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PInstitute of Mathematics and Physics, Bauhaus Universiimar, Germany

Abstract

One of the most fruitful and elegant approach (known as Kaldduskhelishvili formulas) for plane isotropic
elastic problems is to use two complex-valued holomorpbiteptials. In this paper, the algebra of real quater-
nions is used in order to propose in three dimensions, amgixte of the classical Muskhelishvili formulas. The
starting point is the classical harmonic potential repmés@n due to Papkovich and Neuber. Alike the classical
complex formulation, two monogenic functions very simtiaholomorphic functions in 2D and conserving many
of interesting properties, are used in this contributiohe Tompleteness of the potential formulation is demon-
strated rigorously. Moreover, body forces, residual stessd thermal strain are taken into account as a left side
term. The obtained monogenic representation is compacaaichightforward calculation shows that classical
complex representation for plane problems is embeddeciprisented extended formulas. Finally the classical
unigueness problem of the Papkovich-Neuber solutionsasomme for polynomial solutions by fixing explicitly
linear dependencies.

Keywords: Isotropic elasticty, Quaternions, Monogenic potentiagdiiless, Residual stress, Thermal load

Table 1: Nomenclature

Linear elasticity

X1, X2, X3 Cartesian coordinates
a Stress tensor

Total strain tensor

Im

h

-

Thermal strain tensor

€ Residual strain tensor

€ Strain tensoe* = e + €S

o Auxiliary stress tensar™ = o + Atr (g*) 1 + 2ue*
u Displacement field

fp Body forces

Q Elastic medium (open subset®&#f)

0Q Boundary ofQ

oy Subpart oBHQ where displacement is imposed
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0Q, Subpart 00Q where surface traction is imposed

n Normal vector

Up Displacement imposed aif),

Tp Surface traction imposed @i,

To Temperature of the released configuration
T Temperature of the body

A u Lamé’s codficients

E,v Young modulus and Poisson dbeient

Potential theory

r Vector potential (left side term of the Lamé-Navier equia}io
rx Vector potential related tb
F Galerkin vector potential

f, G, h Papkovich-Neuber potentials
(0] Monogenic potential

e,¥ Anti-monogenic potentials

A Monogenic constant

Al Monogenic polynomials of degree(n € N,| = 0, .., n)

1. Introduction

1.1. Applications of potential theory

Well known numerical methods such as Finite Element Metlk&\) or Boundary Element Method (BEM)
enable to solve various complex mechanical problems ime¢udon-linear problems (plasticity or other non-
linear behaviors, contact problems, large displacemeatk dsotropic linear elasticity is nevertheless a fratjue
problem in mechanical engineering. Potential theory dmed since the late ¥9century is still widely used
in linear elasticity in 2D and 3D. Barber (2003) presents aargew of the fundamental potential theory for
elasticity related among others to Airy, Boussinesq, Gréema, Galerkin, Papkovich and Neuber names. New
potential formulations for instance developed by Kaslaalpnd Rushchitsky (2009) deal with inhomogenous
media.

Many practical applications rely on potential theory. Ssréntensity Factors (SIF) in the framework of linear
fracture mechanics have been intensively studied. For pkaBneddon and Lowengrub (1969) or Kassir and
Sih (1973, 1975) proposed various analytical solutiongthas potential theory. Dual integral equations were
intensively used for mixed boundary value problems thateaim potential theory adapted for crack problems.
An overview of useful methods is given by Sneddon (1966) lyrahalytical or semi-analytical solutions have
also been established for various elastic problems usitepfial theory. For instance, Ying et al. (1996) applied
potential theory for a pressure vessels and piping. Chauvégid2000) proposed a semi-analytical solution
(relying on truncated expansions into series of the pa)tof a finite solid circular cylinder subjected to arhiyra

surface load. More recently potential theory has been useddplied industrial investigations. In the field of



rolling process for instance, coupled thermo-elasticlisgesolutions that interpret (in real time) measurements of
stress and temperature done under the surface of a cyldbiml have been proposed in 2D by Weisz-Patrault
et al. (2011, 2012a, 2013a) and in 3D by Weisz-Patrault et2@l13b, 2014). Thus, the contact between the
product and the tool can be characterized during the prodegserimental tests that confirm the feasibility of
such an approach have been performed by Weisz-Patrault @04?b) and Legrand et al. (2012, 2013). This
kind of recent works contributes to renew the interest fdeptal theory because of their practical and technical
content.

Furthermore, numerical methods can also be developed dpettie of potential theory. Hintermdller et al.
(2009) proposed a 3D potential based numerical method &okesrand contact problems. Potential theory adapted
for numerical methods are completely meshless and can tabkufor problems where very steep stress gradients
are obtained avoiding mesh refinement and long computati@stissues that arise with FEM for instance. Cruse
(1969) proposed such a numerical algorithm based on patgemtind singular integral equations. Morales et al.
(2013) proposed more recently a potential based numetaisn for 2D problems, and Morales et al. (2012)

focuses on numerical uniqueness of the Boussinesq and Ealpions.

