9.81 m.s−2 gravitational acceleration
φ f = 125µm bare fiber diameter
E f ≃ 72 GPa optical fiber Young’s modulus

Measurements performed with twelve different Fiber Bragg Gratings, with massesm ranging from 0 kg (reference
state) up to 0.263 kg (equivalent to∆ε ≃ 0.29% which is greater than the yield strain of usual steel grades), give
an average sensitivity〈a〉 close to 0.72 with a standard deviation close to 0.008, which is not significantly different
from the usual 0.78 value (14).

7



Strain gradients, especially in the radial direction during roll rotation, are very steep in the contact vicinity.
Therefore, short 1 mm long FBGs were preferred (instead of classical 6+ mm long FBGs) in order to limit as much
as possible gradient effects leading to a stretch of the FBG reflected spectrum, henceto difficulties to accurately
identify the characteristic Bragg wavelengthλBragg. The other advantage of such short Fiber Bragg Gratings is
a broader reflected spectrum, with a FWHM closer to 800 pm, in comparison to typically 250 pm for standard
gratings (as detailed by Martinez (1999)). Optical measurement systems can therefore take benefit from additional
information in the spectral domain, leading to a more accurate Bragg wavelength detection, despite the fact that
significant less optical power is reflected by shorter gratings1.

From the practical point of view, gluing Optical Fibers in a 40 mm long and 400µm diameter hole, furthermore
closed at its end2, is a technical challenge: this has been achieved using a syringe equipped with a precision tubing
long enough to, first, inject the glue from the bottom of the hole in order to eliminate any bubble and wet the
whole surface, and second, to accurately place the FBGs at their expected position below the external surface. At
last, the glue is cured according to a specific recipe, takingalso into account degassing issues (Figure 4b).

This � 400µm hole diameter (in comparison, bare fiber diameterφ f is equal to� 125µm) is in fact a good
compromise between machining technical feasibility (length vs. diameter ratio is equal to 100) and relaxation
times after mechanical compressions of the plug: this can beexplained if we consider that strain transduction
mechanisms from the plug to the FBGs mainly involve shear stresses, whose strength is roughly inversely propor-
tional to the thickness of the film of glue surrounding the Optical Fibers (the thinner the better).

Drill

Evacuation

of wires

Plug

Work roll

Polishing

(a) Instrumented plug installed into the work roll

Bragg Grating
1 mm

Bare fibre

Glue

Polyimide coating

Plug

(b) Typical FBG position into plug’s hole

Figure 4: Instrumented work roll, FBG sensors in the surface vicinity

Several tests have been performed to select the glue. The main criteria were the ability to get an homogenous
bonding without air voids (as shown in Figure 5a) and to exhibit good fatigue performances to resist to fatigue
solicitation during roll revolutions. Compression fatigue tests have also been performed with typically up to 106

cycles at different strain levels (60µm/m, 120µm/m, 600µm/m and 1200µm/m) and different rates (5 Hz, 10 Hz,
15 Hz and 20 Hz), compliant with rolling experiments (thermo-mechanical fatigue tests could be performed for
hot rolling conditions in further investigations). Some samples used for these tests are presented in Figure 5b.
Finally, amongst a set of four candidates, the glue that exhibited the best compromise in terms of bonding without
significant residual strain gradients after cure (which maybe due, but not exclusively, to the presence of voids),
good fatigue performances was selected.

1Which may also require to add an optical amplifier in the measurement loop for a better signal to noise ratio.
2This is required to avoid significant marks on the strip duringthe rolling process.
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(a) Typical air void defect into the glue at the interface
with a transparent precision tubing

(b) Typical bodies used to test simultaneously four dif-
ferent glues during fatigue tests

Figure 5: Selecting the glue

As mentioned previously, three Optical Fiber Bragg Gratings dedicated to strain measurements are glued into
the plug (Figure 6a). However, even if the problem is assumedto be isothermal in this paper dedicated to cold
rolling process, this experimental apparatus is also planned to be used in hot rolling conditions: therefore, it will
have to face very steep temperature gradients, generating additional thermal strains in the plug3, and consequently
along the FBGs. This must be taken into account.

