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Abstract

Several post-processing methods have been developed over the last years in order to take into consideration topography

within satellite-based solar radiation maps using digital elevation models (DEM). If the main part of these procedures is to

estimate the obstructed horizon around each DEM point of a given region so as to consider terrain-based shading effects,

the size of the area can also limit this implementation. That is why we have developed a new efficient horizon model based

on the DEM retrieved during the Shuttle Radar Topography Mission (SRTM). In order to be usable at any world location

with the same expected accuracy, this model is only derived from mathematical statements without any kind of empirical

approximation. Validation against in situ horizons and comparison with some other models have finally shown this one

presents both better accuracy (RMSE of 1.555◦ against 1.712◦ or more) and lower computation time (at least 4 times faster).

Furthermore, in the case of very large areas, we propose an optimization procedure allowing the user to knowingly alter the

modeling error in order to reduce processing time. Finally, using in situ data, we have also developed a method for predicting

the repercussion of the original SRTM DEM error on the final horizon precision.

Keywords: horizon model; SRTM DEM; solar radiation maps; error prediction

Nomenclature

a ellipsoid semi-major axis (m)

B number of bootstrap samples

dsm meridian line element (m)

dsp parallel line element (m)

Ê empirical population randomly drawn from population E

E population of horizon modeling errors
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e ellipsoid eccentricity

F̂ empirical population randomly drawn from a population F

F population of observations

f ellipsoid flattening

f (S ) arbitrary function of the DEM slope S

H orthometric height (m)

h ellipsoidal height (m)

L isometric latitude (rad)

−→n ellipsoid normal

N length of the ellipsoid normal (m)

n number of observations

P horizontal plane

p arbitrary DEM pixel

r normally distributed random variable centered on 0

Rx
DEM DEM metric resolution along x axis (m)

Ry
DEM DEM metric resolution along y axis (m)

S slope of a DEM point

sε standard deviation of the empirical population Ê

TL Linke turbidity factor

α angular elevation (rad)

β strictly positive constant

γ azimuth (rad)

∆WGS 84−EGM96 geoid undulation with respect to the ellipsoid (m)

∆λ longitude width of the DEM tile used in horizon computation (rad)

∆ϕ latitude height of the DEM tile used in horizon computation (rad)

ε̄ mean of the empirical population Ê

ε horizon modeling error

Θ̂ estimator of a given population
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θ̂ parameter of a sample drawn from a given population

θ parameter of a given population

λ geographic longitude (rad)

µ mean of a given population

ν significance level

ρ radius of curvature in the north-south direction (m)

σ standard deviation of a given population

σ2 variance of a given population

ϕ geographic latitude (rad)

1. Introduction1

At the present time, the international energy situation is composed of two related main issues: global warming and de-2

pletion of fossil resources (Ben Ahmed et al., 2011; Hegerl et al., 2007). Since the advent of the sustainable development3

concept at the end of the 1980s, many political decisions have been implemented around the world in order to reduce the envi-4

ronmental impact of human development (Liébard and De Herde, 2005). Thereby, the use of renewable resources, which emit5

very few Green House Gases (GHG) and are almost unlimited energies (Ben Ahmed et al., 2011), is one of the first objectives6

of the Kyoto Protocol established in 1997 (United Nations, 1998). Among many other kinds of renewable energies, direct7

solar energy is currently used through different conversion technologies mainly to produce heat or electricity (Arvizu et al.,8

2011), such as photovoltaics (Luque and Hegedus, 2003), flat solar thermal collectors (Mosallat et al., 2013), concentrated9

solar power (Viebahn et al., 2010), solar cooking (Wentzel and Pouris, 2007) or solar air conditioning (Bermejo et al., 2010).10

In order to predict reliability of these systems for supplying energy to rural or urban populations, it is necessary to accu-11

rately assess both the significance and distribution of the resource, i.e. to map the solar potential. The consistent solar mapping12

from ground measurements requires the distance between measuring sensors to be very low (Muselli et al., 1998; Perez et al.,13

1997), which almost never happens (Paulescu et al., 2013). Therefore, many models have been developed over the past years14

in order to retrieve solar radiation reaching the ground from satellite observations, like the Heliosat model (Beyer et al., 1996;15

Rigollier, 2004), or the ones developed by Brisson et al. (1999), Zelenka et al. (1999), Perez et al. (2002) or Janjai et al. (2005).16

Nevertheless, if the accuracy of these models is now well established (Paulescu et al., 2013), all of them only estimate ground17

solar irradiance from the extraterrestrial radiation and a physical characterization of the atmospheric transmittance, and leave18

out, because of their inherent spatial resolution, interaction of the radiation with the local topography.19

Some models, part of Geographic Information Systems (GIS) like ArcGIS or GRASS, already take into account local20

terrain effects in the computation of solar radiation (Ruiz-Arias et al., 2009). However, these models are mainly based on21
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simplified atmospheric parameterizations (Ruiz-Arias et al., 2010, 2009), which still limits their consistency for developing22

regional solar map databases. As a result, in order to take benefit from the precision of the satellite-derived computation of23

the atmospheric transmittance, some post-processing procedures integrating topographic effects into satellite-based radiation24

maps have been proposed (Bosch et al., 2010; Haurant et al., 2012; Pillot et al., 2013; Ruiz-Arias et al., 2010). Finally,25

comparing estimates with ground data in mountainous areas, studies of Ruiz-Arias et al. (2010), Bosch et al. (2010) and26

Haurant et al. (2012) have shown this method improves geographic information and accuracy of the final solar radiation maps.27

In order to evaluate terrain effects, this process requires the use of a numerical topographic map of the study region, i.e.28

a digital elevation model (DEM). First and main step of the procedure consists in retrieving the local horizon for every pixel29

of the DEM, in order to estimate diffuse and direct shading effects caused by the terrain onto the radiation (Dozier and Frew,30

1990; Quaschning and Hanitsch, 1998). Thus, the higher the DEM resolution, the better the estimate accuracy, but also the31

longer the global computation, which is a very important parameter to take into consideration when the area of interest gets32

large, such as a small country (Pillot, 2014; Pillot et al., 2013). As a result, the authors think the corresponding horizon model33

has to present both accuracy and fast computing features, with in addition the possibility of evaluating model-based as well as34

DEM-based errors made on horizon estimates.35

Consequently, we have developed a new efficient horizon numerical model using the Matlab programming language. In36

order to be fully implementable with exactly the same accuracy at any world location, it is exclusively based on theoretical37

assumptions without any empirical approximations. We have also added to this model a characteristic viewing distance com-38

putation allowing processing optimization, i.e. reduction of the model’s running time by knowingly altering model precision.39