1.2. Motivations for extended Muskhelishvili formulas

For plane problems one of the most elegant and fruitful aggrchas been developed by Muskhelishvili
(1953b). Complex plane is used and holomorgvealued potentials are derived from bi-harmonic Airy pdigin
and Goursat theorem. A presentation of the theory and pedatiethods has been given by Lu (1995). The
main advantages are related to the holomorphy of the indgheg¢entials, indeed expansion into series, Cauchy
formula and conformal mapping techniques are availableadlsas singular integral equation techniques studied
by Muskhelishvili (1953a). Usually, for three-dimensibpeoblemsR-valued harmonic or bi-harmonic potentials
are used, known as Galerkin vector potential and Papkdvetber potentials initially introduced by Papkovich
(1932) and re-discovered by Neuber (1934). These poterpatsentations are complete, thus one can prove the
existence of the potentials as studied by Mindlin (1936)tB1{1962); Stippes (1969); Cong and Steven (1979a);
Millar (1984); Hackl and Zastrow (1988). Complete geneddliBons are also studied in the fundamental works
by Slobodyansky (1954, 1959) and Wang et al. (2008) amorgy®th

On the basis of Papkovich-Neuber potentials, this papes airestablishing a generalized Muskhelishvili for-
mula in three dimensions. There is no direct extension oftimeplex plane in 3D. However, the four dimensional
algebra of quaternions (Definition 1) is a convenient extansf the complex plane. Extensive work has been
done in this field and a suitable extension in higher dimerssif holomorphic functions has been defined and
studied intensively. For instance the book of Girlebeck ¢2807) gathers standard knowledge about the algebra
of real quaternions. A class of functions, called monogébefinition 3), presents interesting similarities with
holomorphic functions defined in the complex plane. ThussEh\advantages of the classical formulas of Muskhe-
lishvili (1953b) in 2D are transposed in 3D with the presdrgetential formulation. Indeed, monogenic power
series expansions studied for instance by Malonek (199i)kAnd Girlebeck (2010); Bock (2012b) and Laurent

series expansions (see e.g. van Lancker (1999); Bock (2pa2avell as the Cauchy formula (e.g. Brackx et al.



(1982)) are still available. Conformal mapping technigsmore limited than in 2D, but M6bius transformations
are still available as detailed by Sudbery (1979).

A second motivation is the disadvantage of Papkovich-Netdggresentation that arises if polynomial so-
lutions of exact degreme are considered for the displacement field. Indeed, Bauc81(18howed that if very
classical spherical harmonics are used for the Papkovilibir potentials them8+ 4 polynomial solutions are
generated, but the dimension of the subspace of polynowiliatiens of degree is only 61 + 3. Thus, many
solutions obtained with Papkovich-Neuber representatierlinear dependent which can cause numerical stabil-
ity problems. But fixing these dependencies in explicit falas is very dificult. However, Bock and Girlebeck
(2009b) already proposed a representation of displacefietshby means of two monogenic functions which is
similar to the representation demonstrated in this papeenBock and Gurlebeck (2009a) demonstrated that
8n + 8 polynomial solutions are generated by considering spalemonogenics for the two monogenic functions.
But 2n + 5 are linear dependent and explicit formulas have been giens, monogenic representations present
the significant advantage (compared with classical PapkeMieuber representation) of allowing explicit formu-
las of linear dependencies when spherical harmonics (oogmmics) are used for the potentials. Thus, numerical
stability is expected to be much better for numerical appiins.

In this paper, the existence of the two monogenic poterifigdsoven a priori by using only mathematical tools
related to diferentials calculus alike classical proofs of Airy potelstidMuskhelishvili formulas or Papkovich-
Neuber representation. Thus completeness is demonsaiadisgh elegant and very compact representation of the
displacement and stress fields is obtained. Moreover badg$othermal strain and residual stress are taken into
account in the potential representation. Finally in sec@ippolynomial solutions are constructed and it is shown
how the redundancy of polynomial systems can be overcome.

Furthermore Piltner (1987, 1988, 1989) contributed sigaiitly to potential theory by developing an alterna-
tive complete representations of 3D isotropic elasticigdrl on complex functions. Piltner (2001) provided an
overview of complex methods. He was using six holomorphicfions depending on three complex variables,
defined as complex-valued linear functions®h These representations cover under certain restrictiortbe
parameters the known representation formulas for the lase and there are also results to restrict the number
of complex variables to one. Without going too much into tkeéads it should be mentioned that these represen-
tations are deeply related to each other. The linear funstised by Piltner can be found in Whittaker (1903) and
in the book by Whittaker and Watson (1927) as a tool to desaijiherical harmonics. In this way they are related
also to the representation of Legendre polynomials anccéged_egendre functions which are nowadays mainly
used for this purpose (see for instance Sansone (1959)).

In this paper, a dierent framework is used (algebra of real quaternions idsitéaomplex plane) regarding to
the advantages listed in this section. It should be notadtiather potential solution for 3D Neumann and Dirich-
let problems (surface tractions or displacements impos#teaurface) for a general elastic body is described in
the book of Bui (2006). The solution relies on the Kelvin-Sgiana or Kupradze-Bashelishvili tensors (equiv-
alent to the Green tensor for elastostatic) introduced byr&dze (1965). On this basis a simple or double layer

potential vector and an integral equation has been solvalytasally (in the form of an absolutely convergent



series) by Pham (1967). In this paper the extended Muskivdlliformulas are not derived from these potentials,

because this method does not rely on harmonic analysis.

