
Planning handovers involving humans and robots in constrained
environment

Jules Waldhart1,2, Mamoun Gharbi1,2, Rachid Alami1,3

Abstract— Exchanging objects with humans through han-
dovers is a key feature for any robot operating side by side
with humans. The studies on the topic tackle various problems,
such as the hand dexterity, the communication cues, the arms
motions, the forces, the head motions, but most of them consider
a handover as an independent action, decorrelated from the
plan it is part of.

In this paper, we consider situations where it might be nec-
essary (or preferable) to achieve several handovers in order to
transfer an object from one agent to another one. This problem
complexity grows accordingly with the number of agents that
might be involved in the task, making a classical approach
under efficient. We propose a graph-based approach enabling
a fast computation of a solution taking into account different
parameters linked to the humans comfort and preferences. An
abstract model of the task is also used as a heuristic to guide the
search in the graph, a search which is performed with a Lazy
Weighted A*. The method computes which agents (human or
robot) to use and where handovers should be performed. It also
computes motion plans for each robot, ensures that humans
can reach handover places and preserves comfort of human
partners by reducing, for instance, their efforts.

The method has been implemented and is demonstrated on
various simulated multi-agents environments and on our two
PR2 robots interacting with two humans.

I. INTRODUCTION

The challenge of bringing humans and robots to "coexist"
in the same environment is commonly addressed in the
literature. One of the difficulties is to enable robots to
perform handovers, which is a key feature of human-robot
collaboration. During the last decade, studies about when,
how and where to perform a handover have been conducted
([1]–[7]).

In this paper we address a related problem which is a
transport task, that may involve several agents (robots or
humans). The transport problem is defined as an object to be
moved from an agent to an other specific one, with the help
of several agents present in the environment. The solution is
a series of handovers between some agents. Fig. 1 shows an
example of this problem, the agents are separated by a wall
where windows and counters allow objects exchanges.

This transport problem involves several decisions such as
which agents to use and where to perform the handovers.

*This work was conducted within the EU SAPHARI project funded by
the E.C. division FP7-IST under contract ICT-287513.

1Jules Waldhart, Mamoun Gharbi and Rachid Alami are with
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
firstname.lastname at laas.fr

2Jules Waldhart and Mamoun Gharbi are with Univ de Toulouse, INSA,
LAAS, F-31400 Toulouse, France

3Rachid Alami is with Univ de Toulouse, LAAS, F-31400 Toulouse,
France

Fig. 1. An example in an environment where agents are separated into
two navigable zones linked by windows and counters. The blue human is in
possession of an object needed by the red one. The solution found by our
algorithm is: robot 0 navigates to the blue human, takes the object through
a handover over the counter, and then navigates to the red human and gives
it to him.

An important issue to address, as illustrated in Fig. 1, is
to preserve the humans comfort. In the figure, a handover
is possible between initial and target agents, but using the
robot reduces the human efforts.

This kind of problem can be solved using a combina-
tion of symbolic and geometric planning ([8]–[10]): these
approaches will solve the problem, but would be too slow
to allow on-line use of the algorithm. (note that using a
task planner alone will be under efficient as the problem
is geometrically complex [11]).

The main contribution here is the conception of a plan-
ner interleaving strongly various models, from task level
to geometric computation. This planner should be able to
find efficiently high-quality solutions based on a number of
parameters related to social rules and humans comfort. The
system has been implemented in simulation and also using
two PR2 robots and two humans in a cluttered environment.

In section II we describe the related work while in section
III we define precisely the problem. Section IV addresses the
formalism and the models used in the resolution. In section
V we present the results found in several environments and
finally we conclude in section VI.

II. RELATED WORK

The problem addressed in this paper is related to a number
of categories of work: handover, human aware navigation,
pick-up and delivery problem , and manipulation planning.

Difficulties appears for handovers between human and
robot, concerning human security, comfort and other social
rules, to make it as natural as possible [2], [3]. For a handover
between two robots, synchronization is essential [12].



The transport task in our context requires the robots to
navigate in a space occupied by humans, who may be busy.
In this context, the robot will need to navigate among them
while creating the least disturbance possible. In [13] the
authors present various approaches to the problem, part of it
based on the proxemic theory [14].

