C. Sanchez, P. Belleville, M. Popall, and N. L. , Applications of advanced hybrid organic???inorganic nanomaterials: from laboratory to market, Chemical Society Reviews, vol.39, issue.2, pp.696-753, 2011.
DOI : 10.1039/c0cs00025f

B. Kim, M. Hackett, J. Park, and T. Hyeon, Synthesis, Characterization, and Application of Ultrasmall Nanoparticles, Chemistry of Materials, vol.26, issue.1, pp.59-71, 2013.
DOI : 10.1021/cm402225z

Z. Yang, C. Chen, P. Roy, and H. Chang, Quantum dot-sensitized solar cells incorporating nanomaterials, Chemical Communications, vol.39, issue.34, pp.9561-9571, 2011.
DOI : 10.1039/C0EE00741B

L. Yan, Y. Zheng, and F. Zhao, Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials, Chem. Soc. Rev., vol.96, issue.1, pp.97-114, 2012.
DOI : 10.1073/pnas.1105270108

Z. Wang, G. Zhu, Y. Yang, S. Wang, and C. Pan, Progress in nanogenerators for portable electronics, Materials Today, vol.15, issue.12, pp.532-543, 2012.
DOI : 10.1016/S1369-7021(13)70011-7

Y. Wu, D. Wang, and Y. Li, Nanocrystals from solutions: catalysts, Chem. Soc. Rev., vol.3, issue.7, pp.2112-2124, 2014.
DOI : 10.1021/ar400068w

N. Sozer and J. Kokini, Nanotechnology and its applications in the food sector, Trends in Biotechnology, vol.27, issue.2, pp.82-89, 2009.
DOI : 10.1016/j.tibtech.2008.10.010

M. Etheridge, S. Campbell, A. Erdman, C. Haynes, S. Wolf et al., The big picture on nanomedicine: the state of investigational and approved nanomedicine products, Nanomedicine: Nanotechnology, Biology and Medicine, vol.9, issue.1, pp.1-14, 2013.
DOI : 10.1016/j.nano.2012.05.013

R. Petros and J. Desimone, Strategies in the design of nanoparticles for therapeutic applications biodistribution of hybrid nanoparticles with different poly(ethyleneglycol) coatings, Nat. Rev. Small, vol.9, issue.522, pp.615-627, 2009.

K. Choi, G. Liu, S. Lee, and X. Chen, Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives, Nanoscale, vol.39, issue.2, pp.330-342, 2012.
DOI : 10.1039/C1NR11277E

S. Kelkar and T. Reineke, Theranostics: Combining Imaging and Therapy, Bioconjugate Chemistry, vol.22, issue.10, pp.1879-1903, 2011.
DOI : 10.1021/bc200151q

V. Shubayev, I. Pisanic, and J. S. Tr, Magnetic nanoparticles for theragnostics, Advanced Drug Delivery Reviews, vol.61, issue.6, pp.467-477, 2009.
DOI : 10.1016/j.addr.2009.03.007

J. Mccarthy and R. Weissleder, Multifunctional magnetic nanoparticles for targeted imaging and therapy???, Advanced Drug Delivery Reviews, vol.60, issue.11, pp.1241-1251, 2008.
DOI : 10.1016/j.addr.2008.03.014

Y. Zeng, D. Zhang, and Y. Wu, Lipid-AuNPs@PDA Nanohybrid for MRI/CT Imaging and Photothermal Therapy of Hepatocellular Carcinoma, ACS Applied Materials & Interfaces, vol.6, issue.16, pp.14266-14277, 2014.
DOI : 10.1021/am503583s

M. Montalti, L. Prodi, E. Rampazzo, and N. Zaccheroni, Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine, Chemical Society Reviews, vol.51, issue.12, pp.4243-4268, 2014.
DOI : 10.1039/c3cs60433k

M. Kircher, U. Mahmood, R. King, R. Weissleder, and L. Josephson, A multimodal nanoparticle for preparative magnetic resonance imaging and intraoperative optical brain tumor delineation, Cancer Res, vol.63, pp.8122-8125, 2003.

