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Nonsmooth Convex Optimization for

Structured Illumination Microscopy

Image Reconstruction

Jérôme Boulanger, Nelly Pustelnik, Laurent Condat, Lucie Sengmanivong and Tristan Piolot

In this paper, we propose a new approach for structured illuminationmicroscopy
image reconstruction. We first introduce the principles of this imaging modality
and describe the forward model. We then propose the minimization of nonsmooth
convex objective functions for the recovery of the unknown image. In this context,
we investigate two data-fitting terms for Poisson-Gaussian noise and introduce
a new patch-based regularization method. This approach is tested against other
regularization approaches on a realistic benchmark. Finally, we perform some
test experiments on images acquired on two different microscopes.

1. Introduction

Context Superresolution approaches allow us to go beyond the resolution of standard wide-
field fluorescencemicroscopy, therefore breaking the classical diffraction limit defined byAbbe
in 1873 [1]. Structured illumination microscopy (SIM) is one of the recently proposed opti-
cal superresolution methods compatible with time lapse imaging of several labels. Based on
the illumination of a sample by a set of interference patterns, this technique makes it possible
to typically increase the resolution of the microscope by a factor of two [2, 3]. The result-
ing sinusoidal modulations of the fluorophore excitation signal lead to frequency shifts in the
Fourier domain, which bring inaccessible frequencies within the scope of the optical transfer
function of the microscope. An example of acquired raw data is depicted in Fig. 1. Once post-
processed, the acquired images show an increased resolution, as illustrated in Fig. 2, where an
acquired image has been reconstructed using a linear method [3]. Several studies have in-
vestigated the properties of such reconstruction algorithms and provided solutions for artifact
reduction [4, 5]. However, like in many optical microscopy approaches, the photon counting
process leads to noisy data, compromising the quality and the resolution of the final images.
Therefore, the development of reconstruction methods less sensitive to noise and able to deal
with the specificity of the structure of the reconstruction problem is crucially needed.
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Figure 1: Example of real data. A Molecular Probe slide was imaged 9 times using a Nikon SIM microscope using a
100× oil objective. The images represent a 256 × 256 region of 512 × 512 acquired images and display some labeled
microtubules. The modulation pattern can be observed as a slight Moiré e�ect on the object.

Figure 2: Reconstruction of the data displayed in Fig. 1. On the left the corresponding classical wide��eld microscopy
is obtained from the mean of the nine images. On the right, a linear least-squares reconstruction. The actual
dimension of the image on the right is twice the size of the image of the left.
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Related work While Wiener filtering remains the main reconstruction approach for SIM,
the problem was recast in [6] as a more general inverse problem, allowing more complex il-
lumination pattern to be considered [7–9]. Several regularization approaches have been also
explored, in [6, 10] the l2 norm of the Laplacian operator is considered and total-variation
(TV) was explored in [11] to deal with low signal to noise ratios. If [12] makes the underlying
assumption of the Poisson noise model, none of these approaches consider a more accurate
Poisson–Gaussian noise model. Moreover, none of the recent regularization methods, such
as the Schatten norm of the Hessian operator [13], nonlocal total variation (NLTV) [14–16],
global patch dictionaries [17,18] or local patch dictionaries [19] have been applied to structured
illumination reconstruction, therefore limiting the final performance of this superresolution
technique in its ability to discriminate fine structures of interest.

Contribution & organization of the article We propose here a reconstruction method
taking into account the Poisson–Gaussian distribution of the noise and relying on a new regular-
ization approach based on learning local dictionaries of patches in a convex setting. The mini-
mization of the resulting cost function is performed using a versatile primal–dual optimization
method. An extensive comparison with alternative regularization approaches is provided and
we detail the implementation aspects of the tested regularization approaches in an unified way.
Note that this work is an extension of the method published in a conference proceedings [20].
We will first recall the image formation problem in Section. 2.2, and further introduce the

proposed reconstruction scheme based on Poisson-Gaussian approximation and local dictio-
naries of patches in Section 3. A performance evaluation on a synthetic dataset is then detailed
in Section 4.2 and the reconstruction of acquired data is finally analyzed in Section 4.4. Fi-
nally, in A, an analysis of the least-squares solution underlying the issue associated to the
reconstruction of SIM data is presented. In B, we recall the implementation details for the
tested regularization cost terms and the needed tools for their minimization.