Several solutions can be considered, but the easiest to implement is probably to use a fourth FBG free from
stress located in the very close vicinity of the first three FBGs, therefore acting, once calibrated, as a local temper-
ature sensor. The additional informationλBragg{∆T}

provided by this grating, in combination with (15), can be used
to compensate first order temperature cross-sensitivity effects on the strain measurements:

∆λBragg{∆T}

λBragg{∆T}

= b{∆T}∆T =⇒ ∆ε ≃
1

a{∆ε}





∆λBragg{∆ε}

λBragg{∆ε}

−
b{∆ε}
b{∆T}

∆λBragg{∆T}

λBragg{∆T}





However, even if the four FBGs are very close one to another (Figure 6a), their measurements do not correspond
exactly to the same physical area. This small distance between two gratings therefore introduces some time
and space discrepancies in the measurements. This is all themore true in transient states, especially with steep
temperature gradients, considering the fact that the time response and the sensitivity to temperature of a FBG
dedicated to strain measurements (glued to the plug) are also different from the “free from stress” temperature
compensation FBG. These discrepancies still exist in steady states, however in some extent, one can consider
that they are reproducible from cycle to cycle, therefore enabling additional elaborated numerical compensation
techniques to be implemented to take into account these phenomena.

The plug shown in Figure 6a has been designed keeping in mind that all the four out-coming Optical Fibers
must be kept aligned with the plug axis (radial direction) inorder to be easily routed (without any break) to the roll
center and then to the external data acquisition station as detailed in the following. The FBG used for temperature
compensation and the FBG measuring the radial strainεmrr are inserted one close to another into two separate holes
aligned with the plug axis. The two other Optical Fibers dedicated toεm

θθ
andεm45 measurements are inserted into

the plug according to a more complicated scheme in order to get the appropriate FBG orientations in the surface
vicinity. The curvature radii are limited toRmin = 10 mm to avoid mechanical fatigue breaks as well as significant
optical signal power losses, two reasons which may prevent any measurement. Technically, such a complicated
path cannot be drilled inside the plug body besides the fact that the Optical Fibers would be very difficult to insert.
That is the reason why two slots on the sides of the plug sides are made with specific shapes at the bottom, then a
thin hole is drilled from the slot with the right orientationto roll surface. Optical Fibers are inserted at the bottom
of the slots, and then inserted and glued in the hole with the same procedure as the two radial ones. A picture of
manufactured plugs is presented in Figure 6b.

3This additional thermal strain should be taken into account with a thermoelastic coupling as proposed by Weisz-Patrault et al. (2013a).
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Cuts
ε

θθ

ε
45ε

rr

T

Fibre optics

d=2.175 mm

(a) 3D CAD plug design
(b) Manufactured plugs

Figure 6: Plug design and the manufactured plugs with their 4 aligned holes for Optical Fibers insertion

Two successive Optical Fibers are spaced 1.25 mm along the axial direction. It is considered that the stress
field is sufficiently homogeneous along the axial direction at this scale, so that one can consider all Optical Fibers
at the same axial position. A first test of the plug before insertion inside the roll body is performed under press
and a picture is presented in Figure 7a. FBGs responses present very good linearity as shown in Figure 7b, where
F is the vertical force (in Newton) applied by the press andεT represents the deformation of the FBG free from
stress dedicated to temperature cross-sensitivity compensation (no significant sensitivity under pressure at room
temperature can be noticed in comparison with the other FBGs).