D. Rosales and R. , Potential clinical applications of bimodal PET-MRI or SPECT-MRI agents, Journal of Labelled Compounds and Radiopharmaceuticals, vol.7, issue.4, pp.298-303, 2014.
DOI : 10.1002/jlcr.3154

D. Kryza, J. Taleb, and M. Janier, Biodistribution Study of Nanometric Hybrid Gadolinium Oxide Particles as a Multimodal SPECT/MR/Optical Imaging and Theragnostic Agent, Bioconjugate Chemistry, vol.22, issue.6, pp.1145-1152, 2011.
DOI : 10.1021/bc1005976

URL : https://hal.archives-ouvertes.fr/hal-00673880

R. Misri, K. Saatchi, and U. Häfeli, Nanoprobes for hybrid SPECT/MR molecular imaging, Nanomedicine, vol.7, issue.5, pp.719-733, 2012.
DOI : 10.2217/nnm.12.32

L. Reddy, J. Arias, N. J. Couvreur, and P. , Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications, Chemical Reviews, vol.112, issue.11, pp.5818-5878, 2012.
DOI : 10.1021/cr300068p

H. Yang, H. Liu, and M. Li, Magnetic gold-nanorod/ PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy, Biomaterials, vol.34, issue.22, pp.5651-5660, 2013.
DOI : 10.1016/j.biomaterials.2013.03.085

J. Vivero-escoto, R. Huxfords-phillips, and W. Lin, Silica-based nanoprobes for biomedical imaging and theranostic applications, Chemical Society Reviews, vol.6, issue.7, pp.2673-2685, 2012.
DOI : 10.1039/c2cs15229k

L. Duc, G. Miladi, I. Alric, and C. , Toward an Image-Guided Microbeam Radiation Therapy Using Gadolinium-Based Nanoparticles, ACS Nano, vol.5, issue.12, pp.9566-9574, 2011.
DOI : 10.1021/nn202797h

U. Van-der-heide, A. Houweling, G. Groenendaal, R. Beets-tan, and P. Lambin, Functional MRI for radiotherapy dose painting, Magnetic Resonance Imaging, vol.30, issue.9, pp.1216-1223, 2012.
DOI : 10.1016/j.mri.2012.04.010

J. Hainfeld, D. Slatkin, and H. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice, Physics in Medicine and Biology, vol.49, issue.18, pp.309-315, 2004.
DOI : 10.1088/0031-9155/49/18/N03

K. Butterworth, S. Mcmahon, L. Taggart, and K. Prise, Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress, Transl. Cancer Res, vol.2, issue.4, pp.269-279, 2013.

D. Kwatra, A. Venugopal, and S. Anant, Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer, Transl. Cancer Res, vol.2, issue.4, pp.330-342, 2013.

A. Pradhan, S. Nahar, and M. Montenegro, Resonant x-ray Enhancement of the Auger effect in high-Z atoms, molecules, and nanoparticles: potential biomedical applications, J. Phys. Chem. A, vol.119, pp.12356-12363, 2009.

I. Miladi, C. Alric, and S. Dufort, The In Vivo Radiosensitizing Effect of Gold Nanoparticles Based MRI Contrast Agents, Small, vol.53, issue.6, pp.1116-1124, 2014.
DOI : 10.1002/smll.201302303

URL : https://hal.archives-ouvertes.fr/hal-00968601

K. Butterworth, S. Mcmahon, F. Curell, and K. Prise, Physical basis and biological mechanisms of gold nanoparticle radiosensitization, Nanoscale, vol.115, issue.4, pp.4830-4838, 2012.
DOI : 10.1039/c2nr31227a

S. Mcmahon, W. Hyland, and M. Muir, Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles, Scientific Reports, vol.37, issue.1, pp.1-9, 2011.
DOI : 10.1118/1.3455703

A. Sherry, P. Caravan, and R. Lenkinski, Primer on gadolinium chemistry, Journal of Magnetic Resonance Imaging, vol.41, issue.6, pp.1240-1248, 2009.
DOI : 10.1002/jmri.21966

P. 46-caravan, J. Ellison, T. Mcmurry, and R. Lauffer, Gadolinium(III) Chelates as MRI Contrast Agents:?? Structure, Dynamics, and Applications, Chemical Reviews, vol.99, issue.9, pp.2293-2352, 1999.
DOI : 10.1021/cr980440x