We have then compared resulting estimates with in situ data, collected during an original topographic measurement campaign,40

and with estimates from some other models in order to assess how relevant this new model was. At last, from the ground data41

comparison, we propose a first approximation method for predicting the DEM-based error achieved on horizon estimates.42

This article is divided into 3 main parts: the first focuses on the characteristics of the DEM used in this work; the second43

depicts the model theoretical basis as well as the related horizon viewing distance and the proposed processing optimization44

method; the final part presents both the comparison and the DEM-based error prediction studies.45

2. DEM features46

Horizon modeling directly depends on which kind of DEM is employed and on which specific Earth’s mathematical47

representation it is defined from. We therefore present here characteristics of the main DEM used at present time, retrieved48

from the global Shuttle Radar Topography Mission (SRTM), as well as the coordinate reference system in which elevation49

data are represented.50

2.1. The Shuttle Radar Topography Mission (SRTM): an interferometric measurement of the Earth’s topography51

A lot of developed countries own large national cartographic databases which were used before 2000 to produce DEM.52

However, these DEM presented some limitations such as, on the one hand, country-specific resolution, scale and geographic53

projection, and, on the other hand, a low coverage of the global land because of some regions without any good-quality54
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topographic maps (Farr et al., 2007). Therefore, the National Aeronautics and Space Administration (NASA) in collaboration55

with the National Geospatial-Intelligence Agency (NGA) prepared and achieved the SRTM, in order to propose a new global56

and consistent high-quality representation of the Earth’s topographic surface.57

The SRTM lasted 10 days in February 2000 and consisted in radar scanning, from the space shuttle Endeavour, of 80 %58

of the world emerged lands located between 60◦N and 57◦S (Farr et al., 2007; Rabus et al., 2003). The use of an interfero-59

metric synthetic aperture radar (InSAR), operating in the C band (wavelength = 5.6 cm), has permitted the assessment of land60

topography by measuring phase difference between radar pulses reflected by the surface and received at the same time by 261

distinct antennas (Farr et al., 2007; Jarvis et al., 2004). Earth’s DEM surface computed from SRTM data is a regular altitude62

mesh at 1′′ resolution (SRTM-1 DEM, about 30 m near the equator), presenting an absolute vertical error lower than 9 m (90 %63

confidence interval).64

First SRTM datasets were released in 2003 by the NASA, with the SRTM-1 DEM mesh available only for the United65

States1. Indeed, the rest of the world is covered by the DEM at 3′′ resolution (SRTM-3 DEM, about 90 m near the equator),66

computed by averaging 3 × 3 pixels of the original SRTM-1 DEM product. Furthermore, a significant proportion of elevation67

data is still missing in the original DEM, corresponding to a total area of 796217 km2 (Jarvis et al., 2008) and mainly resulting68

from the low contrast within the final image (sharp slopes) or from smooth areas (smooth water or sand) which reflect too little69

energy to the radar (Farr et al., 2007). Several methods have been developed to fill in these voids, mainly based on interpolation70

algorithms and on the use of elevation data from other sources. These schemes have been integrated into a global diffusion71

tool developed by the Consortium for Spatial Information (CGIAR-CSI), available via the organization website (Jarvis et al.,72

2008). This tool gives access to SRTM-3 DEM 5◦ × 5◦ tiles we have used in this work.73

2.2. SRTM DEM coordinate reference systems74

A DEM is a numerical mesh of the Earth’s topographic surface where geographic coordinates of each pixel depend on the75

mathematical shape used to represent it. The Earth’s shape is not a perfect sphere because of the flattening at the poles and76

the heterogeneous gravity field at the surface. Therefore, 2 coordinate systems have been used by the SRTM to produce and77

reference elevation data: the WGS84 ellipsoid of revolution for horizontal position (geographic, or geodetic, longitude and78

latitude) and the EGM96 geoid for vertical elevation (orthometric height).79

2.2.1. Geographic coordinates: the WGS84 ellipsoid80

The World Geodetic System 1984 (WGS84) is a geocentric, right-handed and orthogonal Earth coordinate system, where81

origin O is the globe’s center of mass, z axis is the axis passing through the poles and x axis is the intersection between the82

reference meridian (Greenwich) and the plane normal to the z axis and passing through O (NGA, 2000). The WGS84 ellipsoid83

of center O is a mathematical approximation of the Earth’s shape retrieved by revolution, around its semi-minor axis b, of an84

ellipse of semi-major axis a and flattening f = a−b
a :85

1At the time this study was driven, worldwide SRTM-1 DEM was not available yet. It has been meanwhile released and is now available from the

NASA/USGS website (https://lta.cr.usgs.gov/SRTM1Arc).
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a = 6378137.0 m

f = 1/298.257223563
(1)

The ellipsoid is fully defined by these 2 parameters, from which we can also express the first eccentricity e (Bosser, 2012;86

Burkholder, 2008):87

e2 =
a2 − b2

a2 = 2 f − f 2 (2)

Let now M be a point of the Cartesian coordinate system (x, y, z) and M∗ the orthogonal projection of M onto the ellipsoid88

such as
−−−−→
M∗M = h · −→n , with −→n the normal to the ellipsoid in M∗ (Bosser, 2012). In the geographic coordinate system, M is89

defined by its latitude ϕ, angle between −→n and the equatorial plane, its longitude λ, angle between the reference meridian and90

the meridian passing through M∗, and its ellipsoidal height h along the normal. In order to retrieve the coordinates of M in91

the Cartesian space from the geographic space, it is firstly possible to express the normal to the ellipsoid as in the case of a92

sphere:93

−→n =


cos λ cosϕ

sin λ cosϕ

sinϕ

 (3)

Then, we can calculate the Cartesian coordinates x, y, z of any point M onto the ellipsoid from its geographic coordinates94

ϕ, λ, h (Bosser, 2012; Burkholder, 2008):95


x = (N + h) cos λ cosϕ

y = (N + h) sin λ cosϕ

z = (N(1 − e2) + h) sinϕ

(4)

Where N is the length of the ellipsoid normal, i.e. the distance between z axis and M∗ along the ellipsoid normal −→n96

(Burkholder, 2008):97

N =
a√

1 − e2 sin2 ϕ

(5)

Figure 1 shows the WGS84 ellipsoid in the Cartesian coordinate system. A(ϕA, λA, hA) and B(ϕB, λB, hB), with correspond-98

ing distances NA and NB from z axis, are 2 points of the Cartesian space such as
−−−→
A∗A = hA ·

−→nA and
−−−→
B∗B = hB ·

−→nB, and will be99

used later to explain horizon modeling.100

2.2.2. Altitude baseline: the EGM96 geoid101

A geoid is a mathematical model defining a specific equipotential surface of the Earth’s gravity field around the mean sea102

level (NGA, 2000), and is used as a baseline to retrieve altitude of the topographic surface. The Earth Gravitational Model103
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Figure 1: WGS84 ellipsoid of revolution used as the reference geographic coordinate system for the SRTM DEM.