Manipulation planning [15], [16], an extension of clas-
sical sampling-based motion planning [17] could solve the
transport problem. Nevertheless, it would not be able to deal
efficiently with the complex costs involved in the task, and
the very high dimensionality of the search space (see Sec.
III).

The transport problem is close to the pick-up and delivery
problem (PDP) which have been widely addressed in the
literature. In [18], the authors present a survey of the problem
types and solution methods for PDPs. More recently, the link
between PDP and object transfer has been stressed out with
an algorithm where robots transfer objects to optimize a PDP
plan [19].

Recent work related to the multi-agent handover problem
uses a heuristic to guide the search through possible han-
dovers [20]. The difference with the previous approach is
that handovers are required in order to perform the task,
and do not result from an optimization, as robots are fixed
manipulator arms. The heuristic used takes into account cost
estimation of the handovers and an approximation of the
number of remaining handovers that will be required. They
also introduce a lazy variant of weighted A*.

In [7], the authors present an algorithm able to share the
efforts between a human and a robot depending on the human
preferences. In some cases, the human might prefer moving
toward the robot, while in others he will prefer waiting for
the robot to come all the way to him. Even in this last case,
if no solution is found, the robot might ask the human to
move in order to successfully perform the handover. This
approach is limited to single handovers and doesn’t scale to
series of handovers. We propose a similar approach adapted
to multiple agent problems where it is important to choose
both agents to involve and place to transfer the object.

III. PROBLEM DEFINITION

The problem is to bring an object from a starting position
to a target agent, having at our disposal several agents able
to carry the object and to hand it over to other agents. The
goal is to find optimal solutions in a reasonable amount of
time allowing an on-line use.

The object is held and moved by a unique agent, and can
be transferred to other agents through handovers.

The problem inputs are the agent list, the initial state,
consisting on all agents and objects positions, and agents
specific information about speed and availability. The target
state is defined by the target agent (also an input) holding
the object. The algorithm should also take into account the
task urgency and the care given to humans.

A solution to the problem is a scheduled sequence of
actions (navigation or handovers), that bring the object from
the initial state to the desired final state.

The search space is the full configuration space [17] of
the whole problem. As it involves several agents, it can be
written as the cross-product of the configuration spaces of
each agent: C = C0×C1×· · ·×Cn. As it is, the problem high
dimensionality makes it nearly impossible to find a solution
based on classical algorithms. E.g. in the environment of
Fig. 1, we have card(C) ' 300.

IV. MODEL AND RESOLUTION

The full representation of the problem is not suitable for
on-line solution search. We break down the main problem
into problems of lower dimensionality: we distinguish two
subsets of the main problem, (1) navigation between han-
dovers places, and (2) handovers themselves.

Navigation is simplified to path-finding in a discrete 2D
grid. This 2D model is based on the input environment and
agents geometries, but is built off-line and does not affect
running-time. Besides, we do not take into account inter-
agent collisions during the search phase. For that, we make
the assumption of a large environment with sparse obstacles
and few (or no) narrow passages. Thus, we can consider only
one agent at a time for navigation. We explain in Sec. IV-D
how we deal with violations of this hypothesis.

Handovers involve two agents and we need the full dimen-
sionality of their models and their positions to find a solution.
The planner can treat situations where the object has to be
handed over a table, through a window or even a narrower
passage. This computation is expensive, specifically when
the handover is not possible. Thus, we limit the number of
calls to the motion planner to the minimum, and try to detect
impossible situations with faster tools.

In addition to that, the problem has a higher level discrete
component: finding a sequence of agents to perform suc-
cessive handovers which guides the search toward relevant
handovers, limiting calls to time-consuming evaluations.

In this section, we present formally the models we use,
and the algorithms involved in the solution.

A. Representation

We solve the problem as a path finding problem in a graph
G. We consider nodes being simplified states containing
information only about the agent holding the object at
that time, while others are considered to be at their initial
positions. A node is then a pair formed of an agent identifier
and a discrete 2D position: [aid, {x, y}]. We define two
actions that cause the current state to change: an elementary
navigation action and a handover action:
• Navigation: an agent A holding the object can travel to a

neighbour position: [A, {x, y}]→ [A, {x+ δx, y+ δy}];
• Handover: the holding agent A gives the object to

another agent B: [A, {x, y}] → [B, {x′, y′}]. This
requires B to move from its initial position to its new
one ({x′, y′}), and causes A to go back to its own initial
position.