1.3. Geometrical restrictions

Complete representations for displacements require geigalerestrictions due to constructions. These re-
strictions are relatively weak and related to the boundahyesproblem that has to be solved. More serious is the
problem of redundancy in the representation formulae kmxthis avoids the uniqueness of the representations.
Analyzing for instance the classical Papkovich-Neuberesgntation then it is known already for a long time that
under certain additional assumptions only three of the farmonic functions are needed. Sokolritkd 956)
showed that one of the three harmonic functions in the vgatantial can be omitted (set to be zero) if the domain
is normal with respect to the corresponding direction. Tdaas potential can be removed if for ;11 the domain
is star-shaped. What is not so much discussed is the quegtiether additional assumptions are necessary if one
of the four functions should only be expressed as a lineabawettion of the other three. A good survey on results
about the uniqueness of the representations can be foumthal®ng (1995).

This idea becomes more important when it is tried to constoetter structured representation formulae.
Taking the classical Kolosov-Muskhelishvili formulae astarting point the improved structure is given by the
formulation based on two holomorphic functions. This reprgation can be generalized to the three-dimensional
case and was done in Bock and Gurlebeck (2009b,a) by usitigebey of quaternion-valued holomorphic (mono-
genic) functions. In these papers it is the goal to find finptiynomial approximations for displacements and
stresses, respectively. Collecting all geometrical iggtns final results are valid for star-shaped domains.

This paper aims at demonstrating generalized Kolosov-Mligvili formulae with thermal strain and residual
stress, in a constructive way. For this reason, as expldieémv in detail the elastic domain is assumed to be
normal with respect to thg,-direction (Definition 4). The proof of completeness of tepnesentation using two
monogenic functions is related to Theorem 1, which is validdomains normal with respect to tke-direction.
Thus the representation demonstrated in this paper is gtouse complete on domains normal with respect to the
xi-direction. This constitutes a large class of shapes foeldigtic body. The paper generalizes the applicability of
the considered representations by adding domains norrttal@spect to the; -direction to the already available
class of star-shaped domains. For domains that are not haithaespect to the -direction, if the body can be
split into subparts that meet the geometrical restrictiong could solve the elastic problem on each subpart with
a parametrized boundary condition at the junction of twaessive parts, the final solution would be obtained by
ensuring the continuity of displacements and the tensitéoveat each interface.

However if monogenic potentials are well defined on the ergraceR® and not only on the studied domain
Q, then the representation is proven evef ifloes not fulfill the geometrical restrictions. This can befukfor
practical applications, because most of the time sphenicadogenics are used for the potentials (and are well

defined inR?®), therefore practically for many common cases there is monggrical restrictions.



1.4. Notations and structure of the paper

Real vectors are classically written in bold. The quaterii@ounter-parts (although representing the same
vectors) are written with the same letter but not in boldetikassical notations for complex representation in 2D.
Usually (xo, X1, X2, X3) denote the coordinates of points in the algebra of realegnetns, however in this paper
(x1, X2, X3, X4) is Used instead in order to be consistent with classicahiaugical notations, in this way a point of the
real 3D space is denoted by (X2, X3) and displacement, stress and strain tensors are indexeiv2, 3}. Real
second order tensors are underlined and bold. Notatiorlstee in Table 1. In this pap&R denotes a connected
subset ofR? representing the studied elastic body. In the whole p&peas a piecewise smooth boundary.

In Section 2, Papkovich-Neuber potentials are introduciéld mody forces, thermal strain and residual stress.
Then in Section 3, the necessary mathematical results aedsand demonstrated. This latter section aims at
establishing a rigorous framework for the monogenic paenepresentation. Thus, in Section 4, the extension
of Muskhelishvili complex formulas is proved in 3D by demtrasing the existence of two monogenic potentials.
In Section 5, the classical 2D complex equation set is dérivem the 3D monogenic representation in order
to show that the latter is a straightforward extension offtirener. Finally, in Section 6 complete orthogonal
systems of monogenic polynomials are used to construct @ledesystem of polynomial solutions to the Lamé-
Navier equations. As usual there are some linearly depepadgmomials and it will be shown explicitly how the

dependent polynomials can be removed from the system.

2. Classical complete representations

Let consider an elastic body represented(bya connected subset @&°). Both thermal (superscrigih)
and residual (superscripes) strain tensors are considered, resulting in additioraintal and residual stresses.
Displacementsi, and surface tractiofy, are respectively prescribed on subparts of the bound@ryandoQ,,
such asQ = 9Q, U dQ,. Thus the isotropic elastic problem éhwith body forcef, consists in solving the

following equation set:

div (o) = - f, Equilibrium

o = Atr (ge)l_ + 2ue® Isotropic elastic behaviour

€=1 (g (u+Vv (u)T) Compatibility

€M = oT - To)l Isotropic thermal behaviour (1)
e =e—€l-¢°s Elastic strain tensor

(X1, X2, X3) € AQy, U(X1, X2, X3) = Up(X1, X2, X3) Boundary conditions: displacements

(X1, X2, X3) € 0Q, o.N = Tp(X1, X2, X3) Boundary conditions: surface traction

It should be noted that body forcég, temperature field and residual straia™® are assumed to be known.
The elastic calculation does not evaluate these lattertijiggrbut use them as inputs alike loads. Displacement
field of elastic problems on a domaincan be written by means of the classical vector potefti@troduced by

Galerkin (1930) and proven to be complete for instance bytévgaard (1952).