2. Presentation of the problem

2.1. Notations

In this article, IN denotes the identity operator/matrix of size N × N ; when the size is not
mentioned, it should be clear from the context. · ∗ denotes the adjoint of an operator; when the
operator is assimilated to its representation matrix, with real entries, · ∗ = · T, the transpose
operation. In the following, ⊗ denotes the Kronecker product and · †, the Moore–Penrose
pseudo-inverse. Notations used in this article are listed in Table 6.

2.2. Forward problem

Let us consider a set of K noise-free images ȳk with k = 1,… , K:
ȳk = S0A0Mkx̄, (1)

where x̄ is the unknown two–dimensional image defined on a regular grid of sizeN1 ×N2 andrepresented in a vectorized form by a vector of sizeN = N1N2. Mk,A0 and S0 are three linear
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operators represented by matrix multiplications and corresponding to modulation, convolution
and down-sampling, respectively.
The modulation operatorMk performs a pixelwise multiplication by a pattern imagemk, sothatMk = diag(mk). In structured illumination microscopy, modulations often result from the

interference of two or three coherent laser beams [2,21] and can be represented by a sinusoidal
pattern defined for each point of coordinates (n1, n2) ∈ N1 ×N2 as:

[mk]n1,n2 = 1 + �k cos(n1!1,k + n2!2,k + 'k), (2)
where �k is the amplitude of the modulation, !1,k and !2,k are the modulation frequencies and
'k a phase. However, one can devise other light structuring strategies such as a set of scanningpoints [22], or random illumination [7], often at the expense of the number of required images.
In the following, we will stack all the modulationsMk in the matrixM =

[

M1,⋯ ,MK
]T.

The convolution operator A0 models the point-spread function of the acquisition system,
represented as a pseudo-circulant N ×N matrix. In the sequel, we will use the notation A =
IK⊗A0 to represent the convolution of all modulated images. Moreover, when approximating
the optical microscope by a perfect diffraction-limited 2D imaging system, we can model the
optical transfer function (OTF) in widefield microscopy by the auto-correlation of the pupil
function as [6, 23]:

0(%) =

⎧

⎪

⎨

⎪

⎩

2
�

(

arccos
(

%
2%0

)

− %
2%0

√

1 −
(

%
2%0

)2
)

% ≤ %0,

0 otherwise,
, (3)

where % =
√

�21 + �
2
2 is the amplitude of the frequencies in polar coordinates and %0 the cutoff

frequency. A profile of the OTF 0(%) is depicted in dashed black in Fig. 3. We can note
that for any pair of signals whose spectrum only differs for frequencies greater than %0, bothsignals will be equal when viewed through the optical system. We therefore cannot assume the
operator A0 to be injective.The down-sampling operator S0 represented by a matrix of size L × N , where typically
L = N∕4, leads to down-sampling of a factor 2 in each dimension. Note that the images could
be sampled at a higher rate at the acquisition time, however this would compromise the field of
view and increase the noise level, since the number of photon per pixel would also decrease.
In the rest of the text, down-sampling for the set of K images is represented by the operator
S = IK ⊗ S0.To summarize our forward imaging model, we can now conveniently rewrite Eq. (9) as:

ȳ = SAMx̄. (4)
where ȳ = [ȳ1,⋯ , ȳK ]T is the stack of noise-free images.
The principle of SIM imaging in the case of sinusoidal modulations is illustrated in Fig. 3.