1996 (EGM96) has been developed by the NASA and NGA in order to evaluate spatial variations of the gravity field, i.e.104

to determine surfaces where it remains constant (Lemoine et al., 1998). Undulations of this geoid referring to the WGS84105

ellipsoid, i.e. the distance between both the mathematical shapes in any point, can be determined using the model provided by106

the NGA (NGA, 2014). It is thus possible, for any point of the DEM, to derive the geoid-based altitude or orthometric height107

H from the ellipsoidal height h considering the geoid undulation ∆WGS 84−EGM96 (Lemoine et al., 1998; NGA, 2000):108

h = H + ∆WGS 84−EGM96 (6)

The gap ∆WGS 84−EGM96 is positive or negative according to the geoid position above or under the ellipsoid, and remains109

between approximately −107 m and 85 m (NGA, 2000).110

3. Horizon modeling111

Obstruction induced by the Earth’s topography modifies the local horizon and thus the solar radiation reaching the ground.112

It is defined, in horizontal coordinates, by the azimuth γ and the angular elevation α. Figure 2 depicts the horizon observed113

from A(ϕA, λA, hA) and including B(ϕB, λB, hB), defined in the horizontal plane P with respect to A by its azimuth γAB and its114

elevation αAB. DEM-based horizon modeling consists therefore in computing elevation α and azimuth γ of all the points of115

the DEM around the observation point, and then retrieving the maximum α for every azimuth between 0 and 360◦.116
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Figure 2: Obstructed horizon, induced by the terrain topography, represented in the horizontal coordinates (γ, α) of the plane P centered on A.

3.1. Horizon theoretical model117

Here we present the horizon model we have developed considering both the points A and B already described in Figure 1118

and in Figure 2.119

3.1.1. Ellipsoidal height120

Our theoretical model is based on both the reference systems previously described (WGS84 and EGM96). Every point of121

a SRTM DEM is thus defined by its geographic coordinates and its orthometric height (Farr et al., 2007). Nevertheless, if the122

angular elevation αAB depends on the height HB as well as on the height HA, they are not both computed with respect to the123

same baseline because of the variations of the gravity field near the Earth’s surface (geoid). Therefore, in order to accurately124

evaluate αAB from the DEM, it is necessary to retrieve altitude of the 2 points with respect to a same regular surface such as125

the WGS84 ellipsoid. As described before, it is possible to derive ellipsoidal heights hA and hB from relation (6):126

hA = HA + ∆WGS 84−EGM96(A)

hB = HB + ∆WGS 84−EGM96(B)
(7)

∆WGS 84−EGM96(A) and ∆WGS 84−EGM96(B) are geoid undulations with respect to the ellipsoid in A and B respectively, and127

are depicted in Figure 3.128

B(γAB , αAB)

(P)hA

Geoid

Topography

hB HB

αAB

nA

nBEllipsoid∆WGS84-EGM96(A)
HA

∆WGS84-EGM96(B) B*

A

A*

π/2 - αAB

Figure 3: Sectional view of the ellipsoid surface in the AB direction.
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3.1.2. Angular elevation129

Figure 3 is a sectional view of the ellipsoidal surface along the direction AB where belong the geoid, the terrain topography130

and the horizontal plane P tangent to the ellipsoid in A (orthogonal to −→nA). The fastest method to calculate the angular elevation131

αAB, i.e. the angle between the vector
−−→
AB and the plane P, is probably to use the scalar product. Indeed, αAB can be computed132

coupling the scalar product between the normal −→nA and the vector
−−→
AB to the angle between them:133

−→nA ·
−−→
AB =

∥∥∥−→nA

∥∥∥ · ∥∥∥∥−−→AB
∥∥∥∥ · cos

(
π

2
− αAB

)
(8)

Obstruction only exists if the angular elevation is positive; so, using the sine, we finally have:134

αAB = max

arcsin

−→nA ·
−−→
AB∥∥∥∥−−→AB
∥∥∥∥

 , 0
 (9)

In the Cartesian coordinate system, −→nA is derived from the relation (3). Then, equation (4) computes the coordinates135

(xA, yA, zA) and (xB, yB, zB) of A and B, which can be used to express the vector
−−→
AB and its norm:136

−−→
AB =


xB − xA

yB − yA

zB − zA

 and
∥∥∥∥−−→AB

∥∥∥∥ =

√
(xB − xA)2 + (yB − yA)2 + (zB − zA)2 (10)

3.1.3. Azimuth137

In horizontal coordinates, azimuth γ is the rotation angle between the reference north direction and the direction of interest.138

Azimuth γAB of the point B with respect to the observation point A is represented on the ellipsoid of Figure 1 as well as on the139

horizontal plane of Figure 2. It is possible to retrieve the azimuth γ using the meridian and parallel line elements dsm and dsp140

depicted in Figure 4, such as (Bosser, 2012):141

tan γ =
dsp

dsm
(11)

γ

M Parallel

dsdsm

dsp

Meridian

Figure 4: Azimuth γ of a line drawn on the ellipsoid and calculated from meridian (dsm) and parallel (dsp) line elements (Bosser, 2012).
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Each line element depends on the considered geographic coordinate system (λ, ϕ), which is not a symmetric parameteri-142

zation, i.e. the same angular variation (dλ = dϕ) doesn’t lead to the same travel onto the surface (dsp , dsm). A symmetric143

parameterization (λ, L) of the ellipsoid is thus defined as follows:144

dsp

dsm
=

dλ
dL

(12)

Where L is the isometric latitude, undefined at the poles (ϕ = ±π/2), and which is retrieved from the geographic latitude145

ϕ by applying the first fundamental quadratic form to the ellipsoid of revolution (Bosser, 2012; Eisenhart, 1909):146

L = ln

tan
(
π

4
+
ϕ

2

)
·

(
1 − e sinϕ
1 + e sinϕ

) e
2
 (13)

So, finally, the azimuth γAB is determined by integrating equation (12) along the loxodrome AB, i.e. the constant azimuth147

line between A and B:148

γAB = arctan
(
λB − λA

LB − LA

)
(14)

3.1.4. Computing full horizon149

We have just defined the angular elevation αAB and the azimuth γAB of a DEM point B with respect to an observation point150

A. In order to compute the full horizon, it is therefore necessary to apply the process to all the terrain which can be viewed151

from this point. Once it is perfectly characterized in the horizontal coordinate system (γ, α), it is then possible to identify, for152

a complete 360◦ azimuth rotation, every maximal angular elevation, and so to retrieve the horizon.153