P. Caravan, Strategies for increasing the sensitivity of gadolinium based MRI contrast agents, Chemical Society Reviews, vol.40, issue.6, pp.512-523, 2006.
DOI : 10.1039/b510982p

J. Bulte, The chemistry of contrast agents in medical magnetic resonance imaging. edited by A. E. Merbach and E. Toth. Wiley, Chichester, 2001,??135, NMR in Biomedicine, vol.17, issue.4, p.210, 2001.
DOI : 10.1002/nbm.865

F. Geraldes and S. Laurent, Classification and basic properties of contrast agents for magnetic resonance imaging, Contrast Media & Molecular Imaging, vol.59, issue.186, pp.1-23, 2008.
DOI : 10.1002/cmmi.265

E. Terreno, D. Castelli, A. Viale, and A. S. , Challenges for Molecular Magnetic Resonance Imaging, Chemical Reviews, vol.110, issue.5, pp.3019-3042, 2010.
DOI : 10.1021/cr100025t

Y. Li, M. Beija, and S. Laurent, Macromolecular Ligands for Gadolinium MRI Contrast Agents, Macromolecules, vol.45, issue.10, pp.4196-4204, 2012.
DOI : 10.1021/ma300521c

J. Lim, B. Turkbey, and M. Bernardo, Gadolinium MRI Contrast Agents Based on Triazine Dendrimers: Relaxivity and In Vivo Pharmacokinetics, Bioconjugate Chemistry, vol.23, issue.11, pp.2291-2299, 2012.
DOI : 10.1021/bc300461r

J. Ananta, B. Godin, and R. Sethi, Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast, Nature Nanotechnology, vol.2, issue.11, pp.815-821, 2010.
DOI : 10.1038/nnano.2010.203

M. Botta and L. Tei, Relaxivity Enhancement in macromolecular and nanosized Gd III -based MRI contrast agents, Eur. J. Inorg. Chem, vol.12, pp.1945-1960, 2012.

F. Lux, S. Roux, P. Perriat, and O. Tillement, Biomedical Applications of Nanomaterials Containing Gadolinium, Current Inorganic Chemistrye, vol.1, issue.1, pp.117-129, 2011.
DOI : 10.2174/1877944111101010117

H. Pietsch, G. Jost, and T. Frenzel, Efficacy and safety of lanthanoids as X-ray contrast agents, European Journal of Radiology, vol.80, issue.2, pp.349-356, 2011.
DOI : 10.1016/j.ejrad.2009.10.023

C. Preihs, J. Arambula, and M. D. , Recent Developments in Texaphyrin Chemistry and Drug Discovery, Inorganic Chemistry, vol.52, issue.21, pp.12184-12192, 2013.
DOI : 10.1021/ic400226g

D. Morrison, J. Aitken, M. De-jonge, J. Ioppolo, H. Harris et al., ) agents within tumour cells, Chem. Commun., vol.1823, issue.18, pp.2252-2254, 2014.
DOI : 10.1039/C3CC46903D

J. Bridot, D. Dayde, and C. Rivière, Hybrid gadolinium oxide nanoparticles combining imaging and therapy, Journal of Materials Chemistry, vol.35, issue.103, pp.2328-2335, 2009.
DOI : 10.1039/b815836c

D. Thomsen, Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide, European Radiology, vol.18, issue.12, pp.2619-2621, 2006.
DOI : 10.1007/s00330-006-0495-8

G. Stasiuk and N. Long, The ubiquitous DOTA and its derivatives: the impact of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid on biomedical imaging, Chemical Communications, vol.44, issue.Suppl. 1, pp.2732-2746, 2013.
DOI : 10.1039/c3cc38507h

G. Davies, I. Kramberger, and J. Davies, Environmentally responsive MRI contrast agents, Chemical Communications, vol.13, issue.84, pp.9704-9721, 2013.
DOI : 10.1039/c3cc44268c

H. Shokrollahi, Contrast agents for MRI, Materials Science and Engineering: C, vol.33, issue.8, pp.4485-4497, 2013.
DOI : 10.1016/j.msec.2013.07.012

R. Lux, . Sancey, . Bianchi, . Crémillieux, &. Roux et al., Design considerations for tumour-targetednanoparticles, Nat Nanotechnol, vol.5, issue.1, pp.42-47, 2010.