(a) Plug under press
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-0.01
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0 5 10 15

ε (%)

F (N)

εrr

εθθ

ε45

εT

(b) Strain linearityvs.compression force

Figure 7: Testing FBGs response

The plug is inserted by compression at room temperature in a work roll hole that has been initially drilled
(Figure 4a). To obtain a strong fixation of the plug in the roll, the difference of diameter between plug and hole
is 1 ‰ (hole diameter smaller than plus diameter by 1 ‰). Once the plug has been inserted in the work roll, the
surface is re-ground to be flat (Figure 8a) so that marks on strips are limited. After this roll re-grinding, the Bragg
gratings are located at 2.175 mm under the roll surface.

Optical fibers signals are extracted from the roll center where all the four FBG reflected spectra are gathered
together on a single optical fiber using an optical coupler. Thus all the four FBGs can be interrogated simultane-
ously. Bragg wavelength of each FBG has been determined withrespect to the expected spectral range during the
roll tests, in order to prevent two spectra to overlap, it is then still possible to identify each optical fiber even if, for
any reason, only one reflected spectrum (instead of four expected) is transmitted through the optical coupler. This
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signal is then transmitted from the rotating roll to an external fixed data acquisition station through a Fiber Optic
Rotary Joint (FORJ). One can see this rotary joint and the out-coming optical fiber in Figure 8b.

(a) Work roll with its instrumented plug

(b) Fiber Optic Rotary Joint installed in the instru-
mented work roll axis

Figure 8: Pictures of the work roll

4. Sensor calibration

The whole measurement system (composed of the work roll, theplug, the FBGs and the data acquisition
system) has been calibrated with two different data acquisition systems working at two different frequencies:
960 Hz and 3378 Hz. Both systems must be calibrated separately. To get calibration test conditions close to rolling
conditions, the instrumented work roll is motorized and rotates directly against the other work roll that rotates
freely (no motorization or brace) as shown in Figure 9a. No sliding between both rolls occurred during calibration
tests, and shear stress in the roll/roll contact can be neglected because most of tangential forces applied in the
contact are used to spin the lower roll and do not generate significant shear stress in the roll body. Thus, in these
conditions, the classical Hertz contact formulas are applied in order to model calibration tests: Hertz formulas
enable here to get a known contact stress distribution at roll surface to calibrate sub-surface optical fibers response.
Three rolling forces, corresponding to 25 tons, 50 tons and 75 tons (or alternatively 833.3 N/mm, 1666.6 N/mm
and 2500 N/mm since the work roll width is 300 mm) have been applied during calibration. However since
linearity is good, as detailed in Section 3, all three tests have the same conclusions. The Hertz cylinder/cylinder
contact formulas are summarized in Table 2, where the exponent H refers to Hertz. Contact pressures for the three
rolling forces are presented in Figure 9b.
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Figure 9: Calibration test

Table 2: Hertz contact theory cylinder/cylinder

FH (N/mm) Force per unit length

lH (mm) Contact length lH =

√

4FHRs
1− ν2

Eπ

θH (rad) Contact angle θH ∈

[

−
lH

Rs
,

lH

Rs

]

σH (MPa) Contact pressure σH
rr =

2FH

π
(

lH
)2

√
(

lH
)2
− R2

sθ
H

With the Hertz contact pressureσH, a very simple elastic model enables to compute strains in the roll body
and especially at the inner radiusRm. Multiplicative calibration coefficientsK45, Kθθ and Krr are obtained by
matching computed strains (at the inner radiusRm) with measured strains. Matching process is done by minimizing
the relative error. The computed calibration coefficients are listed in Table 3. It should also be mentioned that
measured signals are not perfectly synchronized with computed strains at the inner radiusRm. There is a slight time
difference between measured strainsεm45 andεm

θθ
. This is likely due to cumulative effects of a slight mispositioning

of the circumferential Optical Fiber, that may have not beenglued perfectly at the bottom of the hole, and a slight
misalignment during the insertion of the plug inside the roll. Thus, FBGs (circumferential and at 45 degrees) are
not perfectly aligned along the axial direction and do not enter the roll gap simultaneously as shown in Figure 10.
Calibration tests enable to quantify this misalignment anddmiss≃ 1.74 mm wheredmissdenotes the distance along
the circumferential direction between FBGs measuringεm45 andεm

θθ
. Therefore measured signals can be shifted in

order to correct this misalignment and obtain a good overlapbetween computations and measurements.