It depicts how the modulations amount to a shift in the Fourier domain (Fig. 3.b), that makes
it possible for the optical system to capture information at frequencies above the cutoff fre-
quency %0 (Fig. 3.c). By shifting back these components individually, a high resolution image
is recovered. However, in order to obtain this highly resolved image (Fig. 3.d yellow curve)
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Figure 3: Principle of structured illumination microscopy illustrated in one dimension. (a) Spectrum of x in blue
and the optical transfer function 0 in black (b) Spectrum of a modulated image xn · (1 + cos(!n + ')) (green) as
the sum of the three components 1, e±i(!�+') (resp. blue and red) (c) Spectrum of the sum (green) and of the
individual components (blue and green) after being �ltered by the OTF of the optical system (d) Reconstruction of
a superresolved image obtained by shifting the modulated components (red) and summing them (green). Finally,
normalizing the components by taking into account the shape of the OTF (purple) allows us to recover the original
image (yellow).

a normalization step equivalent to the ratio of the demodulated images (green curve) with the
shifted OTFs (purple curve) is necessary, at the risk of amplifying the noise present in the
acquired data.
Indeed, the acquired images are actually degraded by some random noise due to the photo–

electron counting process (shot noise) and the thermal agitation of the electrons (dark current
and readout noise). To take into account those degradations, a general noise model can be
written as [24]:

y = � p + n, (5)
where � is the overall gain of the acquisition system, p is a vector of Poisson distributed random
variables of parameter (ȳ − mDC)∕� accounting for the shot noise and n a vector of Normally
distributed random variables of meanmDC and variance �2DC. The offset termmDC accounts for
the baseline gray level that are characteristic of the sensor, while the variance �2DC of the addi-
tive white Gaussian noise summarizes several intensity-independent noise contributions such
as dark current and readout noise. This formulation ensures that limNl→∞

1
Nl

∑Nl
l=1(y)l → ȳ

for Nl different statistical realizations of the random vector (y)l . The resulting distribution
y is then the convolution of a Poisson distribution and a Normal distribution. Note that a di-
rect use of a variance stabilization transform [25] would introduce nonlinearities, which would
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have a significant impact on the observation model (9) and make the reconstruction process
intractable. The additive white Gaussian noise model cannot deal with variations of the noise
level, especially considering that an image often has a high dymanic range (16bit), and a pure
Poisson approximation does not account for the presence of additional readout noise. There-
fore, we consider in Section 3.2, which are able to capture the specificities of joint Poisson-
Gaussian noise.

2.3. Regularized least-squares solution

Despite its suboptimality in the case of Poisson–Gaussian noise and its detrimental effect on
the final image resolution, the first method for the reconstruction of structured illumination
data [21] is based on a regularized least-squares approach [26] (See A):

x̂ = Argmin
x

1
2‖y − SAMx‖

2 + �‖Lx‖2, (6)
for some linear operator L and regularization parameter � > 0. Different operators L will
then correspond to different well known regularization methods. In particular, when L = IN ,
then Eq. (6) corresponds to Wiener regularization, choosing L = [D1,D2]T as the forward
finite differences of x will favor a smooth solution and finally, using the L = D211 +D222 as theLaplacian was used in [6] for SIM image reconstruction with D11 and D22 the second order
derivatives along the horizontal and vertical directions.
For general modulation M the pseudoinverse solving the least-squares problem would be

intractable (See A) and a minimization algorithms such as the conjugate gradient are needed
[6,7]. However, in the specific case of separable sinusoidal modulations, that is whenM takes
the form defined in (25),we can obtain a closed form for the estimation of the SIM image:

x† = (SA

∗A∗S∗ + �L∗L)−1
∗A∗S∗P1(IK ⊗�
†
0)P2y, (7)

where P1 and P2 are permutation matrices and † denotes the pseudoinverse. This approach is
related to the original reconstruction proposed by [3] with L equal to the identity. Equation (7)
amounts indeed to the separation of the differents modulation components by solvingN small
(3×3) linear system of dimension (P1(IK⊗�†0)P2), the remodulation of these components (
∗)
and a Wiener filter which can be performed in Fourier space. An apodization term defined in
the Fourier domain as a triangle function, as an approximation of the OTF, is often used in order
to reduce high frequency noise. In the following section, we propose to explore an alternative
approach to handle the presence of Poisson–Gaussian noise and regularization based on local
dictionaries of patches.