From relations (9) and (14), a DEM originally referenced in the geographic coordinate system (λ, ϕ, h) can be now repre-154

sented in the new horizontal coordinate system (γ, α). Furthermore, InSAR technology collects surface altitude: the SRTM155

DEM is therefore an elevation regular mesh at 1′′ or 3′′ resolution, composed of square pixels referenced by the geographic156

coordinates of their geometric center (Farr et al., 2007; Jarvis et al., 2004).157

As shown in Figure 5, the first step of the process consists in demarcating a new narrower DEM tile, characterized by158

longitude width ∆λ and latitude height ∆ϕ, around a given observation point A(λA, ϕA, hA). The size of this new area will159

determine the horizon computation time and will be defined in the next section. Once the local terrain mesh is perfectly160

known, the angular elevation α of each pixel is retrieved applying equation (9) to the geographic coordinates of its center161

M(λ, ϕ, h).162

As described in Figure 5, a loxodrome γAF drawn from A to any boundary point F passes through a finite number of163

pixels [p1, p2, . . . , pi] with angular elevation [α1, α2 . . . , αi]. Along this line, the point B presents the highest elevation αB and164

thus belongs to the horizon observed from A. To detect the pixels belonging to the loxodrome, our model calculates for each165

pixel of center M(γ, α) azimuth of northwest, southwest and southeast corners γNW , γS W and γS E using relation (14). Then,166

the azimuth line passes through the pixel if γAF is between γNW and γS W along a meridian, and between γS W and γS E along167

a parallel. Once elevation of all the pixels of the line is computed, the maximum is easily retrieved and corresponds to the168

horizon elevation in the γAF azimuth direction.169
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Figure 5: Methodology for computing the horizon around a given point A. Within a specific DEM tile of size (∆λ,∆ϕ) centered on A, and for each azimuth

between 0◦ and 360◦, it consists in retrieving the pixel with the highest elevation (here αB) among all the pixels the given loxodrome passes through (here

γAF ).

Finally, computing the full horizon consists in repeating this step for a set of azimuth lines [γAF1 , γAF2 , . . . , γAFi ]. Obvi-170

ously, the selected number of lines directly influences horizon accuracy and computing time: in this study, we have considered171

a horizon azimuth step of 1◦.172

3.2. Characteristic horizon viewing distance and model optimization173

We present here an innovative way to reduce the size of the DEM tile required for accurately computing a single horizon,174

as well as a related method allowing us to save computation time in the case of large geographic areas, by knowingly altering175

the precision of multiple estimated horizons.176

3.2.1. Characteristic viewing distance177

Most horizon numerical models, whether specialized as the Carnaval French software or included in a GIS as the r.horizon178

model (Hofierka et al., 2007) part of the r.sun add-on of the GRASS GIS software (Šúri and Hofierka, 2004), let the user179

define the maximal distance used to compute the horizon around the observation point. However, the Earth’s roundness180

inherently limits the minimum altitude of any DEM point: beyond a given distance from the observation point, this point is181

then necessarily located below the horizontal plane P. We can observe this statement in Figure 3 where, beyond a specific182

angle between −→nA and −→nB, the angular elevation αAB turns negative.183

Consequently, we have developed a characteristic viewing distance concept, i.e. the maximum distance beyond which any184

DEM elevation data is no longer useful to compute a given horizon with the highest possible accuracy. In our model, the DEM185
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tile used to model the horizon has width ∆λ and height ∆ϕ, and is centered on an observation point defined in the geographic186

coordinate system (λ, ϕ). The aim was therefore to define a characteristic viewing area for the horizon computation, i.e. the187

largest efficient DEM tile of width ∆λmax and height ∆ϕmax beyond which angular elevation of any DEM pixel is necessarily188

negative or 0.189

To do this, it is firstly possible to express relations allowing calculation of the angle ϕ − ϕA along a meridian (constant190

longitude), and the angle λ − λA along a parallel (constant latitude), between any point M(λ, ϕ, h) of normal length N and the191

observation point A(λA, ϕA, hA) of normal length NA, where h > hA, such as αAM = 0. The angular elevation being equal to 0192

when the normal −→nA is perpendicular to the vector
−−→
AM, it leads to the 2 following equations:193

(
−→nA ·
−−→
AM

)
λ=λA

= 0 (15)(
−→nA ·
−−→
AM

)
ϕ=ϕA

= 0 (16)

From the revolution symmetry of the ellipsoid results an explicit solution to the equation (16):194

|λ − λA|ϕ=ϕA
= δλ(h)|ϕ = arccos

(
(NA + hA) cos2 ϕA − (h − hA) sin2 ϕA

(NA + h) cos2 ϕA

)
(17)

Meanwhile, asymmetry of the meridian ellipse leads to an implicit formula for the angle ϕ − ϕA:195

(N + h) cos(ϕ − ϕA) + (NA sinϕA − N sinϕ)e2 sinϕA − (NA + hA) = 0 (18)

While this equation can be numerically solved (iteration, dichotomy), it is however more interesting to use a local approx-196

imation in order to obtain an explicit solution. This is done by regarding the meridian ellipse as a circle where the radius is the197

radius of curvature in the north-south direction (Bosser, 2012; Burkholder, 2008). The middle term of the previous equation198

disappears (eccentricity equal to 0) and the lengths of the ellipsoid normal NA and N are replaced by the radius ρ of the local199

spherical approximation calculated in A:200

|ϕ − ϕA|λ=λA
= δϕ(h)|λ = arccos

(
ρ + hA

ρ + h

)
(19)

Where ρ is given by the following relation (Bosser, 2012; Burkholder, 2008):201

ρ =
a
(
1 − e2

)
(
1 − e2 sin2(ϕA)

) 3
2

(20)

In that specific case, M can be any point located whether on the meridian or on the parallel passing through A. But we202

can easily generalize these 2 relations to any boundary point of coordinates (λA ± δλ(h)|ϕ, ϕA ± δϕ(h)|λ, h) since we will still203

have αAM ≤ 0. It is then possible to use this methodology to retrieve the size (∆λmax,∆ϕmax) of the largest efficient DEM204

tile used to build the horizon. Instances of boundary points in the 4 cardinal directions, MN(λMN , ϕMN , hMN ) to the north,205
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ME(λME , ϕME , hME ) to the east, MS (λMS , ϕMS , hMS ) to the south and MW (λMW , ϕMW , hMW ) to the west, are depicted in Figure 5206

and are retrieved by iteration. To do this, we firstly initiate heights hMN , hME , hMS and hMW with the maximum theoretical value207

of the global DEM (Everest’s altitude for instance). Then, we iteratively reduce the size of the optimal DEM tile, by looking208

for the maximum height in each cardinal direction within the remaining area, as long as one of the following conditions is still209

met:210



0 6 ϕMN − ϕA 6 δϕ(hMN )|λ & λMW 6 λMN 6 λME

0 6 ϕA − ϕMS 6 δϕ(hMS )|λ & λMW 6 λMS 6 λME

0 6 λA − λMW 6 δλ(hMW )|ϕ & ϕMS 6 ϕMW 6 ϕMN

0 6 λME − λA 6 δλ(hME )|ϕ & ϕMS 6 ϕME 6 ϕMN

(21)