An edge between two nodes of G exists when there is an
action leading from a state to another. Edges are weighted
with the costs of the actions. The cost of a handover action



is high compared to a navigation action, as it involves two
auxiliary navigation tasks along with the handover itself.

The search algorithm relies on other models: high level
representation, 2D model for navigation, and full geometric
representation for handover posture search and check, colli-
sion checking and motion planning.

a) High-level graph: This graph guides the search
through all possible handovers. We will later refer to it as
the agent graph GA (different from graph G). In this graph,
the nodes are the agents and edges represent the handover
between the two linked agents. The model is initialized with
all the handovers set as possible (edges between every node),
and each edge is weighted with an optimistic estimation of
the cost, based on time needed to perform the handover
and the optimal human-related cost expected, independently
of the environment. While the search will be pursued, the
costs are adjusted and the edges may be removed in case of
inability to perform a handover.

b) 2D navigation grid: To plan the navigation tasks.
c) Geometric environment model: We use geometric

algorithms (e.g. collision checking, inverse-kinematics, mo-
tion planning) to find valid handover positions and their cost
related to comfort, acceptability, legibility and so on. A valid
handover is a collision-free position for both agents, where
the object can be transferred [7]. All the process of finding
and evaluating a handover will be referred as the handover
search tool.

d) Model relations: The main planner is linked with the
three other models, and their respective planners, but there
are also interactions between every planner. Each model con-
stantly evolves on the basis of lower level model evolutions.
For example, edges in the agent graph are removed when the
geometric tools have tested these handovers and found none
is possible.

e) Cost: The cost function defined to evaluate a so-
lution is as follows, with several f being factors to stress
different parameters, fd(a) is a per agent factor, tuse(a) is
the time an agent a is mobilized for our task. tbegin is the date
the first agent starts moving and tend is when the last agent
reaches its target position with the object. Each handover has
a cost cHO(i) related to comfort and safety. (n is the number
of handover in the solution)

c = fuse ·
∑
a∈A

tuse(a) · fd(a) + ftime · (tend − tbegin)

+ fHRI ·max(cHO(0), . . . , cHO(n))

B. Resolution

Our main model is the graph G representing the prob-
lem. The use of a search algorithm in this graph is still
problematic as the number of expansions can be huge,
and computationally expensive. In the rooms environment
(Fig. 1) the number of neighbours of a nodes reaches 3000 in
average. The use of a classic A* would cause evaluating all
these handover actions, which is computationally intractable.

The objective is to reduce the number of handover eval-
uations. The use a lazy variant of A* which gives a first

estimation of a handover cost, sparing the expense of a call
to the handover search tool. The real cost will be computed
only if the handover appears to be relevant. We use as search
algorithm the Lazy Weighted A* (LWA*) variant [20]. This
algorithm has proven bounds of sub-optimality inherited of
Weighted A* [21], and can perform faster when it involves
computationally expensive evaluations. LWA* algorithm is
based on A* algorithm, which searches for the shortest path
using a heuristic. When a node is expanded, the son nodes are
given three values: the g value is the distance (cost) between
the origin and the son node, the h value is the heuristic,
i.e. the estimation of the distance (cost) remaining to reach
the target, and the f value is the sum g + h. In the next
iteration, the unexpanded node with the smaller f value will
be expanded, until the target node is reached.

In the weighted variant, the h value is increased by a
factor, f becomes g + ε.h with ε ≥ 1, thus adding a depth-
first flavour to the search, but decreasing the quality of the
solution of at most that factor ε.

The lazy variant gives to expanded node sons a temporary
g value, which is optimistic and faster to compute than the
real cost. It computes the real cost only when the node is
selected to be expanded, i.e. is the one with the smaller f
value. Its g and f values are updated and it is put back in
the list of nodes to be expanded.

This approach can save a substantial number of costly
evaluations, postponing them to when they are really needed.
In our case, such costly evaluations are the handover search.