12



Figure 10: Mispositioning of the circumferential Optical Fiber and plug misalignment once inserted into the work roll

The comparison between direct computations and measurements for the test at 75 tons is presented in Figure 11
for the data acquisition station at 3378 Hz (very similar results are obtained for 25 tons and 50 tons and for the
other data acquisition station). It is clear thatεm45 andεm

θθ
are consistent and well calibrated, the strain peak is

accurate and very good overlap between computations and measurements is obtained after shifting one signal in
order to correct the misalignment of the plug. Howeverεmrr obviously presents a lack of trueness (Joint Committee
for Guides in Metrology (2012)) because the peak spreads on amuch larger angular zone than expected. Probably,
this FBG is not perfectly glued at its expected position in the hole, or residual air voids in the vicinity of the FBG
compromise measurements, but other explanations are stillpossible. Most of the time, when inconsistent data are
measured, the inverse interpretation needs a projection ofthe inconsistent inputs on the set of consistent data. In
the presented experimental tests, it has been considered simpler to remove the signalεmrr from the inputs because
the simple adaptation of the inverse method proposed by Weisz-Patrault et al. (2011) presented in Section 2 was
available. The radial signalεmrr is not used in the following.
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Figure 11: Calibration results

Table 3: Calibration coefficients

calibration coefficient Data acquisition station (960 Hz)Data acquisition station (3378 Hz)
K45 4.7 1.44
Kθθ 1.4 0.96
Krr – –
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5. Pilot rolling tests

Several tests have been performed at the ArcelorMittal research center at Maizières-l̀es-Metz on a cold pilot
rolling mill. For all tests, strips of low carbon steel grade(thickness= 2.8 mm) and strips of aluminium killed
grade (thickness= 0.75 mm) and hardened by an initial cold rolling reduction have been used and lubrication
was made by emulsion. During trials various rolling speeds,strip exit tensions and thickness reduction ratios
were tested. Comparisons between measurement inverse calculation and LAM3 numerical simulations (Hacquin
(1996)) are proposed. The geometrical and material parameters for all different tests are listed in Table 4. It
should be noted that thermal conditions are very homogeneous and thermal compensation is negligible for these
isothermal tests. However, thermal compensation will be necessary for different rolling conditions, even though
this paper focuses on isothermal interpretation. Further investigations have to focus on hot rolling conditions with
thermal compensation, and an inverse method using a thermo-elastic coupling as developed by Weisz-Patrault
et al. (2013a).

Table 4: Geometrical and material parameters

Rs (mm) 195.5 Outer radius
Rm (mm) 193.325 Inner radius
d (mm) 2.175 Depth
E (MPa) 210000 Young modulus
ν (-) 0.3 Poisson ratio
L (mm) 300 Roll width
l (mm) 100 Strip width

5.1. Influence of rolling speeds

Various rotation speeds are tested under similar cold rolling conditions. Rolling parameters are listed in Ta-
ble 6, and tests are summarized in Table 5. Rotation speeds are set from very slow experimental conditions (strip
speed: 25 m/min) to semi-industrial conditions (strip speed: 400 m/min). Rolling forces are relatively similar
(from 6220 N/mm to 7200 N/mm). These tests aim at demonstrating the applicability of the inverse method with
the detailed experimental apparatus in high speed industrial conditions, with rotation speeds around 70 rad/s corre-
sponding to 800 m/min strip speed. Therefore, data acquisition frequency is akey point for relevant measurement
interpretation. In this section the data acquisition system with the higher frequencyf = 3378 Hz is used.