A. Mignot, C. Truillet, and F. Lux, A Top-Down Synthesis Route to Ultrasmall Multifunctional Gd-Based Silica Nanoparticles for Theranostic Applications, Chemistry - A European Journal, vol.132, issue.19, pp.6122-6136, 2013.
DOI : 10.1002/chem.201203003

L. Sancey, V. Motto-ros, and B. Busser, Laser spectrometry for multi-elemental imaging of biological tissues, Scientific Reports, vol.34, p.6065, 2014.
DOI : 10.1038/srep06065

URL : https://hal.archives-ouvertes.fr/hal-01071458

A. Bianchi, F. Lux, O. Tillement, and Y. Crémillieux, Contrast enhanced lung MRI in mice using ultra-short echo time radial imaging and intratracheally administrated Gd-DOTA-based nanoparticles, Magnetic Resonance in Medicine, vol.25, issue.5, pp.1419-1426, 2013.
DOI : 10.1002/mrm.24580

URL : https://hal.archives-ouvertes.fr/hal-00797079

A. Bianchi, S. Dufort, and F. Lux, Quantitative biodistribution and pharmacokinetics of multimodal gadolinium-based nanoparticles for lungs using ultrashort TE MRI, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.7, issue.1, pp.303-316, 2014.
DOI : 10.1007/s10334-013-0412-5

URL : https://hal.archives-ouvertes.fr/hal-01279126

A. Bianchi, S. Dufort, and F. Lux, Targeting and in vivo imaging of non-small-cell lung cancer using nebulized multimodal contrast agents, Proceedings of the National Academy of Sciences, vol.111, issue.25, pp.9247-9252, 2014.
DOI : 10.1073/pnas.1402196111

URL : https://hal.archives-ouvertes.fr/hal-01115890

M. Pagel, The hope and hype of multimodality imaging contrast agents, Nanomedicine, vol.6, issue.6, pp.945-948, 2011.
DOI : 10.2217/nnm.11.63

A. Louie, Multimodality Imaging Probes: Design and Challenges, Chemical Reviews, vol.110, issue.5, pp.3146-3195, 2010.
DOI : 10.1021/cr9003538

D. Cormode, B. Sanchez-gaytan, A. Mieszawska, Z. Fayad, and W. Mulder, Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality, NMR in Biomedicine, vol.65, issue.6, pp.766-780, 2013.
DOI : 10.1002/nbm.2909

C. Alric, J. Taleb, L. Duc, and G. , Gadolinium Chelate Coated Gold Nanoparticles As Contrast Agents for Both X-ray Computed Tomography and Magnetic Resonance Imaging, Journal of the American Chemical Society, vol.130, issue.18, pp.5908-5915, 2008.
DOI : 10.1021/ja078176p

URL : https://hal.archives-ouvertes.fr/hal-00433987

C. Alric, I. Miladi, and D. Kryza, The biodistribution of gold nanoparticles designed for renal clearance, Nanoscale, vol.5, issue.13, pp.5930-5939, 2013.
DOI : 10.1038/srep00018

URL : https://hal.archives-ouvertes.fr/hal-00843843

J. Park, S. Bhuniya, and H. Lee, A DTTA-ligated uridine???quantum dot conjugate as a bimodal contrast agent for cellular imaging, Chemical Communications, vol.7, issue.26, pp.3218-3220, 2012.
DOI : 10.1039/c2cc17555j

B. Lin, X. Yao, Y. Zhu, J. Shen, X. Yang et al., Multifunctional gadolinium-labeled silica-coated core/shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells, RSC Advances, vol.18, issue.40, pp.20641-20648, 2014.
DOI : 10.1039/c4ra02424a

F. Lux, A. Mignot, and P. Mowat, Ultrasmall rigid platforms as multimodal probes for medical applications, Angew. Chem. Int. Ed, vol.51, pp.12299-13303, 2011.