3. Proposed approach

In this work, we focus on a general framework aiming to deal with possibly nonfinite data
fidelity terms and nonsmooth regularization terms [27]. We formulate the estimation procedure
as a minimization involving a sum of Q cost terms defined by:

x̂ ∈ Argmin
x∈C

Q
∑

q=1
fq(Tqx), (8)
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where fq are convex, closed and proper functions [28] from ℝMq to ℝ ∪ {+∞}, C is a
nonempty closed convex subset of ℝN (e.g. nonnegative solutions) and Tq operators repre-sented as matrices of size Mq × N . The cost terms fq(Tqx) corresponding either to a data
fidelity term or to a regularization term.

3.1. Primal�dual proximal minimization

When the involved functions are non-necessarily smooth, two main classes of algorithms can
be derived to solve (8) and have been largely employed for solving inverse problems during the
last decade: the alternating directions method of multipliers (ADMM) [29] or the Chambolle–
Pock algorithm also known as primal–dual hybrid gradient (PDHG) [30–34]. Both strategies
have in common to split the processing of the (fq)1≤q≤Q and the (Tq)1≤q≤Q and to rely on
the computation of the proximity operator [35] of each fq . We define the proximity operator
proxf ∶ ℝn → ℝn of any closed proper convex function f ∶ ℝn → ℝ ∪ {∞} as:

(∀x ∈ ℝn) proxf (x) = argmin
y∈ℝn

(1
2
‖x − y‖22 + f (y)

)

(9)

Note that a large number of closed form expressions are known in the literature [28]. Some
of them, useful for the study, are recalled in B. The major difference between both strategies
comes from the way the operators (Tq)1≤q≤Q are handled. The ADMM requires to compute
(
∑Q
q=1 T

∗
qTq)

−1 while the PDHG strategies avoid such a step. Note that since in general the
operator associated to SIM imaging is not directly invertible (cf. A),the ADMMwould require
an inner minimization procedure (e.g. the conjugate gradient) for the inversion of this opera-
tor. Finally, we can note that the PDHG can be formulated as a preconditioned ADMM [27].
Consequently, we solve Eq. (8) using the PDHG algorithm [30,33,34] (see Fig. 4) and consider
several cases corresponding to the combination of function fq and operator Tq . The algorithmhas four parameters: the number of iterationR, �, � and the acceleration � ∈ ]0, 2[. In practice,
we use R = 500, � ≈ 2 and � = 1∕(�L) where L =

√

∑Q
q=1 ‖Tq‖

2 [33]. The last parameter �
is set to 1 by default in our experiments but could be adapted for each objective function. Note
that this parameter will only change the convergence rate.
In the next section, we will explicit the cost terms fq(Tqx) corresponding to the proposed

approach, while B details the other regularization terms tested in Section 4.2. We give the
expression of the function fq and its associated proximity operator [35], and describe the oper-
ator Tq and its ajoints when needed. As a convention, we denote z = Tqx the vector of length
Mq in the image space of Tq . In practice, we will later consider only the combination of one
data term along with one regularization term, whileC will denote the nonnegativity constraint,
which will be enforced directly on the iterates of the algorithm, see Step 8 in Fig. 4. Therefore,
we can write the estimate as: x̂ ∈ Argminx≥0f1(T1x) + f2(T2x).

3.2. Poisson�Gaussian approximation

Handling Poisson–Gaussian noise is challenging as the resulting probability density function
(p.d.f) is the convolution of the Poisson and Gaussian densities. Consequently, several strate-
gies have been developed over the years to approximate the resulting p.d.f (See [36] for a
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Require: x0 ∈ ℝN , v1,q ∈ ℝMq , ∀q ∈ 1,… , Q, � > 0, � > 0, � > 0
1: x1 = z1 = x0
2: for r ∈ 1,… , R do
3: for q ∈ 1,… , Q do
4: ur+1,q = vr,q + � Tq(2zr − xr−1)
5: pr+1,q = ur+1,q − � proxfq∕�(ur+1,q∕�)
6: vr+1,q = � pr+1,q + (1 − �) vr,q
7: end for
8: zr+1 = PC