Finally, the width and height of the optimal DEM tile required to perfectly characterize the horizon are given by:211

∆ϕmax = ϕMN − ϕMS (22)

∆λmax = λME − λMW (23)

Obviously, in mapping applications, it is not really efficient to define a characteristic area for every single computed212

horizon of a given region. But it is possible to define the optimal DEM of a specific region, i.e. the zone beyond which it is213

no longer necessary to look for elevation data to compute any horizon of the region with the highest possible accuracy. In that214

case, we no longer consider a single point but a geographic rectangle enclosing the boundaries of the study region; the optimal215

DEM tile is then retrieved by using the previous method and by regarding hA as the minimum height inside the region. This216

tile encompasses the region enough for allowing the computation of all horizons with the highest possible accuracy.217

3.2.2. Reducing model’s running time218

Depending on the size of the considered region, the desired accuracy and the purpose of the study, it may be interesting219

to reduce the model’s computation time in order to improve efficiency of the whole process. Moreover, now both the optimal220

DEM and the maximum characteristic area of a given region are defined, it is possible to knowingly decrease accuracy of a221

given horizon by comparing it with the theoretical ideal one. We therefore propose an efficient method allowing, in the case222

of large geographic areas, computation time to be reduced and resulting horizon precision to be estimated.223

In order to avoid an optimization as time-consuming as the area processing itself, it is relevant to use statistical inferences,224

which consist in assessing the most significant properties of the global error distribution through a given territory by analyzing225

smaller data sets sampled from it.226

Regarding statistical inferences, estimating the parameter θ of a population of observations F consists in determining the227

estimator Θ̂, random variable equal to θ̂ for each sample we randomly pull out from F (Walpole et al., 2011). However, in228

order to accurately assess the standard error and the confidence intervals of the sampling distribution of Θ̂, the distribution229
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of the population F also requires to be perfectly known (Walpole et al., 2011). Here, it was therefore necessary to look for a230

non-parametric method, i.e. fully independent of the distribution, remaining accurate in spite of the low sample size.231

A well-suited method to that kind of problem is the bootstrap method (Efron and Tibshirani, 1993), which relies on the232

plug-in statistical principle. This principle consists in determining the parameter θ of any distribution F, such as θ = t(F),233

from the estimate θ̂ of an empirical distribution F̂, which is a sample composed of n observations randomly drawn from F,234

such as θ̂ = t
(
F̂
)
. In addition, it is also necessary to apprehend the corresponding error, and here comes the main idea of235

the bootstrap concept. It consists in re-sampling F̂, i.e. in drawing with replacement B n-sized random samples F̂∗(b) in F,236

with b = 1, 2, . . . , B, called bootstrap samples. Then, the distribution of the B boostrap sample estimates θ̂∗(1), θ̂∗(2), . . . , θ̂∗(B)
237

around θ̂, such as θ̂∗(b) = t(F̂∗(b)), is used to calculate the standard error and the confidence interval of the estimate θ̂ (Efron238

and Tibshirani, 1993; Singh and Xie, 2010).239

Let ε be the error between an horizon estimate retrieved for a given viewing area (∆ϕ,∆λ) and the ideal theoretical horizon240

corresponding to the optimal area (∆ϕmax,∆λmax). Let then Ek be the population of all the errors achieved on the calculation241

of each k-horizon, i.e. computed using a specific k-area of size (∆ϕk,∆λk), within a given region. In order to determine the242

main components of the resulting error, i.e. both the mean µEk and the variance σ2
Ek

of the population Ek, a plug-in estimate243

of n independent errors Êk = {ε1, ε2, . . . , εn}k is gathered by computing the errors of n k-horizons corresponding to n random244

DEM pixels.245

First of all, in order to define the horizon viewing area of a given region of interest, it is relevant to consider a low number246

of observations (n ≤ 50) and to repeat the previous step for different k-areas. Then, by using a box plot representing the error247

against the computation time, it is possible to select the best compromise between them. As an example, Figure 6 shows the248

box plot we have used to determine the most relevant area size for computing all horizons of the Republic of Djibouti (Pillot,249

2014).250
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Figure 6: Example of the box plot used to optimize horizon calculation in the Republic of Djibouti, where model’s error is plotted against mean running time

for different k-areas (Pillot, 2014). In that example, the error determined with respect to the ideal horizon is the root mean square error.
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Once the desired k-area is known, it is then possible to evaluate the likely error performed on any corresponding horizon251

computed within the given region. In other words, it means estimating the mean µE and the standard deviation σE of the252

distribution E of the modeling error ε, which follows a probability law ε ∼
(
µE , σ

2
E

)
. To perform this, a new empirical253

random sample Ê = {ε1, ε2, . . . , εn} composed of a larger set of observations (for instance n = 200) is implemented. From this254

empirical population, B = n2 bootstrap samples Ê∗(b) =
{
ε∗1, ε

∗
2, . . . , ε

∗
n

}
, where b = 1, 2, . . . , B, are drawn with replacement255

(Singh and Xie, 2010). Thereafter, both the mean ε̄∗(b) and the standard deviation s∗(b)
ε of each sample are calculated. Their256

distribution allows assessing the accuracy of the mean ε̄ and the standard deviation sε of the empirical population, which infer257

the parameters µE and σE of the global population.258

Finally, a simple method for estimating confidence intervals of the population parameters (µE and σE) is the percentile259

method. However, asymmetry and bias of the standard deviation distribution (Walpole et al., 2011) make an approach such260

as the bias-corrected and accelerated (BCa) procedure, developed by (Efron, 1987), better suited. The classical percentile261

approach gives, for a significance level ν, the (1 − 2ν) % confidence interval of the given estimation θ̂ as [θ̂∗(ν), θ̂∗(1−ν)], where262