2uu = 2(1-v)A F - Vdiv F )



A constitutive equation for the Galerkin vector is obtaifgd/erifying the equilibrium equation. Thus, the Lamé-

Navier equation (which is obtained by writing the equilibri as a function of displacements) is used:

. EI'ES f
Au+/l+#Vd|vu=a(3/l+2'u)VT+ - b 3)
U HoH
Where:
res aeres aeres 6Eres 6Eres ]
& = (ﬂ 20’ o A( A N Wy
(/l 2 ) rés /l(aefés aeréS) 2 aeres 66;%3 1 (4)
+ (1 + + + + ==
65;%3 T, g Ju. 9
A+2 1 11 22 +2 13 23
" ( - #) - ( 0X3 6X3 # 0X1 - X2 | e
There existd” such as:
Eres f
AAF=Q(3’1+2”)VT+—__'D
H noH
Thus the classical constitutive equation for the Galerldater is obtained:
AA[F-T]=0 (5)

The main disadvantage of the Galerkin vector representigithat three scalar bi-harmonic functions are needed.

On can simplify significantly this representation. Let adtuce the harmonic vectdr

1
f=SA[F-T] (6)

Let introducex = x;€;1 + Xo€ + X363, thusx.f = x; f1 + X2 f2 + X3f3. A straightforward calculation gives (sinde
is harmonic):

A(x.f)=2divf =divA [F -T] = Adiv [F - T] @)

Thus by integrating the Laplacian operator in (7) theretexageal harmonic functiomsuch as:

G=x.f+h=div [F-TI] (8)
Itis easily verified from (7) that:
AAG=2divA f =0 9
Hence from (2):
2uu=4(1-v)f VG +TI” (10)

Where:
I'"=2(1-v) AT -Vdivl

Finally the complete Papkovich-Neuber representatiotiained:
oG,
2/JU]_ = 4(1— V)fj_ - %—X +F1
2uu; = 4(1-v)fy - %7 +15 (12)
2/JU3 = 4(1— V)fg — 6_)(3 +1—§

This potential representation is the basis of the extendeskielishvili formulas that are proven in this paper.



3. Mathematical results

This section presents the mathematical preliminariesiferquaternionic representation. Some definitions
and classical theorems are reminded for sake of claritys $éction does not aim at presenting a mathematical
discussion but presents only the useful results for estaiblj the three-dimensional extension of the classical

complex formulas of Muskhelishvili (1953b).

Definition 1 (Algebra of real quaternions) et H denote the non-commutative algebra of real quaternions:
H = {x = X1 + X2 + jX3 + KXa, (X1, X2, X3, Xa) € R“}
Wherei, j andk are the imaginary numbers verifying following multipli@at rules:
2= =k=-1]ij=-ji=k| jk=—kj=i|ki=—ik=]

Of courseH ~ R%. Let (e, &, €3, &4) be an orthonormal basis &*. For all X = X;&; + X2€ + X363 + X464 € R4,
the corresponding quaternionds= x; + iX + jxs + kxg € H. Furthermore, for alk € H following quantities are

classically defined:
(i) The scalar part okis Sc[X] = x;
(i) The vectorial partis Veof] = x = ixz + jX3 + kxq
(iii) The conjugate ofkisX = X3 — X = X3 — iX2 — jX3 — kX4
(iv) Thek-involution of xisX= —kxk= x; —iXo — jX3 + kX4
(v) The normisx = VXX = 3¢ + X3 + X& + X2
(vi) The inverse ok # 0 is x™* = X/|x?
The reduced quaternion set denoted#y R® is defined as the subsetBfgenerated by (1, j):
A= {x = X1 + X2 + jXa, (X1, X2, X3) € IR?‘}

It should be noted tha is only a real vector space and not a sub-algebté bécause ik andy are two elements

of A the producky ¢ A (of coursexy € H). Moreover, let bex = X3 + iX2 + jX3 + kXq € H.

Q- H
LetQ be an open subset Bf ~ A with piecewise smooth boundary. Afrvalued functionv : ,
X V(X)
. . . . Q-R L o
is defined with fouiR-valued functions : (I € {1;...;4}), such a¥ = vi+iva+ jvz+kvy. Continuity,
X = Vi(X)

differentiability or integrability ofs are defined coordinate-wisely. All functions considerethiafollowing will
be taken either in the rigfif-linear or in the righiR-linear Hilbert space of square-integralilevalued functions
denoted byL?(Q, H) or L2(Q, R). For a detailed discussion of the function spaces and thesmonding inner
product see e.g. Gurlebeck et al. (2007).



Definition 2. The generalized Cauchy-Riemann operator and its conjagetgefined by:

_i+i—i+ii+'i
S Ox1 OX  Oxy 0% J&xg

0 0 0 i o .0 (12)

Definition 3 (Monogenic, Anti-monogenic, Monogenic constand) functionv € C(Q, H) is calledmonogenic
inQ c R3if
v=0inQ (or equivalentlyv € kerd in Q). (13)

Conversely, a functiom € C1(Q, H) is calledanti-monogeniin Q c R? if
ov =0in Q (or equivalentlyv € kerd in Q). (14)
Furthermore, a functiom € C(Q, H) is calledmonogenic constai Q c R? if
N=0v=0inQ (or equivalently € kerd N kerd in Q). (15)

Generalized Cauchy-Riemann operators are analogous teethknown Cauchy-Riemann operators in com-
plex analysis, and monogenic (resp anti-monogenic) fonstare analogous to holomorphic (resp anti-holomorphic)
functions in 2D. A conversion of a given monogenic functintoian anti-monogenic function and vice versa can

be done via the following proposition.

