Toward the modeling of Freeze Casting
Martin Genet, Eduardo Saiz, Antoni Tomsia

To cite this version:
Martin Genet, Eduardo Saiz, Antoni Tomsia. Toward the modeling of Freeze Casting. 8th International Workshop on Interfaces, Jun 2011, Saint-Jacques de Compostelle, Spain. hal-01274883

HAL Id: hal-01274883
https://hal.archives-ouvertes.fr/hal-01274883
Submitted on 18 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Toward the modeling of Freeze Casting

Martin Genet†, Eduardo Saiz‡, Antoni Tomsia†

1Lawrence Berkeley National Laboratory, One Cyclotron Road MS 62, Berkeley, CA 94720, USA
2Imperial College London, Exhibition Road, London SW7 2AZ, UK

Abstract

Freeze casting—i.e. directional freezing of ceramic suspensions[1, 2]—is nowadays considered one of the top candidates to process highly structured porous ceramics for several application domains including precision filters and bone regeneration implants. Here, we present our early studies toward the first tridimensional simulation of the freeze casting process. The goal is not only to provide fundamental understanding of the solidification process, but also to derive theoretical tools to quantitatively master the effect of each of its parameters. The finite element method[3] is used to compute the heat diffusion within the matter. The evolving interface between solid and fluid plays a major role and is tracked using the level set method[4, 5] combined with mesh adaptivity techniques. These developments, adapted from existing research on metal casting, allow to characterize the influence of the cooling rate on the shape of the ice crystals, and then of the ceramic walls. In the future, fluid convection as well as particles motion will be introduced in the simulation to complete the analysis. We will then be in possession of a powerful numerical tool for the quantitative optimization of the freeze casting process, leading to tougher and stronger scaffolds, e.g., for the repair of load-bearing bone defects.

References


†mgenet@lbl.gov
‡e.saiz@imperial.ac.uk (Chair in Structural Ceramics)
†aptomsia@lbl.gov