θ̂∗(ν) is the 100νth percentile of the distribution of the B bootstrap estimates θ̂∗(1), θ̂∗(2), . . . , θ̂∗(B). In order to correct both the263

bias and the asymmetry of the given estimator, the BCa method enhances this first approximation by using other interval264

boundaries, as [θ̂∗(ν1), θ̂∗(ν2)] where ν1 and ν2 are adjusted with respect to ν and 1 − ν using the standard normal cumulative265

distribution function (Efron, 1987; Efron and Tibshirani, 1993).266

Accordingly, the resulting distribution E of the horizon modeling error ε will follow a probability law ε ∼
(
µE , σ

2
E

)
such267

as:268

 µE ∈ [ε̄∗(ν1), ε̄∗(ν2)]

σE ∈ [s∗(ν1)
ε , s∗(ν2)

ε ]
(24)

4. Model’s efficiency and DEM-based error prediction269

We have presented the theoretical basis of our horizon model and proposed a method to choose the best compromise270

between the computation time and the corresponding model’s accuracy. Nevertheless, this precision is only related to the ideal271

DEM-based horizon and not to the real horizon, so the error induced by the not fully accurate DEM representation of the272

Earth’s topography has not been considered yet. As a result, we assess here the global accuracy of the final horizon estimates273

and compare it to other existing models in order to evaluate our model’s performances. Finally, we also propose a method for274

predicting the horizon’s DEM-based error.275

4.1. Model’s efficiency: accuracy vs computation time276

The efficiency of any numerical model can be regarded as the ability to describe accurately a phenomenon in the shortest277

possible time. Therefore, we have firstly assessed the quality of our model by statistically comparing estimates with ground278

measurements. Then, we have confronted these results and the corresponding computation time to those retrieved using other279

typical models.280
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4.1.1. Model’s accuracy: comparison with ground measurements and results from other existing models281

In order to evaluate the accuracy of our model, we have compared horizon estimates with 10 in situ horizons collected282

during a measurement campaign achieved in Corsica in 2010; both the geographic distribution and the topographic situation of283

these sites are presented in Figure 7. The availability of an adapted material was one of the main reasons for choosing Corsica,284

the other one being the existence of many different types of terrain within a small area, which allowed retrieving a significant285

sample of measurements without difficulties. In order to measure the different horizons, we have used a topographic mapping286

device, the Leica Builder 100 theodolite (azimuth accuracy = 9′′; elevation accuracy = 6′′). The operating principle of this287

accurate device, mainly used by topographers for measuring terrain slope and aspect, is depicted in Figure 8.288
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Figure 7: Topographic SRTM-DEM map of Corsica island (meters) with location of the measurement sites.

Furthermore, in order to endorse our model, it was also relevant to compare it to other ones. Thus, we have meanwhile289

analyzed the results of both the French software Carnaval and the r.horizon add-on of the GRASS GIS open source. Currently290

released by Sober Software (http://www.sober-software.com), Carnaval is based on the SRTM-3 DEM and only com-291

putes single horizons intended to be used with other solar simulation software. On the contrary, r.horizon is closer to our own292

model since it is dedicated to the integration of terrain effects into solar potential maps computed by the solar radiation model293

r.sun (Ruiz-Arias et al., 2009; Šúri and Hofierka, 2004). Besides, this model allows 2 different computing configurations using294

a DEM implemented by the user: the first one retrieves shading maps by computing angular elevation for a specific azimuth;295

the second configuration, and the one we have considered in this work, estimates the full horizon around a given point.296

The experiment achieved in 2010 consisted in measuring horizons on 10 different sites across Corsica, representing a full297
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Figure 8: Theodolite operating principle. This device allows both the azimuth γ and the angular height α of a given point to be accurately measured.

set of 615 points. Moreover, in order to compare the exact same points from both estimated and measured horizons, we have298

linearly interpolated modeled horizons, at 1◦ azimuth step, over measured azimuths. Then, in order to assess the accuracy of299

each model, we have considered the following well-known indicators: the root mean square error (RMSE), the mean bias error300

(MBE) and the correlation coefficient (CC). All final results of the comparison are described in Table 1, where each location301

is defined by the geographic coordinates and the DEM-based altitude of the given observation point.302

Globally, these results show higher accuracy of our model, while Carnaval presents the lowest one. Thus, our model303

and r.horizon present the most homogeneous correlation for all samples with 2 close correlation coefficients (respectively304

0.9762 and 0.9761). Meanwhile, our model also exposes a better RMSE (1.555◦ against 1.712◦) and a lower negative bias305

(−0.416◦ against −0.587◦). Finally, Carnaval presents the less fitted results regardless of the considered indicator: a correlation306

coefficient of 0.9564, a RMSE of 2.116◦ and a bias of −0.705◦. Furthermore, we can note that the increase by 10 of the horizon307

azimuth resolution of our model only reduces RMSE by 0.1 %, from 1.555◦ to 1.547◦, which validates the initial choice of a308

1◦ azimuth step.309

4.1.2. Model’s running time310

By measuring horizons and comparing them with the estimates of other models, we have demonstrated the accurateness311

and the relevance of the one developed in this study. Most of all, its theoretical basis will allow accurate estimation of any312

horizon in the world, as long as the SRTM-based DEM exists. Nonetheless, as previously depicted, this model has been313

primarily designed for considering shading effects within satellite-based solar radiation maps (Bosch et al., 2010; Haurant314

et al., 2012; Pillot et al., 2013; Ruiz-Arias et al., 2010). Therefore, as with the previous optimization method, used to reduce315

the area size required to compute all horizons of a given region, everything has been made to minimize computation time.316

Firstly, as our model is written with the Matlab programming language, it takes benefit from the software specific matrix317

calculations, which saves time for handling of large arrays. Thus, on the same machine and for the same viewing distance318
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Table 2: Approximate horizon per-thread computation time for a 50 km view distance around observation point.

Model Running time (s)

This study ≈ 0.5

r.horizon1 ≈ 2.0

Carnaval2 � 2.0

1 Given by the GRASS GIS command win-

dow.
2 Estimated by Sober Software.