Proposition 1. Letv = vy + iva + jvz + kvs € C1(Q, H) be a monogenic function i@ c R3. The function
V= Vi — iV2 - jV3 + kV4 (16)

defines an anti-monogenic functiongh(such thatv = 0). Conversely ifv is anti-monogeni@ is monogenic

(such thativ = 0)

Proof. A straightforward calculation using the definition 3 gives:
9V = dvanddv = 9V (17)
which demonstrates the proposition. O

This latter proposition enables to simplify significanthlaulations in the following. Here, it should be empha-
sized that in the complex case the conjugation of an holomofpnctionv € C1(Q, C) or a monogenic function
v € CYQ, A) gives directly the corresponding anti-holomorphic fiowe® because irC andA one haver = V.
ForH-valued monogenic functions this property doesn’t holdengral as Proposition 1 shows.

The geometrical restriction that apply to the domain in gaper is defined below.

Definition 4 (Domain normal with respect to the-direction) Let Q be an open subset &2, Q is said normal
with respect to the-direction if there existx; such as for all X1, X2, X3) € Q and for allx; € [x’i, xl] the point

(X, X2, X3) IS iN Q.



Basically domains normal with respect to tkeedirection are constructed in two steps. First, a plane doma
Q* c span(, j) is defined without geometrical restriction. Then two residtionsa(xz, x3) andB(x, X3) mapping

from Q* to R define the upper and lower boundaries and:

Q= {(xl, X2, X3) SUCh asXp, X3) € Q" andx; = ta(Xz, X3) + (1 — t)8(Xe, X3), V1t € [0, 1]}

Examples are presented in Figure 1.

(a) Domain normal with respect to the-direction (b) Domain not normal with respect to tlg-direction

Figure 1: Geometrical restrictions

The monogenic representation demonstrated in this pafies @n the following result, which has been
demonstrated in a more general framework by Klein Obbinl@8%nd more recently in the thesis of Alvarez-
Pefia (2013) or shortened in Alvarez-Pefia and Porter (2044imple proof is reproduced here for sake of

clarity.

Theorem 1 (Decomposition of harmonic functions into monogenic antil l@onogenic functions)Let Q be on
open subset oR® normal with respect to the;-direction and letf = f; + if, + jf3 be an harmonic function
on Q(Af = 0). There exists a monogenic functidnorthogonal to the set of monogenic constants and an anti-

monogenic functio® (more preciselyd € kerd L (kerd N kerd) and® e kerd) such that:
f=0+0 (18)
Proof. Since the domaif is normal with respect to the -direction there existg; such as one can define:
(X1, X2, X3) = fX1 f(t, X2, X3)dt (19)
X

Itis easily verified thaf * is harmonic Af* = 0) indeed:

62 X1 X1 62 62
Af* = — f(t, X2, X3)dt — f(t, X, X — f(t, X0, X3) | dt
3X§fx~i (t, X2, X3) +fx; [6X2 (t, % 3)+6x2 (t, % 3)]

2 3
2

0 17} X9
= — f(Xq, X, X3) — — F(X", Xp, X3) — —— f(t, X, Xg)dt 20
% (X1, X2, X3) % (X1, X2, X3) L Py (t, X2, X3) (20)

= 31)(1 (X1, X2, X3) — 3iX1 f(X1, %2, X3) =0

Let introduced = %af* ando = %6_f*. SinceA = 40 = 89, d® = 0 andd® = 0 thusd and® are respectively
monogenic and anti-monogenic. Moreover:

ot
6X1 B

@+®=%@ﬁ+&j= f (21)

10



This decomposition is not unique since for any monogenistonA < (kerd Nkerd) potentialsd + A and® — A
are still respectively monogenic and anti-monogenic. ByirsgA correctly one can consider th@t e kerd L

(kerd N kerd). This will be constructively done in equation (42). O

4. Complete monogenic representation

4.1. Displacement field

In this section, a monogenic representation of displaceffied is proposed with a proof of completeness
using mathematical results of Section 3. The elastic dorsaassumed to be normal with respect to the
direction. The starting point is the Papkovich-Neuber clatgrepresentation reminded in Section 2. Let consider
the H-valued representation of the displacement veater u; + iu, + jus the Papkovich-Neuber potentiél=
f1 +ifz + jf3 and the potential related to the left side term of the Lamé&idfaquation™ = I'] +iI; + jTI';. Thus

the bi-harmonic function (8) can be re-written:
G =3 (Xf+Tx)+h, (22)

Thus, the classical Papkovic-Neuber solution (11) readsiaiernionic algebra equivalently

2uu = 4(1—v)f —(§+iﬁ+j66

s 1—,_ _ )
%1 0% 373)” =4(1-»)f 26(Xf+fx+2h)+r (23)