H. Benachour, T. Bastogne, and M. Toussaint, Real-Time Monitoring of Photocytotoxicity in Nanoparticles-Based Photodynamic Therapy: A Model-Based Approach, PLoS ONE, vol.26, issue.11, p.48617, 2012.
DOI : 10.1371/journal.pone.0048617.g011

URL : https://hal.archives-ouvertes.fr/hal-00742724

C. Truillet, F. Lux, and J. Moreau, Bifunctional polypyridyl-Ru(ii) complex grafted onto gadolinium-based nanoparticles for MR-imaging and photodynamic therapy, Dalton Transactions, vol.49, issue.34, pp.12410-12420, 2013.
DOI : 10.1039/c3dt50946j

URL : https://hal.archives-ouvertes.fr/hal-00843490

H. Benachour, A. Sève, and T. Bastogne, Multifunctional Peptide-Conjugated Hybrid Silica Nanoparticles for Photodynamic Therapy and MRI, Theranostics, vol.2, issue.9, pp.889-904, 2012.
DOI : 10.7150/thno.4754

URL : https://hal.archives-ouvertes.fr/hal-00723908

D. Roberts, W. Zhu, C. Frommen, and Z. Rosenzweig, Synthesis of gadolinium oxide magnetoliposomes for magnetic resonance imaging, Journal of Applied Physics, vol.87, issue.9, pp.6208-6210, 2000.
DOI : 10.1063/1.372656

M. Mcdonald and K. Watkin, Small Particulate Gadolinium Oxide and Gadolinium Oxide Albumin Microspheres as Multimodal Contrast and Therapeutic Agents, Investigative Radiology, vol.38, issue.6, pp.305-310, 2003.
DOI : 10.1097/01.rli.0000067487.84243.91

R. Bazzi, M. Flores, and C. Louis, Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu, Journal of Colloid and Interface Science, vol.273, issue.1, pp.191-197, 2004.
DOI : 10.1016/j.jcis.2003.10.031

C. Louis, R. Bazzi, and C. Marquette, Nanosized Hybrid Particles with Double Luminescence for Biological Labeling, Chemistry of Materials, vol.17, issue.7, pp.1673-1682, 2005.
DOI : 10.1021/cm0480162

URL : https://hal.archives-ouvertes.fr/hal-00436804

J. Bridot, A. Faure, and S. Laurent, Hybrid Gadolinium Oxide Nanoparticles:?? Multimodal Contrast Agents for in Vivo Imaging, Journal of the American Chemical Society, vol.129, issue.16, pp.5076-5084, 2007.
DOI : 10.1021/ja068356j

URL : https://hal.archives-ouvertes.fr/hal-00434120

M. Engstrom, A. Klasson, H. Pedersen, C. Vahlberg, P. Kall et al., High proton relaxivity for gadolinium oxide nanoparticles, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.5, issue.4, pp.180-186, 2006.
DOI : 10.1007/s10334-006-0039-x

J. Fang, P. Chandrasekharan, and X. Liu, Manipulating the surface coating of ultra-small Gd 2 O 3 nanoparticles for improved T-1-weighted MR imaging, Biomaterials, vol.35, issue.5, pp.1632-1642, 2014.

E. Evanics, P. Diamente, F. Van-veggel, G. Stanisz, and R. Prosser, NanoparticlesPhysical Characterization and NMR Relaxation Properties, Chemistry of Materials, vol.18, issue.10, pp.2499-2505, 2006.
DOI : 10.1021/cm052299w

N. Johnson, W. Oakden, G. Stanisz, R. Prosser, and F. Van-veggel, MRI Contrast Enhancement, Chemistry of Materials, vol.23, issue.16, pp.3714-3722, 2011.
DOI : 10.1021/cm201297x

G. Liang, L. Cao, and H. Chen, MRI contrast agent with large longitudinal relaxivity, J. Mater. Chem. B, vol.8, issue.24, pp.629-638, 2013.
DOI : 10.1039/C2TB00243D

F. Chen, S. Zhang, and W. Bu, A Uniform Sub-50???nm-Sized Magnetic/Upconversion Fluorescent Bimodal Imaging Agent Capable of Generating Singlet Oxygen by Using a 980???nm Laser, Chemistry - A European Journal, vol.49, issue.23, pp.7082-7090, 2012.
DOI : 10.1002/chem.201103611

J. Zhou, M. Yu, and Y. Sun, Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging, Biomaterials, vol.32, issue.4, pp.1148-1156, 2011.
DOI : 10.1016/j.biomaterials.2010.09.071