(50 km), Table 2 shows our model is, per thread and per horizon, 4 times faster or more than r.horizon and Carnaval2. Besides319

that, our model is also directly incorporated into the process implemented for considering topography within radiation maps320

(Pillot, 2014; Pillot et al., 2013), which avoids extra time consumption during data transmission with external models. Finally,321

our model’s source code used to estimate all horizons of a given region is parallelized, which reduces running time as much322

as the number of available threads within the computer’s processor.323

4.2. DEM-based error prediction324

A more detailed reading of Table 1 reveals that, regardless of the given model, error and bias also dramatically vary325

from one horizon to another. Indeed, some sites present very good estimates (Bastia, Solenzara or Calvi) while some others326

show both high RMSE and negative bias (Tavignano, Venaco or Castellare). If the original DEM error obviously affects the327

final quality of the horizon estimates, it is also interesting to know whether this error depends on some specific topographic328

parameters, which would have influenced the original SRTM precision. In that case, the resulting horizon error would also329

depend on some specific features; consequently, we propose a method for predicting this error, or at least to detect if the error330

of any given horizon will probably be significant.331

Leaving aside possible measurement errors (angular height, azimuth or geographic coordinates of the observation point),332

the main idea is to connect the horizon error to the DEM error. To perform this, it is firstly necessary to know the kind of error333

existing within the SRTM DEM. It is possible to enumerate 2 main errors: vertical and georeferencing errors, respectively334

achieved on the altitude and the geographic coordinates of a DEM point (Farr et al., 2007; Rodríguez et al., 2006). In this335

study, we have only considered the vertical error, easier to implement and the one which mainly induces the angular elevation336

error.337

In order to predict the error generated by the DEM quality, it is firstly relevant to express the RMSE of a given horizon338

2So as to get an idea of the computation time over areas, at 2 s/horizon, it would spend about 30 days, 2000 days or 250 years to retrieve all horizons from

Corsica, France or Africa respectively.
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consisting of n points:339

RMSE =

√√∑n
i=1

(
α
′

i − αi

)2

n
(25)

With α
′

i the ith estimated angular elevation and αi the ith measured one. Let us then focus on the ith point of this horizon,340

of angular height αi; it is known this point has a vertical error on its DEM altitude h
′

i , with respect to the true altitude hi, which341

is propagated on the angular error α
′

i − αi. So, if it is possible to predict the vertical error h
′

i − hi, it is also possible to assess342

the resulting angular error, by estimating αi from hi using relation (9). Essentially, we have thus been led by the main idea343

of looking for an empirical expression, allowing us to merely define the vertical error as a function of SRTM DEM-derived344

parameters.345

Validation of the SRTM has shown the vertical error can be regarded as a random variable following an almost normal346

probability law, centered on 0 and having a standard deviation specific to each continent (Farr et al., 2007; Rodríguez et al.,347

2006). Meanwhile, the Miliaresis and Paraschou (2005) and Gorokhovich and Voustianiouk (2006) studies have highlighted348

the error correlation with topographic features of a given terrain, typically both the slope and aspect of a DEM pixel. In this349

study, we have only considered the slope S , since the aspect is less significant but also more difficult to model as it is highly350

dependent on the study region. The slope is a function of the altitude gradient to the north (y) and to the east (x) (Zhou and351

Liu, 2004):352

S = arctan


√(

∂h
∂x

)2

+

(
∂h
∂y

)2
 (26)

Several methods exist for calculating S , among which the one developed by Fleming and Hoffer presents a good precision353

(Jones, 1998). It is based on the formulation of the partial derivatives of the height h (Zhou and Liu, 2004):354

∂h
∂x

=
hE − hW

2Rx
DEM

;
∂h
∂y

=
hN − hS

2Ry
DEM

(27)

Where hE , hW , hN , hS are respectively heights of eastern, western, northern and southern pixels contiguous to the pixel of355

interest, Rx
DEM the DEM metric resolution along x axis, and Ry

DEM the resolution along y axis. Table 3 summarize, for each356

site, the main statistical parameters (mean, standard deviation and range) of the horizon slope, that is the slope of all DEM357

pixels composing the horizon.358

Both Miliaresis and Paraschou (2005) and Gorokhovich and Voustianiouk (2006) studies have emphasized the increase of359

the mean vertical error with the slope S (overestimation of the DEM altitude compared to the true altitude). Miliaresis and360

Paraschou (2005) especially have shown that, even though the error distribution was translated to the right, this distribution was361

still close to the one for low slopes (S < 2◦) with about the same flattening and asymmetry. Considering these assumptions, it362

is then possible to define the vertical error as:363

h
′

− h = r + f (S ) (28)
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Table 3: Main characteristics of the horizon slope.

Site Slope (◦)

Mean Std Range

Ajaccio 10.1 7.4 0.0 - 33.5

Calvi 11.1 9.4 0.6 - 40.5

Lozari 8.7 8.7 0.0 - 46.9

Bastia 6.4 7.8 0.4 - 35.3

Solenzara 7.9 8.5 1.2 - 39.3

Tavignano 21.7 5.0 9.3 - 31.1

Castellare 16.0 6.2 4.0 - 35.8

Venaco 14.4 6.9 0.5 - 35.8

Corte 16.0 8.7 1.4 - 39.8

Soveria 17.3 7.3 2.0 - 38.0

Where r is a normally distributed random variable centered on 0 such as r ∼ N(0, σ), resulting of the SRTM validation364

(Rodríguez et al., 2006), and f (S ) any function of the pixel’s slope S . From the Miliaresis and Paraschou (2005) study, we365

can then consider, in first approximation, the error linearly increases with the slope. Finally, the expected value of the vertical366

error h
′

− h is given by:367

E
[
h
′

− h
]

= E [r] + βS = βS (29)

Where β is a strictly positive constant (distribution translated to the right). Getting h from relation (29), it is then possible to368

predict the value of the corresponding measured angular elevation α, using equation (9). In order to evaluate the constant β, we369

have minimized the quadratic error between the measured RMSE of the full sample in Table 1 and the RMSE estimated with370

this method. Carnaval and r.horizon presenting different errors, the constant β is therefore different from one model to another,371

and is respectively equal to 0.357, 0.398 and 0.494 for our model, r.horizon and Carnaval. In addition, the correlation between372

the prediction and the measure for each model is given by the correlation coefficient. It is equal, for a 1 % significance level,373

to 0.9331, 0.9611 and 0.9800 for our model, r.horizon and Carnaval respectively. Finally, the consistency of the prediction374

method is depicted in Figure 9, with on the one hand the estimates vs measurements scatter plot, and on the other hand the375

comparison between 2 horizons presenting low (Corte) and high error (Tavignano).376

Some aspects of this analysis must be emphasized. First of all, we have not taken into consideration the vertical error of377

the horizon observation point, although it also interferes in the global angular error. Indeed, if the many points composing378

the horizon allow smoothing the approximate formula (29), the possible bias introduced by the observation point would, on379

the contrary, impact all the points, and so could strongly distort the final estimate. This point leads to another aspect of380
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Figure 9: Predicting SRTM-3 DEM-based horizon error. Above is the scatter plot of predicted against measured RMSE values for the 10 horizons depicted

in Table 1. Below is an example of horizon measurements and estimates over Corte and Tavignano, respectively for a low and a high error.