Now, sincef € kerA, Theorem 1 applies and there exist a decompositian stich that:
f=0+0 (24)

where® e kerd L (kerd N kerd) defines a monogenic function orthogonal to the subset ofagenic con-
stants® € kerd an anti-monogenic function. This decomposition (24) iseékglicit link between the presented

monogenic representation and Papkovich-Neuber repagant Thus, applying the decomposition in (23) yields

uu= 4(1-v)(®+0)- 33 (X(® +©) + (© + O)x+ 2h) + I*

(25)
= 4(1-v)® - 30 (X0 + DX) - 30 (%O + O) + 4(1- v)© — Gh+ T
Now, it is easy to verify that:
(@) %5(7@ + @x) = 9 (X101 + %20 + X303) € kerd, sinced® = 0 one have:
%aé (X0 + OX) =x1AO1 + XA, + X3AO3 + 2(2—(311 + ‘;—(3; + 2—% = 0. (26)
(b) 6h € kerd,sinceh e kerA.
(c) 4(1-v)0O € kero.
Therefore, there exist a monogenic functiBricf Proposition 1) such a is anti-monogenic and:
Y= %5 (X@ + ©x) - 4(1- )@ + dh (27)
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Hence from (25) the completeneralized Kolosov-Muskhelishvili formular displacements reads as follows:
2uu = 4(1—v)® — %5(7@ +OX) - P+ (28)
Or coordinate-wisely® = @1 + i®, + j@3 + kdy and¥ = V1 — W, — W3 + Pa):
2uup = 4(1-v)Dy — 3ix1 [X1D1 + XoD2 + X3D3] — W1 + 17
2uup = 4(1- v)D, — 6ix2 [X1D1 + %o D2 + X3D3] + P2 + 15 (29)
2uuz = 4(1- v)D3 — 3ix3 [X1D1 + xoD2 + x3D3] + W3 + 175
It should be noted that sinee= u; + iu, + juz + ku, with us = 0 the the fourth component of (28) gives:
41-v)Ds—-¥4=0 (30)

The latter condition (30) that arises in a natural way is eisakfor fixing linear dependencies when monogenic
polynomials are used. It should be noted that any choice afagenic functionsd and¥ satisfy the Lamé-
Navier equations even if it does not fulfill (30), which gesteis an extra fourth component for the displacement
but without interest. However in practice the best optiomoiseek monogenic potentials that fulfill (30). A
further structural insight directly obtained from the exded hypercomplex formulation (28) is related to the
representation of the bi-harmonic functi@ which is by construction decomposed into a purely bi-harimo
part, i.e. SCK®) with @ € kerd L (kerd N kerd) and a purely harmonic part, i.e. §0(With ¥ ¢ kerd. The
Papkovich-Neuber formulation does not allow such a direcbthposition.

The expression (28) is a complete (because the existenaaaftials has been proven) representation of dis-
placement field using only one monogenic function and onieraahogenic function, thus 8 harmonic functions
are needed, but it should be emphasized that monogenidtgratitmonogenicity (13) impose strong relationships
between these 8 functions which lead to very interestinggntes as pointed out in introduction. This is similar
with Kolosov-Muskhelishvili formulas in 2D, two holomorpfunctions are needed (which means 4 real-valued
functions) although only one real bi-harmonic functionégded for the Airy potential, but holomorphy impose a

strong relationship between the 4 real-valued functiond,iateresting properties are obtained.

4.2. Stress field

Stress field is related to displacement field by the behavidhé equation set (1). Thus, by introducing
€ =€+ andg” = o + Atr (¢7) | + 2ue” = Atr (¢) | + 2ue itis obtained:

« N oup (9U2 Ouz oup
oy =01+ (Atr (g ) + 2/1611) ( 6X2 + 6_)(3) + 7
6U1 6U2 (9U3) 6U2

+—|+2u—

Oy =022+ (Atr (5*) + 2/1522) 4 3)(1 3)(2 OX3 X2

o " oup (9U2 Ouz Ouz
73 = e (r(€) ) = A(&xl % axa) 2H 3% 31
0'1220']_2+2/1612=/1 6_)(2+(9_X1
% N ou; Jus
013 =013+ 2ue3 = E + %
* * aUZ 6u3
03 = 023+ 2He3 = % T 9%



The stress tensar is obtained ifo* can be evaluated becauses known. Thus t(g*) is written:
011+ 0oy + 033 = (31 + 2u)Sc [ou] (32)

Let introduce following quantities related to displacentsen

S T T TN P T e )
T12=H 0Xo 0X1 T3 = H X1 0X3 T3 = H 0X3 0Xo

Hence:
—0 + Oy + 04+ 207, + 2j0 5+ 2Kos, = ASC QU] - 2udu

01— Ohp+ 035 = 2007, + 205+ 2kos, = ASc [0u] — 2uid(i U) (34)

O+ 05y — 04+ 2007, — 2j0y 53— 2koh, = ASC [0u] - 2ujo(j U)

A straightforward calculation gives complegeneralized Kolosov-Muskhelishvili formuias

1— _ —
2uu = 4a—w®—§a&®+®@—W+W

1
Ol t Tt = 7 a - Sc[2(1- 2190 + 4]
—O + 0oy + g5+ 2007, + 2j0 )5 + 2K 55 = 1 VZ Sc[2(1- 2v)A® + AT*] + 8 (Sc[XD]) + ¥ — oI*
— 4V
(35)
01— Oy + 055 — 2107, + 2j0 15 + 2Koyg = 1 _VZVSC[Z(l— 2v)0D + oI