Table 5: Tests summary

Test Strip speed (m/min) Rotation speedω (rad/s) Rolling forceFR (N/mm)
1 25 2.13 6220
2 50 4.26 6430
3 100 8.53 6660
4 300 25.58 7050
5 400 34.00 7200

Table 6: Rolling parameters

f (Hz) 3378 Data acquisition frequency
t0 (mm) 2.8 Strip entry thickness
t1 (mm) 2.154 Strip exit thickness
T (%) 30 Thickness reduction ratio
σT

0 (MPa) 39.4 Strip entry tension
σT

1 (MPa) 117.5 Strip exit tension
lC (mm) ≃ 14 Contact length

Measured strains for four cycles are presented in the contact vicinity for test 1 and test 5 in Figure 12. Re-
producibility is excellent from one cycle to another (similar figures are obtained for tests 2, 3 and 4). Detailed
measured signals in the contact vicinity are presented in Figure 13 for the first cycle. Of course the number of
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measurement points and the time interval under the contact decreases when the rotation speed increases. Although
represented in Figure 13, radial strainεmrr is not used in this paper. Measurement noise is limited. In addition, all
the relevant information is located in the contact vicinity, thus measured signals are cleaned by applying a filtering
window that selects strain variations only near the contact.
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Figure 12: Measurements overlapping during 4 cycles
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Figure 13: Detailed measured deformations
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Figure 14: Amplification factors and ill-posedness
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Then, the inverse method presented in this paper is applied in order to evaluate stresses at the roll surface and
especially along the roll-strip contact length. The regularization of the inverse method is obtained by truncating the
infinite sums involved in (6), by plotting the amplification factors|Φk|(Rs/Rm)k and |Ψk|(Rs/Rm)k that determine
the ill-posedness of the inverse method (i.e., instabilitydue to small errors on the inputs leading to large errors on
the outputs) as shown in Figure 14. It should be noted that theamplitude of normal contact stress is much larger
than the amplitude of contact shear stress. Therefore, experimental errors done on coefficientsΦk andΨk (used
for both normal and shear stresses) are more critical for theevaluation of shear stress than for normal stress. Thus,
the order of truncation determined for the regularization of the inverse method is smaller for shear stress than for
normal stress. It should be noted that in this work the automatic procedure of the truncation process has not been
used and should be developed for future industrial applications.

Since the inverse method is based on truncated sums, it is logical to obtain unwanted large oscillations just
before and after the stress peak (alike the reconstruction with Fourier series of a rectangular signal). However, this
classical issue is overcome by applying a filtering window inorder to focus on contact stresses only. The contact
lengthlC is evaluated by using the strip entry and exit thicknessest0 andt1, the rolling force and the approximate
deformed roll radius as established classically by Hitchcock (1935). Thus, the filtering window is set such as
the contact is selected. Contact stresses presented in Figures 15 and 16 are evaluated with the inverse method
developed in this paper and the measured strains presented in Figure 13. Very classical peak of pressureσrr (Rs, θ)
and sign change of shear stressσrθ(Rs, θ) are obtained in the roll gap. Amplitudes of shear stress andcontact
pressure do not have the same order of magnitude along the contact length, which was predicted by numerical
simulations. Furthermore, the high-speed data acquisition frequency enables the evaluation of contact stresses
at semi-industrial rolling speeds (test 5) without any significant quality loss. The shear stress reconstruction is
somewhat a bit poorly reconstructed compared to normal stress, due to insufficient number of harmonics used
for reconstruction; however this difficulty may be overcome by increasing the acquisition frequency of Optical
Fibers and by correcting the radial strain measurement issue. Present results are anyway promising for future
adaptation on high speed industrial mills. Pilot tests presented in this Section can be modeled numerically using
the software LAM3 based on Hacquin (1996) as mentioned in theintroduction. The strip is modeled by FEM
with elasto-visco-plastic behavior and the roll remains elastic. The coupling between strip and roll deformations
are taken into account as well as rolling force, rotation speed, entry and exit tension applied to the strip, entry and
exit thicknesses etc... The outputs are, amongst others, the simulated contact stresses. Rolling conditions of test 2
are modeled with LAM3 and contact stresses are extracted andcompared with the experimental evaluations based
on the inverse method and the experimental apparatus detailed in this paper. Since all tests from 1 to 5 are very
similar (apart from rotation speeds), all tests are compared with this single numerical simulation. Good agreement
is obtained as shown in Figures 15 and 16. It can be noticed that contact shear stress have the right order of
magnitude, however the simulated discontinuity of shear stress due to a Coulomb friction law is not evaluated
with the inverse method interpreting strain measurements.This is due to the fact that the order of truncation (as
presented in Figure 14) cannot be set sufficiently large (because of ill-posedness), thus sharp discontinuities like
shear stress near the neutral point cannot be reproduced properly. Indeed Weisz-Patrault et al. (2011) demonstrated
for a very common cold rolling condition that around 500 terms are needed for a good evaluation by inverse method
(study without measurement noise), whereas only around 100terms are considered in the present study.
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(a) Test 1: evaluation of contact pressure (b) Test 2: evaluation of contact pressure