this study: the greater the number of points composing the horizon, the more accurate the quadratic error prediction will381

be. Furthermore, vegetation is also a subject of concern for the error estimation since depending on its type and density, the382

wavelength of the C band might penetrate into the canopy (Farr et al., 2007). Accordingly, in vegetated areas, SRTM DEM383

elevation is located between the ground and the top of the canopy, at a distance which varies significantly with the SRTM384

DEM variability (Carabajal and Harding, 2006). As the shading effects are influenced by the canopy, this might lead to some385

extra underestimation, mainly when the horizon is close. Finally, linear approximation between vertical error and slope as386

well as the decision to leave aside DEM aspect and georeferencing may also explain the shift between measured and predicted387

values. Even so, this method shows quite accurate estimates, and can further be generalized to all the SRTM-3 DEM, by388

mainly regarding the predicted RMSE as a sensitivity coefficient allowing the horizon’s level of quality to be assessed.389
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4.3. Error propagation to solar radiation390

As depicted in previous studies, the integration of shading effects improves both the accuracy and spatial information391

provided by satellite-derived solar radiation maps (Haurant et al., 2012; Pillot, 2014; Ruiz-Arias et al., 2010). However, as392

described above, the DEM-based horizon computation results itself in some error, which necessarily propagates to the solar393

irradiation. In order to assess how this error affects the final irradiation estimation, we have used the disaggregation method-394

ology we have developed in another study (Pillot, 2014), coupled with the ESRA clear-sky model developed by Rigollier395

et al. (2000) and corrected in altitude by Geiger et al. (2002). This methodology includes shading effects into the global solar396

radiation by applying horizon-derived factors to its diffuse isotropic, diffuse circumsolar and beam components.397

Besides, depending on both the sun path and the sky cloudiness, the final influence of the horizon on the solar radiation398

can be significantly different. In order to apprehend this double dependence, we have estimated the clear-sky daily irradiation399

throughout the year, and analyzed the influence of the solar radiation’s diffuse component by acting on the key parameter of400

the ESRA model: the Linke turbidity factor TL (Geiger et al., 2002; Rigollier et al., 2000). This coefficient usually varies from401

1 to 10, TL = 2 corresponding to a very clear atmosphere, and TL = 8 corresponding to a polluted atmosphere (Eltbaakh et al.,402

2012).403

4.3.1. Solar irradiation loss404
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Figure 10: Relative irradiation loss (%) caused by the horizon at Tavignano site, with respect to the day of the year and the Linke turbidity factor.

In order to evaluate the solar irradiation loss potentially caused by the horizon, we have determined the daily clear-sky405

irradiation reaching the Tavignano site, with and without shading effects computed from the measured horizon. Figure 10406

depicts the final relative loss according to the day of the year and the Linke turbidity factor. As expected (Quaschning and407

Hanitsch, 1998), shading effects affect more the beam component than the diffuse radiation: the irradiation blocked by the408

horizon decreases when TL increases. When the sun is high however, between days 100 and 250, the loss remains low and409

similar (< 10%) regardless of the Linke coefficient. In that case, the most significant loss (> 50%) appears at the end of the410

autumn and the beginning of the winter, as a consequence of the low sun path.411
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4.3.2. Horizon error propagation412

In order to assess how the RMSE of 1.555◦ (Table 1) ends up affecting the solar estimation, as well as the evolution of413

this influence, we have statistically analyzed the daily irradiation with shading effects reaching the 10 sites of Table 1, using414

either the horizon measurements or the estimates from our model. To do this, we have computed the relative root mean square415

error (RRMSE) between both the results, according to the day of the year and the Linke turbidity factor, depicted in Figure 11.416

Again, as expected, the beam radiation is more impacted by the horizon shadowing than the diffuse radiation, as the final417

error decreases with the rise of the Linke coefficient. Also, the RRMSE is significantly variable over the year, compared to418

the smooth tendency of the solar radiation loss; it can probably be explained by the original variability of the sign of the bias419

between the estimate and the measured horizon elevation depending on the azimuth. Essentially, in this study, depending on420

the day and the diffuse fraction, the horizon mismatching results in a final error ranging from approximately 0.5% (high sun421

path) to 5.5% (low sun path) of the daily solar irradiation.422
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Figure 11: RRMSE (%) between solar irradiation with shading effects computed from horizon measurements and estimates for all sites of Table 1, with

respect to the day of the year and the Linke turbidity factor.

5. Conclusion423

Many models now retrieve solar radiation from satellite data, but are still limited to an atmospheric characterization without424

any consideration of the interaction between radiation and Earth’s surface. Therefore, in order to improve the accuracy of these425

satellite-based estimates, some post-processing methods have been proposed for integrating terrain-based effects into final426

solar irradiance or irradiation maps using DEMs. The main process of all these methods consists in estimating the obstructed427

horizon around every DEM pixel, in order to evaluate direct and diffuse shadowing. Nevertheless, depending on the size of428

the study area, computation can also be really time consuming. That is why we have developed and validated a new efficient429

horizon model, combined with an optimization method and a DEM-based error prediction study.430

We have developed this model using the global DEM retrieved from the SRTM, as it is currently the most consistent and431

accurate available DEM. We have furthermore only based this model on the mathematical statements used to represent the432
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DEM, avoiding any region-specific empirical assumption so as to allow the model to be used at any world location with the433

same expected accuracy. Then, we have assessed its efficiency by comparing its precision and computation time with those434

of other models. Precision has been retrieved using a statistical comparison between estimates and in situ horizons measured435

with a theodolite. Finally, we have demonstrated the implementation of our model was relevant, since it is both more accurate436

(RMSE of 1.555◦ against 1.712◦ or more for other presented models) and less time consuming (at least 4 times faster than437

other models).438

In addition, we have also proposed an optimization method for reducing horizon computation time in the case of large439

areas, as well as an empirical approach for predicting the DEM-based error on final estimates. The first one takes into440

consideration the Earth’s roundness in order to limit the maximum zone required to fully describe any horizon of a given441

region. Hence, it allows knowingly decreasing of modeling accuracy with running time, and thus get the best compromise442

between them depending on the purpose of the regarded study. The second evaluates the impact of the SRTM DEM original443

error on the final horizon precision by correlating it to the DEM slope, and has been validated using the in situ horizon sample444

collected in Corsica.445

Finally, we shall note that, in this study, we have not considered the distortion effects of the atmospheric refraction446

onto the apparent position of objects on Earth, and so on the resulting angular elevation, known as terrestrial refraction447

(De Graaff Hunter, 1913). This approach seems relevant since, in mapping applications, the additional computation time448

required for modeling this phenomenon, and its related parameters such as object distance or temperature and pressure condi-449

tions, would not necessarily be worth the final accuracy gain. Nevertheless, future research could still improve the accuracy450

of our current model by focusing on this part.451
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