(

xr −
∑Q
q=1 �T

∗
qvr+1,q

)

9: xr+1 = � zr+1 + (1 − �) xr
10: end for

Figure 4: The primal�dual minimization algorithm proposed in [33] allows us to minimize the energy functional
de�ned by Eq. (8) given that the proximity operator of the function fq and the operator Tq and its adjoint T∗q are

de�ned. We can notice that this algorithm does not require the direct inversion of these operators.

recent review). The different approximations are more or less precise, depending on the rela-
tive amount of Gaussian and Poisson noise, and are more are less numerically tractable. Here,
we propose to consider two approximations: the shifted Poisson model and the heteroscedastic
Gaussian model approximation. One can notice a degree of symmetry between these two ap-
proaches, as the first one approximates Gaussian noise as Poisson noise with shifted intensity
while the second one approximate Poisson noise by Gaussian noise with variance depending
on the intensity of the signal.

Shifted Poisson model Under a purely Poisson noise model assumption for the acquired
data y, the negative log-likelihood would coincide up to a constant with the Kullback–Leibler
(KL) divergence also called I-divergence [37] and can be expressed as z = (zn)1≤n≤LK →

fPoisson(z) =
∑LK
n=1 f

(n)
Poisson(zn), where the component-wise function is defined by [38]:

(∀
 > 0,∀zn ∈ ℝ) f (n)Poisson(zn) =
⎧

⎪

⎨

⎪

⎩

zn − yn log zn, zn, yn > 0,
zn, zn > 0 and yn = 0,
∞, otherwise.

(10)

In this configuration, the linear operator is TPoisson = SAM. The proximity operator is given
component-wise for n ∈ [1, LK] by:

(∀zn ∈ ℝ) prox
f (n)Poisson
(zn) =

1
2

(

zn − 
 +
√

(zn − 
)2 + 4
yn
)

(11)

and the proximity operator prox
fPoisson (z) =
(

prox
f (n)Poisson
(zn)

)

1≤n≤LK is obtained by applying
Eq. (11) to each component of the vector z.
In the case of Poisson–Gaussian noise, we can shift the Poisson likelihood as proposed

by [39]. However, we would like to take into account the full model that we proposed in
Eq. (5) with a Gaussian noise n ∼  (mDC, �2DC) and a gain �. In order to do so, we seek
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a transformation of the form (y − b)∕a with (a, b) ∈ ℝ2 so that the two first moments are
matching after transformation E[ y−ba ] = Var

[

y−b
a

]

in order to satisfy the intrinsic property of
Poisson random variable. Choosing a = � leads to b = mDC − �2DC∕� and we can define then,
the shifted Poisson data-fitting term as:

(∀zn ∈ ℝ) f (n)shifted-Poisson(zn) = f
(n)
Poisson

(zn − b
a

)

(12)

and the associated proximity operator component-wise for n ∈ [1, LK] as:

(∀zn ∈ ℝ) prox
f (n)shif ted−Poisson
(zn) = a prox
f (n)Poisson

(zn − b
a

)

+ b (13)

using these two constants for the shifted Poisson approximation.

Heteroscedastic Gaussian noise model As an approximation of the Poisson–Gaussian
noise model, a weighted least-squares data term can be used to take into account the depen-
dency between the variance of the noise level and the intensity of the signal. The weighted
least-squares can be written as

(∀z ∈ ℝLK ) fWLS(z) =
1
2
(z − y)TW−1(z − y), (14)

whereW is a diagonal variance matrix of size LK × LK with elements (wn)1≤n≤LK and the
associated proximity operator is given by

(∀
 > 0)(∀z ∈ ℝLK ) prox
fWLS (z) =
(wnzn + 
 yn

wn + 


)

1≤n≤LK
. (15)

Given the noise model defined by Eq. (5) the variance at each point n is given by:
Var[yn] = �E[yn] + �2DC − � mDC , (16)

with E[yn] and Var[yn] the expectation and variance of the random variable yn. The weightsare consequently given by:
wn = �ȳ + �2DC − � mDC (17)

where ȳ can be approximated by its noisy counterpart y.