1) Heuristic and cost: The cost function evaluates an
edge between two nodes nA and nB of G. There are two
cases, according to which action is represented by the edge:
elementary navigation or handover. For the navigation, the
cost is only distance related (energy, time). For the handover,
we need to evaluate the motion with the geometric tools and
estimate the cost based on the humans comfort and the action
duration.

The heuristic function (Algo. 1) guides the search through
the environment and the possible handovers. It is based on
GA and the navigation grid. It first searches for an agent
sequence that can bring the object to the target agent. This
search is made in the agent graph and takes into account
minimal handover costs and no navigation (line 2). Then,
on the basis of this agent sequence, it searches the minimal
cost related to the navigation. In our model, it is using the
cheapest agent for the whole distance (in the Euclidean sense,
line 4). At this step, it is not known yet if it is possible or
not, but it guarantees that the heuristic is admissible. It then
adds the estimation of the handovers costs, which must be
computed with an admissible heuristic too (line 7).

2) Handover tests: Even with the use of weighted and
lazy variants of A*, the time consumed doing geometric
computations is still high. When it is given a situation where
no handover is possible, the handover search tool will fail
after trying a number possibilities, which is highly time
consuming. In order to speed up this process, we add simpler
checks to discard impossible situations. The first one is based
on distance, knowing the arm reach limits of each agent. The



Algorithm 1 Heuristic function for the main search algo-
rithm

1: function HEURISTIC(n,ngoal) . n and ngoal are nodes
of G

2: path← SHORTESTPATH(GA,n,ngoal)
3: for each agent a of path do
4: d← min(d, DISTANCECOST(a) )
5: . cost for a to go from n to ngoal
6: for each handover HO in path do
7: h← h+ HANDOVERHEURISTIC(HO)
8: return h+ d

Fig. 2. The maze example, with a possible path for the object shown by the
black arrow. In this example, the object is successively held by R0, H2, H3,
R3, H0. The use of multiple agent saves time for the delivery while asking
more work to humans. Their use is still limited as most of the navigation is
done by robots. Under other settings, the whole navigation could be done
by the robot R0, which is slower but does not disturb humans at all. Or the
same path for the object could be done while being held mainly by R1, but
it would cause the humans to leave the place for the robot to go across.

second is a collision test with the object alone: if there is no
path for it from an agent to the other, the handover is not
possible. The third is an inverse-kinematics test where we
check that both agents can grasp the object simultaneously.
The last one tests several pre-defined handover positions for
collision, and if it succeeds applies a cost to it related to
effort and comfort for humans when relevant. This cost is
applied to the edge in the graph G to be used by the search
algorithm. Optionally, the full motion can be computed, but
the previous test is sufficient in most scenarios. Note that the
handover search tool can be substituted with any state of the
art algorithm as soon as it can find a solution from 2D poses
of each agent and compute its cost.

C. Schedule

The path provided by the search algorithm lacks infor-
mation about the agent states at every moment. The post-
process phase enable us to add all navigation actions that
do not involve the object, i.e. the navigation to go from
initial position to a handover place to get the object, and
the navigation from a handover place to the initial position
after giving the object. They already have been computed
during the search but need to be added to the solution.

Fig. 3. The big rooms example, with a solution represented by the black
arrow. Seven agent out of sixteen are part of the plan. This plan tries to
minimize delivery time. Other solutions avoiding humans would use only
robots and pass by the room at the bottom of the image.

The resulting solution is unordered, We use Simple Tem-
poral Networks (STN) [22] to schedule all tasks.

The following assertions are applied to build the STN:
(i) a handover can start only when both agents are at their
handover position; (ii) after a handover, agents can leave only
when the handover is fully finished.

Knowing the duration of each task, we can use the STN
to compute all tasks optimal start and end dates for the plan
to be executed faster.

D. Collision post-process

The final step of the planning process is to guarantee the
feasibility of the trajectories according to collisions between
agents. The schedule let us know the position of any agent
at any time. When a collision is found, paths are recomputed
taking into account all the agents involved in that collision.
The agent holding the object is supposed to have priority, safe
places are found for the other agents, and the new solution
is scheduled. We iterate until all trajectories are valid. This
part of the algorithm is highly time-consuming, and is called
only when we have found a solution and we are almost sure
to keep it. This post-processing reduces the solution quality
without any specified bound, it only modifies the solution
locally, as least as possible.