(c) Test 3: evaluation of contact pressure (d) Test 4: evaluation of contact pressure

(e) Test 5: evaluation of contact pressure

Figure 15: Evaluation of contact pressure by inverse method and comparison with numerical simulation

19



(a) Test 1: evaluation of contact shear stress (b) Test 2: evaluation of contact shear stress

(c) Test 3: evaluation of contact shear stress (d) Test 4: evaluation of contact shear stress

(e) Test 5: evaluation of contact shear stress

Figure 16: Evaluation of contact shear stress by inverse method and comparison with numerical simulation

5.2. Influence of strip exit tension

The influence of strip exit tension is investigated in this section. Two cold rolling tests have been performed
with same rolling parameters but the strip exit tension as listed in Tables 7 and 8. Much thinner strips are rolled
for these tests than for test from 1 to 5. The acquisition system working at 960 Hz has been used. Details of
measurements are presented in Figure 17. Amplification coefficients and truncation orders are given in Figure 18.
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Both tests 6 and 7 are simulated numerically using LAM3 Hacquin (1996). The metal flow is constant in the
roll gap, thus the strip speed is higher at the exit of the contact length than at its entry. Thus, the relative speed
between strip and roll and so the shear stress present a characteristic sign change in the contact. The neutral point
is defined as the position where shear stress sign changes along the contact length. When the exit tension increases
(and the entry tension remains constant), there is a shift ofthe neutral point towards the entry of the contact. This
usual behavior is due to the fact that the difference between the entry and exit applied forces corresponds to the
resultant tangential force in the contact length that decreases when the exit applied tension increases. Numerical
simulations of both tests 6 and 7 are compared with the experimental evaluation based on the present inverse
method as shown in Figure 19. Reasonable agreement is obtained for pressure, however as explained in the
previous section, shear stress does not reproduce the classical discontinuity at the neutral point. Even though the
neutral point shift (when the exit applied tension increases) is evaluated with the inverse method, contact shear
stress is not sufficiently accurate to give a reliable experimental evidence.As mentioned above, this limitation is
mainly due to a too low truncation order (i.e. high regularization level of the inverse method).

Table 7: Tests summary

Test Strip exit thicknesst1 (mm) Strip exit tensionσT
1 (MPa)

6 0.643 184.7
7 0.619 265.2

Table 8: Rolling parameters for tests 6 and 7

f (Hz) 960 Frequency of acquisition
t0 (mm) 0.75 Strip entry thickness
σT

0 (MPa) 117.72 Strip entry tension
lC (mm) ≃7 Contact length
FR (N/mm) 5831 Rolling force
ω (rad/s) 4.26 Rotation speed
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Figure 17: Detailed measured deformations
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(a) Test 6: amplification factors (b) Test 7: amplification factors

Figure 18: Amplification factors and ill-posedness

(a) Test 6 and 7: contact pressure (b) Test 6 and 7: contact shear stress

Figure 19: Evaluation of contact stress by inverse method andcomparison with numerical simulation