~4(1-)id (@) + 10 (0 (Sc[x®])) +i0 (iP) — id (ir*)

\4
1-2v
~4(1-v)jo (jo) + jo (jo (Sc[x@]) + jo (j'¥) - jo (i)

Ty + O — O + 25 — 2] — 2Kohg = Sc[2(1- 2v)a® + 3T |

It can be noted that quantities,,, o;, anda’, which are not of particular interest for an elastic probleio,
not overlap the other components of the stress tensor. Hess formal quantities simplifying the expression of
stresses, do not disturb the classical boundary valuesgmnob

The demonstrated monogenic representation has been geuels a refinement of classical harmonic Papko-
vich-Neuber representation because of the monogenicibptif potentialsb and¥. Any choice of monogenic
potentials leads to an elastic problem with some boundargitions, equilibrium, behavior and compatibility are
automatically verified. Monogenic functions constitutaibspace of harmonic functions, and therefore this paper
enables to reduce the space where potentials are sougpéeries of monogenic functions are studied intensively.
Expansion into power series (see e.q. Malonek (1990); BadkGiirlebeck (2010); Bock (2012b)) and Laurent
series (see e.g. van Lancker (1999); Bock (2012a)) areadlail Conformal mapping technics are more limited
than in 2D, but Mobius transformations of the forax( b)(cx+ d)~* are available as demonstrated by Sudbery

(1979).
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5. Restriction to two-dimensions

This section aims at proving that the representation with vonogenic potentials presented in this paper is
a straightforward generalization of the classical planlemorphic representation developed by Muskhelishvili
(1953b). Let begin with plane strain formulas. In this casteptials do not depend o@, moreover let consider
that ® and¥ are twoC-valued functions (i.e.®3 = ®; = W3 = ¥4 = 0). Thus® and¥ are holomorphic
(because monogenicity coincides with holomorphy in 2DkrEfiore commutativity is reestablished. Furthermore

Z= X, +iXp, A0 = 20/0z— j8/0x3 andd = 28/8Z + j0/dxs. Thus:

2uu =4(1—v)®—22(z®+z®)—¢

0z 2 (36)
—(3-4)D—2 -
For the stress field (35) gives:
O11+ 022+ 033 = 2(1+ v)(d)' +§)
—011+ 02 + 033+ 2i012 + 2jo13 = 2v(D’ + 5) + 270" + 2¥’ (37)
0'11—0'22+0'33—2i0'12+2k0'23 = 21/((1)’ +5)—22(D” -2¥
Thus, from (36) and (37):
o33 = 2v(D" + 5)
o13=023=0 (38)

us=0
Therefore the classic Muskhelishvili formulas for plan@ast are obtained:

2u(uy + iup) = (3 4v)D — 20" - ¥
o111+ 00 =2(D" + 5) (39)

—011+ 022+ 2i0’12 = 2(2(1)" +\P')

Plane stress formulas are obtained by considering thdi3= (1 + 3u)/(1+ u). Classically, plane stress problems
verify the same equation set as in plane strain by replating A* = 2ul/(A + 2u). Thus @* + 3u)/(A* + ) =

(3-v)/(1+ v) and the plane stress Muskhelishvili formulas are theeefintained.

6. Orthogonal basis of solid spherical monogenics

Completeness of the generalized Kolosov-Muskhelisheitirfulas has been proved. This section deals with
the construction of a polynomial basis of Lamé solutions bing in particular the hypercomplex structure of
the representation formulas. The corresponding problefinding linear dependencies is well known as the
unigueness problem of the Papkovich-Neuber solutions ésge Cong and Steven (1979b); Cong (1995) and
references therein). Here are presented explicit comdifior fixing the linear dependencies which naturally arise
from the properties and the finer structure of the functiceceg used. To this end, the full quaternionic setting

(28) is used which preserves all the structural properfidéiseofunctions.
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Let us consider an orthogonal basis of monogenic polyn@miith respect to the unit ball; in R3. This
polynomial basis can be seen as a generalization of the lojdiit z-powers toR? having special properties
regarding the hypercomplex derivation and primitivatidm this section the basis elements are introduced by a
two-step recurrence relation and some essential propeantgehighlighted. For a detailed explanation we refer to
Bock and Gurlebeck (2010); Bock (2012b).

Proposition 2 (Bock (2012b)) For eactm € N andl = 0,...,n, A, denotes monogenic polynomials of degrge

that form an orthogonal basis of monogenic polynomials?€, H) satisfying the two-step recurrence formula:

A= 5] +”1+)(:] T3 [(@n+3)x+ (20 + DR)A, - 20XA, 4 | (40)
with
A= %[(z +3)x+ (2 + XA and A = (1 - kx)' (41)

Note, that the initial values of the recurrence relationdefined by the subset of monogenic constéAﬂﬂ*Zo
which are polynomials isomorphic to the complegowers. We remark that the functianfrom Theorem 1 can
be represented by the subset of monogenic cons{AHEO. It is well known, e.g. Bauch (1981), that for each
n € N* the polynomial solutions to the Lamé-Navier system of extgreen form a subspace of dimension
6n + 3. Now, using (14) and (40) monogenic potenbi@nd anti-monogenic potent@ are sought in form of

polynomials expansion:

=

n—

O(X) = i

n=0 |
with an,Bnk € H. Let mention that monogenic constants are not consideréaeimpolynomial expansion of