V. RESULTS & DISCUSSION

The system has been tested on various environments,
including a real-life test with our two PR2 robots. We show
that it computes in a satisfying time to allow on-line use in
small building environments and with a number of agents
around ten, and perform even better with an initialization
phase. We will discuss the scalability, and adaptability to
other kinds of scenarios and the integration in more complex
systems, with other tasks, will also be examined.

A. Examples

We have tested our algorithm in environments of various
complexities and likeliness. 1

1The simple scenarios with only one handover are not presented in this
paper, although, we tested them and found satisfying results.



Fig. 4. The real robot example. The bottom picture the 3D model, with
the object path as a white arrow. The solution involves successively R1, H1,
R2, H2, and the object is handed over through the windows, minimizing
H1 efforts, and brought directly to H2 so he doesn’t have to move.

Example 1 - rooms: The environment presented in Fig. 1 is
a realistic scenario with medium complexity (18×16m2, 10
agents). The agents share common areas, where handover are
possible everywhere. This property increases the complexity:
each node in G has as many neighbours as the number of
possible handovers with each agent sharing the same area,
in addition to the navigation neighbours. The node number
in this example 2 is about 64000 (we use a discretization
step of 0.15 in all the examples, and for this one, there is an
average of five possible agents by cell). In this environment,
the A* algorithm is efficient as the heuristic is close to the
real cost.

Synthesis: 18 × 16m2, 10 agents, 64000 nodes, efficient
heuristic.

Example 2 - maze: Fig. 2 is a maze where there is always
a direct solution where the first and target agents can meet to
perform a single handover. Windows allow faster delivery if
the object is handed over through them between intermediary
agents. The A* heuristic gets trapped in this environment as a
solution is rarely close to the straight line. There are 102400
nodes (8 possible agents per cell).

Synthesis: 18× 16m2, 8 agents, 102400 nodes, inefficient
heuristic.

Example 3 - big room: The environment in Fig. 3 is a large
environment (25× 25m2) where the 16 agents are in rooms
connected by doors or windows. The graph G is relatively
small (41500 nodes) due to the small number of agents who
share the same area (1.5 possible agents per cell in average)
even if the size of the environment is bigger than in the other
examples. The A* heuristic does not get trapped as in the
maze, but solutions usually differ from straight lines.

Synthesis: 25 × 25m2, 16 agents, 41500 nodes, normal
efficiency for heuristic.

2In order to compute the node number we use the formula:
surface/(discr.step)2 × numberofagentsbycell.

TABLE I
COMPUTATION TIMES FOR EACH ENVIRONMENT

environment Computation time solution
ε mean SD costa SD

large rooms
10 20.5 32.0 1.10 0.27
4 26.0 39.0 1.02 0.24
1 61.3 62.9 1.00 –

maze
10 2.07 3.6 1.42 1.53
4 2.11 3.8 1.37 1.68
1 13.04 26.5 1.00 –

rooms
10 3.6 6.5 1.73 1.73
4 2.5 3.1 1.46 1.46
1 20.4 31.0 1.00 –

apartment
10 12.4 26.3 1.49 1.13
4 16.0 48.7 1.18 0.31
1 33.3 104 1.00 –

a relative to the optimal solution cost (ε = 1) found for
the same problem instance

Example 4 - real robot: We tested our algorithm in
a real environment3 (Fig. 4), it is a small environment
(8*15m2) with few agents (2 humans and 2 PR2 robots).
There are 16000 nodes, with 3 possible agents per cell. In our
implementation, one robot computes the solution (without
the trajectories) and share it with the other robot, then each
one of them computes its own trajectories based on this
solution.

Synthesis: 8 × 15m2, 4 agents, 16000 nodes, normal
efficiency for heuristic.