5.3. Influence of thickness reduction ratio

Two additional cold rolling tests are presented in order to show the influence of the thickness reduction ratio
(from 10 % for test 8 to 80 % for test 9). Thin strips are rolled alike tests 6 and 7 and rolling parameters are
presented in Tables 9 and 10. Unfortunately, these tests have been performed with the acquisition station at
960 Hz. Thus, for test 8 with short contact length (6.25 mm) very few measurement points are recorded in the
contact vicinity as shown in Figure 20. Then amplification coefficients are presented in Figure 21 and resulting
evaluation of contact stress is presented in Figures 22 and 23. Alike for others tests, numerical simulations have
been performed using the Finite Element model developed by Hacquin (1996). Good agreement is observed for
pressure and an approximate order of magnitude is obtained for shear stress for test 9 (TR = 80%). However it
should be mentioned that shear stress cannot be evaluated byinverse method for test 8 (TR = 10%), likely because
there is too few measurement points in the contact vicinity.

Table 9: Tests summary

Test t0 (mm) t1 (mm) TR (%) FR (N/mm) lC (mm)
8 0.75 0.682 10 5011 6.25
9 0.75 0.417 80 11684 11.4
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Table 10: Rolling parameters for tests 8 and 9

f (Hz) 960 Frequency of acquisition
σT

0 (MPa) 117.72 Strip entry tension
σT

1 (MPa) 186.4 Strip exit tension
ω (rad/s) 4.26 Rotation speed

(a) Test 8: measuredεm45, ε
m
θθ

andεmrr (b) Test 9: measuredεm45, ε
m
θθ

andεmrr

Figure 20: Zoom of measured deformations

(a) Test 8: amplification factors (b) Test 9: amplification factors

Figure 21: Amplification factors and ill-posedness
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(a) Test 8: contact pressure (b) Test 9: contact pressure

Figure 22: Evaluation of contact pressure by inverse method and comparison with numerical simulation

(a) Test 8: contact shear stress (b) Test 9: contact shear stress

Figure 23: Evaluation of contact shear stress by inverse method and comparison with numerical simulation

6. Conclusions and perspectives

In this paper, a technical solution has been developed in order to measure in real time4 contact stresses during
cold rolling process. The solution is based on inverse analysis that interprets strain measurements done by Optical
Fibers Sensors (FBG) inserted inside the roll body (fully embedded). Thus, the main advantage is that contact
conditions are not degraded as the strip is not marked in the measurement area (however, strip is marked by the
plug contour). The experimental apparatus and technical issues are detailed as well as mathematical developments
for the inverse method. Several pilot cold rolling tests have been performed at different rolling speeds (from 25
m/min to 400 m/min), different exit applied tension (from 184.7 MPa to 265.2 MPa) and different strip thicknesses
(from 2.8 mm to 0.75 mm). Resulting evaluated contact stresses present characteristic pressure peak in the roll
gap and sign change for shear stress. Numerical simulationshave been performed using the rolling software
LAM3 (Hacquin (1996)). Reasonable agreement is obtained between contact pressure evaluated by the inverse
method interpreting strain measurements on the one hand andthe simulation on the other hand. Therefore, the
experimental apparatus coupled with the inverse method arevalidated and results can be considered relevant for
contact pressure. However, shear stress discontinuities predicted by numerical simulations are not reproduced
with the inverse method. Thus, shear stress experimental evaluation gives only a satisfactory order of magnitude
but not a detailed profile. However, improvements can be expected for shear stress evaluation if the problem on the
radial strain measurement is corrected and if fibers strain signals are acquired at a higher frequency of acquisition

40.05 s/cycle: time displayed by Scilab Enterprises (2012) with a quadcore 2.8 GHz
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so that the order of truncation used in the inverse method canbe increased, these are being investigated for future
trials.