Avan and () = 3" AlBink (42)
k=0

m=0

Il
o

® < kerd L (kerd n kerd). Furthermore, it should be noted that polynomial basisntif@onogenic functions
was constructed by applying Proposition1 to the monogeasisb Consequently, by substitution of the polynomial
expansions in equation (28), we obtain with respect tdRHimear space 42+ 1) = 8n+ 4 H-valued polynomial
solutions to the Lamé-Navier equation. The redundant potyials of dimension2+1 are fixed with the condition
(30). This corresponds naturally to the dimension of therwanic subspace, since by construction-4(kb,— ¥, €

kerA. For the polynomial basis (40) used here one could provedfi@ifing explicit 2n + 1 algebraic conditions:

Proposition 3. For eachn € N* and using the polynomial expansions (42) in terms of thenumtyial basis (40)

in the extended displacement field (28), thre+21 algebraic conditions such that 4l)®, — ¥4, = 0 are given
by:

Ll —Bam = AL-V)edn+ 20}, 1]
e~ Bam = A=W+ 200 0] (43)
;"0 = 4(1- v)a/ﬁ,o

withm=0,...,n— 1. Note that for a compact representation the conventigps- oy, = 0 are used.

These conditions ensure that we obtaim63 A-valued solutions to the Lamé-Navier equation equation and
can be either included in the polynomial expansions or addeatiditional equations in the solution of the bound-

ary value problem. Finally, some examples of the descrilcbérse for the polynomial degreas= 0, 1,2 are
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given in Table 2. Symbolic mathematical programs such Matt&a or Maple can be useflieiently to generate
automatically these independent polynomials. The cooeding displacements are obtained by repladmand

N coordinate-wisely in (28) by the ansatz functions of Tabéné using (42).

Table 2: Ansatz functions and algebraic conditions for tktereled displacement field

n | ansatz functions codficients algebraic conditions

0|AJ=1 Boo € H t0=0

1| A =x + (i + Xxsj) a0 € H 281, — B = 4(1-v)ad,
R = x1 — (% + Xa]) Bro.Br1 € H 1 =B =4(1-v)a3,
A} = Xp — X3k ‘11,0 =4(1- V)(Iio

2 | AS =52 - 2052 + X2) + XaXol + X1X3] a0, a21 € H 283, — B30 = 4(1-V)[az, + 203 ]
AL = 2x1% + 308 — X3)i + XoXa] — 2X1XaK | B20.B21.B22 € H 285, B3, = 4(1-v)a3,
R =X~ 102 +x) - XXl — X1 %] 21— B = 4(1-V)[ad, + 203 ]
AL = 2x1% — (& — X3)i — XoXa] — 2Xq X3k =B, =4(1-v)a3,
70?2 = X% - X% — 2XoX3k ‘21,0 =4(1- v)o/zl’0

7. Conclusion and outlook

One of most fruitful and elegant method for elastic planebfgms has been established by Muskhelishuvili
(1953b) by using only two complex-valued holomorphic ptitds. In this paper, an extension in 3D has been
demonstrated by using two quaternionic-valued monogeutieriials, which appears to be a suitable extension
in higher dimensions of classical holomorphic functionee Dbtained monogenic representation is compact and
a straightforward calculation shows that classical Musikh#&li formulas in 2D is embedded in the extended
formulation. Completeness is demonstrated with classicd$ of potential theory. Geometrical restrictions have
been specified. This leads to a very wide class of possibleeshfar the elastic body, and more general shapes
can be considered by solving the elastic problem on subeatserify the geometrical restrictions.

The obtained monogenic formulation of the three dimendielaaticity problem represents a refinement of the
classical harmonic Papkovich-Neuber solution. Due to #ugokization of the 2 order Laplace operator by the
15t order generalized Cauchy-Riemann operator and its adjpietator, two vector-valued monogenic functions
have to be find (i.e., eight harmonic functions related tdestber by a strong relationship) instead of four real-
valued harmonic functions. This is similar to the situatio2D. A significant advantage of such a hypercomplex
representation is when approximate solutions of boundaltyevproblems are sought using series expansions of

homogeneous polynomials. In Bock (2009) it was shown thatpttoperties (e.g. orthogonality, Appell prop-
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erty, orthogonal decomposition into higher and lower digienal subspaces) of the polynomial systems used to
approximate the monogenic potentidisand ¥ improve immediately the numerical properties of the rasglt
polynomial solutions to the Lamé-Navier equation even @sta polynomial solutions no longer have the men-
tioned properties. Moreover for the significant issue ofifigdoolynomial approximations, structural properties
of monogenic basis (e.g. Bock and Gurlebeck (2009a)) esdbléx explicitly linear dependencies generated
by polynomial potentials. In a more general context thisriswn as the uniqueness problem of the Papkovich-
Neuber solution (see e.g. Cong and Steven (1979b)). Thex@ibved that under certain geometric restrictions
(star-shaped or domains normal with respecgtdirection) one of the harmonic potentials can be negleftted
the representation formula. For general simply conneataadains this is not valid.

This contribution difers from existing related works by using an approach notrrglgn polynomial subspaces
but a constructive method that proves the existence of theogenic potentials and thus completeness of the
representation. Thesdterts (previous and present works) help to understand betéestructure behind the

representation uniqueness and possibly overcome fhieudty.
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