B. Results

The table I gives computation mean times and their stan-
dard deviation for studied environments. Each mean time is
computed with 40 samples with randomly selected start and
goal agents. Half of the samples give priority to the execution
time (deliver as fast as possible), and half prioritize human
comfort (by avoiding including humans in the solution) The
program is run on an Intel R© Xeon R© Processor E3-1271 v3
(8M Cache, 3.60 GHz), it uses one core only.

C. Discussions

1) Computation time: It is much faster to compute with
higher epsilon value as many expansions are spared due to
the depth first tendency of the Weighted A*. The loss on
the cost is far under the upper limit of sub-optimality (ε)
as our heuristic is really optimistic. For the lower epsilon,
high variance is due to the diversity of the problem instances
(different starts and targets agents), some of which are easier
to compute than others. Note that the possible handovers
are memorized making following request resolution faster
than the first ones. The lazy variant spare a number of real
expansions: averaged on 80 random runs in the rooms envi-
ronment (Fig. 1), the true cost is computed only for 0.46% of
the explored nodes. The ratio between the computation time
of a real cost evaluation and the temporary cost estimation
is almost 200, with 67ms for the former and 0.334ms for

3The attached video shows a solution for this scenario.



the latter. Statistically, without the lazy variant, evaluating
explored nodes would be more than 100 times as long. That
factor reaches 400 in the rooms environments, while still
providing exactly the same solutions. This reinforces the
relevance of the Lazy Weighted A* variant use in our case.

It appears that the environments influence the computation
time strongly. The "rooms" environment compared to the
others is very straight forward: the heuristic is quite good,
so even if there are lots of nodes in the graph G, only few
of them will be expanded thanks to it.

The humans are explicitly taken into account in the cost
computation. When the cost are oriented toward humans
comfort, the algorithm will try to avoid including human
in the sequence solution, but if the costs are oriented toward
a fast delivery, the agent are considered equally in order to
achieve the task.

2) Adaptability: This approach can be adapted to any
kind of scenario, but will have limitations according to
its characteristics. Mainly, the complexity of the problem
explodes with the size of the environment and the number
of agents. This can be limited if agents are limited to smaller
parts of the environment as in Fig. 3. Larger environments or
more complex ones (compared to those studied here) would
be successfully solved by our planner, but the computational
time does not allow on-line use for such situations. Though,
such complex cases are supposed to be rare and do not enter
under the scope of our work.

3) Improvements: Our approach can be improved on
many points. The use of adapted Monte-Carlo methods could
give similar or better results, it could make possible to have
a more complete model, or more precise. An interesting
feature to add is the ability to plan object exchange without
handover, using place and pick actions, to relax synchroniza-
tion constraints of the handovers. We use STN to compute
optimal schedules, with fixed durations for each task but
some have high uncertainty, either concerning robots (risk of
failure, difficulty to perform handover) or humans (they will
not do exactly what was planned). Adding this information
to the plan will enable the use of appropriate tools to execute
plans with uncertainty [23]. Other improvements concern the
model used. Instead of a grid with static discretization step,
we can imagine using quad-tree structure [24] to optimize
the number of nodes. Work can be done at improving the
human related cost computation methods, the heuristic can
be made more accurate.

VI. CONCLUSION

In this paper, we have presented a planner able to find
a sequence of handovers involving several agents (robots or
humans) in order to bring an object from a starting agent to
a target agent.

Our approach finds optimal solutions, based on human-
aware costs, in a short amount of time for this problem. It
is based on a graph where each node is a possible object
position and the agent holding the object, and the edges are
the ways an object can move from a node to another (either
through a navigation action, or a handover).

This approach has been tested in various environments
with variations, considering the costs, the starting and target
agents, the environment itself (by opening or closing some
doors/windows). This proved the adaptability of the algo-
rithm in scenarios with different kinds of difficulties.

REFERENCES

[1] K. W. Strabala, M. K. Lee, A. D. Dragan, J. L. Forlizzi, S. Srini-
vasa, M. Cakmak, and V. Micelli, “Towards Seamless Human-Robot
Handovers,” Journal of Human-Robot Interaction, vol. 2, no. 1, 2013.

[2] M. Cakmak, S. S. Srinivasa, M. K. Lee, J. Forlizzi, and S. Kiesler,
“Human preferences for robot-human hand-over configurations,” in
Proc. IEEE Int. Conf. on Intelligent Robots and Systems, 2011.