This first indirect measurement of contact stress gives interesting perspectives for the steel industry. Indeed
if an industrial version of the sensor can be implemented with sufficient robustness, a close loop control can
be proposed in order to monitor and adapt rolling parametersin real time during the process. This paper already
demonstrates the applicability of the measurement system and inverse interpretation for semi-industrial conditions.
Automation issues should be broached, such as for instance the automatic determination of the order of truncation
(for inverse method regularization).

Acknowledgment

Guillaume Laffont (CEA, LIST, Laboratoire de Mesures Optiques) is acknowledged for producing the Optical
Fiber Bragg Gratings used in this study. This work has been performed within the framework of the European
project RFS-PR-08501 Advanced roll gap sensors for enhanced hot and cold rolling conditions, which is here
gratefully acknowledged for financial support.

References

Abdelkhalek, S., Montmitonnet, P., Legrand, N., Buessler,P., 2011. Coupled approach for flatness prediction in
cold rolling of thin strip. International Journal of Mechanical Sciences 53, 661–675.

Andersen, C., Ravn, B., Wanheim, T., 2001. Development of a commercial transducer for measuring pressure and
friction on a model die surface. JMPT 115, 205–211.

Bezerra, L., Saigal, S., 1995. Inverse boundary traction reconstruction with the bem. International Journal of
Solids Structures 32, 1417–1431.

Enterprises, S., 2012. Scilab: Free and open source software for numerical computation. Scilab Enterprises,
Orsay, France .

Ferdinand, P., Magne, S., Laffont, G., Dewynter, V., Maurin, L., Prudhomme, C., Roussel, N., Giuseffi, M.,
Maguis, S., 2009. Optical Fiber Sensors from Laboratory to Field Trials: Applications and Trends at CEA
LIST. Fiber And Integrated Optics 28, 81–107.

Frieling, G., Walther, F., 2013. Tensile and fatigue properties of fiber-bragg-grating (fbg) sensors. Sensors &
Transducers Journal 154, 143–148.

Hacquin, A., 1996. Modelisation thermo-mecanique tridimensionnelle du laminage: couplage bande-cylindres
[3D thermomechanical modelling of rolling processes: coupling strip and rolls]. Ph.D. thesis. Cemef Ecole des
Mines de Paris. In French.

Hitchcock, J., 1935. Elastic deformation of rolls during cold rolling. ASME Report of Special Research Commit-
tee on Roll Neck Bearings , 33–41.

Jeswiet, J., Rice, W., 1982. The design of a sensor for measuring normal pressure and friction stress in the roll
gap during cold rollin, in: Tenth north american manufacturing research conference proceedings, pp. 130–134.

Jiang, Z., Tieu, A., 2001. Modeling of the rolling processesby a 3-D rigid plastic/ visco-plastic finite element
method with shifted ICCG method. Comput Struct 40, 79–2727.

Legrand, N., Labbe, N., Weisz-Patrault, D., Ehrlacher, A.,Horsky, J., Luks, T., 2012a. Analysis of roll gap heat
transfers in hot steel strip rolling through roll temperature sensors and heat transfer models. Key Engineering
Materials 504-506, 1043–1048.

Legrand, N., Lavalard, T., Martins, A., 2012b. New concept of friction sensor for strip rolling: Theoretical
analysis. Wear 286-287, 8 – 18. Tribology in Manufacturing Processes.

Legrand, N., Weisz-Patrault, D., Labbe, N., Ehrlacher, A.,Luks, T., Horsky, J., 2013. Characterization of roll bite
heat transfers in hot steel strip rolling and their influenceon roll thermal fatigue degradation. Key Engineering
Materials 554-557, 1555–1569.

25



Lu, C., Tieu, A., Ma, B., Jiang, Z., 2002. Friction measurement in hot rolling of steel, in: 44 th Mechani-
cal Working and Steel Processing Conference and the 8 th International Rolling Conference and International
Symposium on Zinc-Coated Steels, pp. 605–614.
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