Q. Xiao, X. Zheng, and W. Bu, A Core/Satellite Multifunctional Nanotheranostic for in Vivo Imaging and Tumor Eradication by Radiation/Photothermal Synergistic Therapy, Journal of the American Chemical Society, vol.135, issue.35, pp.13041-13048, 2013.
DOI : 10.1021/ja404985w

M. Dumont, H. Hoffman, and P. Yoon, Biofunctionalized Gadolinium-Containing Prussian Blue Nanoparticles as Multimodal Molecular Imaging Agents, Bioconjugate Chemistry, vol.25, issue.1, pp.129-137, 2014.
DOI : 10.1021/bc4004266

G. Locher, Biological effects and therapeutic possibilities of neutrons, Am. J. Roentgenol. Radium Ther, vol.36, pp.1-13, 1936.

S. Geninatti-crich, D. Alberti, and I. Szabo, MRI-Guided Neutron Capture Therapy by Use of a Dual Gadolinium/Boron Agent Targeted at Tumour Cells through Upregulated Low-Density Lipoprotein Transporters, Chemistry - A European Journal, vol.67, issue.30, pp.8479-8486, 2011.
DOI : 10.1002/chem.201003741

K. Hwang, P. Lai, C. Chiang, P. Wang, and C. Yuan, Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells, Biomaterials, vol.31, issue.32, pp.8419-8425, 2010.
DOI : 10.1016/j.biomaterials.2010.07.057

N. Dewi, H. Yanagie, and H. Zhu, Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent, Biomedicine & Pharmacotherapy, vol.67, issue.6, pp.451-457, 2013.
DOI : 10.1016/j.biopha.2012.11.010

A. Soloway, W. Tjarks, and B. Barbum, The Chemistry of Neutron Capture Therapy, Chemical Reviews, vol.98, issue.4, pp.1515-1562, 1988.
DOI : 10.1021/cr941195u

K. Butterworth, J. Wyer, and M. Brennan-fournet, Metal Nanoparticles, Radiation Research, vol.170, issue.3, pp.381-387, 2008.
DOI : 10.1667/RR1320.1

Y. Song, X. Xu, K. Macrenaris, W. Zhang, C. Mirkin et al., Multimodal Gadolinium-Enriched DNA-Gold Nanoparticle Conjugates for Cellular Imaging, Angewandte Chemie International Edition, vol.8, issue.48, pp.9143-9147, 2009.
DOI : 10.1002/anie.200904666

M. Marradi, D. Alcantara, J. Martinez-de-le-fuente, G. Martin, M. Cerdan et al., Paramagnetic Gd-based gold gluconanoparticles as probes for MRI: tuning relaxivities with sugars, Chem. Commun, vol.26, pp.3922-3924, 2009.

M. Brust, J. Fink, D. Bethell, D. Schiffrin, and C. Kiely, Synthesis and reactions of functionalized gold nanoparticles, J Chem Soc, Chem. Commun, vol.16, pp.1655-1656, 1995.

P. Mowat, A. Mignot, and R. W. , <I>In Vitro</I> Radiosensitizing Effects of Ultrasmall Gadolinium Based Particles on Tumour Cells, Journal of Nanoscience and Nanotechnology, vol.11, issue.9, pp.7833-7839, 2011.
DOI : 10.1166/jnn.2011.4725

I. Miladi, M. Aloy, and E. Armandy, Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma, Nanomedicine: Nanotechnology, Biology and Medicine, vol.11, issue.1, pp.247-257, 2015.
DOI : 10.1016/j.nano.2014.06.013

URL : https://hal.archives-ouvertes.fr/hal-01053787

M. Luchette, H. Korideck, M. Makrigiorgos, O. Tillement, and R. Berbeco, Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells, Nanomedicine: Nanotechnology, Biology and Medicine, vol.10, issue.8, pp.1751-1755, 2014.
DOI : 10.1016/j.nano.2014.06.004

URL : https://hal.archives-ouvertes.fr/hal-01115659

E. Porcel, O. Tillement, and F. Lux, Gadolinium-based nanoparticles to improve the hadrontherapy performances, Nanomedicine: Nanotechnology, Biology and Medicine, vol.10, issue.8, pp.1601-1608, 2014.
DOI : 10.1016/j.nano.2014.05.005

URL : https://hal.archives-ouvertes.fr/hal-01115636