[3] M. Cakmak, S. S. Srinivasa, M. K. Lee, S. Kiesler, and J. Forlizzi,
“Using spatial and temporal contrast for fluent robot-human hand-
overs,” in Proc. Int. Conf. on Human-robot interaction, New York.

[4] W. P. Chan, C. A. Parker, H. Van der Loos, and E. A. Croft, “Grip
forces and load forces in handovers: implications for designing human-
robot handover controllers,” in Human Robot Interaction, 2012.

[5] K. Dautenhahn, M. Walters, S. Woods, K. L. Koay, C. L. Nehaniv,
A. Sisbot, R. Alami, and T. Siméon, “How may i serve you?: a robot
companion approaching a seated person in a helping context,” in Proc.
Conf. Human-robot interaction, 2006.

[6] J. Mainprice, E. Sisbot, T. Siméon, and R. Alami, “Planning safe
and legible hand-over motions for human-robot interaction,” in IARP
workshop on technical challenges for dependable robots in human
environments, vol. 2, 2010.

[7] J. Mainprice, M. Gharbi, T. Simeon, and R. Alami, “Sharing effort in
planning human-robot handover tasks,” in IEEE RO-MAN, Sept 2012.

[8] L. Karlsson, J. Bidot, F. Lagriffoul, A. Saffiotti, U. Hillenbrand, and
F. Schmidt, “Combining Task and Path Planning for a Humanoid Two-
arm Robotic System,” TAMPRA, 2012.

[9] C. Dornhege, P. Eyerich, T. Keller, S. Trug, M. Brenner, and B. Nebel,
“Semantic Attachments for Domain-Independent Planning Systems,”
ICAPS, 2009.

[10] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in Proc. Conf. IEEE ICRA, 2011.

[11] F. Lagriffoul, L. Karlsson, J. Bidot, and A. Saffiotti, “Combining task
and motion planning is not always a good idea,” in RSS Workshop
on Combined Robot Motion Planning and AI Planning for Practical
Applications, 2013.

[12] A. H. Quispe, H. Ben Amor, and M. Stilman, “Handover planning
for every occasion,” in IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids). IEEE, 2014.

[13] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot
navigation: A survey,” Robotics and Autonomous Systems, vol. 61,
no. 12, 2013.

[14] E. T. Hall, The hidden dimension. Anchor Books New York, 1969,
vol. 1990.

[15] T. Simeon, “Manipulation Planning with Probabilistic Roadmaps,” The
International Journal of Robotics Research, vol. 23, no. 7-8, 2004.

[16] J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Manipula-
tion with multiple action types,” in Experimental Robotics. Springer,
2013.

[17] S. M. LaValle, Planning algorithms. Cambridge Univ press, 2006.
[18] M. W. Savelsbergh and M. Sol, “The general pickup and delivery

problem,” Transportation science, vol. 29, no. 1, 1995.
[19] B. Coltin and M. Veloso, “Online pickup and delivery planning with

transfers for mobile robots,” in IEEE Int. Conf. on Robotics and
Automation (ICRA), May 2014.

[20] B. Cohen, M. Phillips, and M. Likhachev, “Planning Single-arm
Manipulations with n-Arm Robots,” in Proc. of Robotics: Science and
Systems, Berkeley, USA, 2014.

[21] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime a*
with provable bounds on sub-optimality,” in Advances in Neural
Information Processing Systems, 2003.

[22] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial Intelligence, vol. 49, no. 1, 1991.

[23] P. Morris and N. Muscettola, “Execution of Temporal Plans with
Uncertainty,” in Proc. AAAI/IAAI, 2000.

[24] R. Finkel and J. Bentley, “Quad trees a data structure for retrieval on
composite keys,” Acta Informatica, vol. 4, no. 1, 1974.


	Introduction
	Related Work
	Problem definition
	Model and resolution
	Representation
	Resolution
	Heuristic and cost
	Handover tests

	Schedule
	Collision post-process

	Results & Discussion
	Examples
	Results
	Discussions
	Computation time
	Adaptability
	Improvements


	Conclusion
	References

