The type problem for a class of inhomogeneous random walks : a series criterion by a probabilistic argument

Abstract : In the classical framework, a random walk on a group is a Markov chain with independent and identically distributed increments. In some sense, random walks are time and space homogeneous. In this paper, a class of weakly inhomogeneous random walks termed Random Walk with Random Transition Probabilities is investigated— c.f. [19] for the terminology. As an application, a criterion for the recurrence or transience of these processes in the discrete Abelian case is given. This criterion is deduced using Fourier analysis of Markov additive processes and a perturbation argument of a Markov operator. The latter extends the results of the literature since it does not involve a quasi-compacity condition on the operator. Finally, this criterion is applied to some well known examples of random walks on directed graphs embedded in Z 2. Despite the type problem has been already solved for these examples, the analysis brought a new insight to this problematic.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01274873
Contributeur : Basile De Loynes <>
Soumis le : jeudi 18 janvier 2018 - 12:30:03
Dernière modification le : mercredi 14 mars 2018 - 16:47:57
Document(s) archivé(s) le : mercredi 23 mai 2018 - 22:03:11

Fichier

rwrtp.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

  • HAL Id : hal-01274873, version 4

Collections

Citation

Basile De Loynes. The type problem for a class of inhomogeneous random walks : a series criterion by a probabilistic argument. 2016. 〈hal-01274873v4〉

Partager

Métriques

Consultations de la notice

133

Téléchargements de fichiers

80