Noise parameter estimation If the CCD or sCMOS sensor have not been calibrated and
the parameters �, mDC and �DC are unknown, we can follow the procedure described in [40] to
estimate the required parameters. The variance of the noise Var[yn] is estimated locally using
a maximum of absolute deviation filter (MAD) computed on the pseudo-residuals (normalized
Laplacian 1

√

20
(D211y + D

2
22y)) of the image while the mean is estimated using a median filter.

The linear regression allows us then to estimate the gain � and the noise variance at the origin
eDC = �2DC − � mDC . Interestingly, these two parameters are sufficient to fully determine the
noise model for both approximation.
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Figure 5: Poisson�Gaussian noise approximation error measured as the Hellinger distance between the exact likelihood
and either shifted Poisson (a) or the heteroscedastic Gaussian (b) models. In (c) the relative ratio of the two errors
highlights in blue the domain in the (y, �DC) space where the shifted Poisson model outperforms the heteroscedastic
approximation.

Comparison of the associated likelihoods In order to gain some insight into these two
approximations of the Poisson–Gaussian noise model, we can analyze the associated likeli-
hoods. We present in Fig. 5 the Hellinger distance between the likelihoods of the exact model
and the two approximations, in (a) and (b), as a function of the photo-electron count ȳ and
readout noise �DC simplifying without loss of generality setting � = 1 and mDC = 0 for sim-
plicity without loss of generality. The relative ratio shows that the likelihood of the shifted
Poisson model is closer to the exact likelihood when the number of photons ȳ is approximately
below 50 and the standard deviation of the readout noise is approximately below 5. Then a
transition zone shown in red indicates that the heteroscedastic likelihood is closer to the exact
model. Increasing further the photon count and the readout noise finally seems to stifle the
difference between these two models as the relative difference tends to zero (lime green color).
This analysis suggests that the approximation that should be used could be selected according
to the regime where the data have been acquired.

3.3. Regularization by local dictionaries of patches

We propose here to adapt the idea of online learning of sparse local dictionaries of patches
in the context of inverse problem regularization by considering the nuclear norm of a patch
extraction operator T . This operator T maps all theNp×Np patches in each neighborhoods
of dimensionNw ×Nw into a matrices of dimensionN2

p ×N
2
w. Dimension of z = T (x) can

be then represented as a 4D array, where aN2
p ×N

2
w collection of patches corresponds to each

2D point of the image space. The adjoint of this operator is the projection of the overlapping
collection patches onto the image. Note that the operator T does not depend on the content
of x but is only parametrized by the windows and patch dimensions. As an illustration, let us
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Patch
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Patch

Dictionary collection

Figure 6: Illustration of the local dictionary of patch extraction. Neighborhood (16×16 pixels) depicted in orange are
sampled every 8 pixels in each directions. For each neighborhood, each patches (violet) are collected and vectorized
to form a matrix: the dictionary. Consequently, the image is represented as a collection of dictionaries.

consider the case of a 4 × 4 image and patches of size 2 × 2. Then the operator is:

Tx =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1 x2 x5 x6
x2 x3 x6 x7
x3 x4 x7 x8
x5 x6 x9 x10
x6 x7 x10 x11
x7 x8 x11 x12
x9 x10 x13 x14
x10 x11 x14 x15
x11 x12 x15 x16

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and corresponds to the 9 possible translations of the patch of 4 elements, picking values within
an image represented as a vector of 16 elements. The patch dictionaries are highly redundant
and for computational efficiency, only a fraction of the possible neighborhoods can be consid-
ered by shifting the patch extraction window from its half in both directions. As an example, for
a 512×512 images, the operator will map to a 128×128 field of 16×25matrices correspond-
ing to dictionaries of patches of size 4 × 4 extracted from neighborhoods of size 8 × 8. More
generally, the total size of the collection of local dictionaries is given by 2n

Nw
(Nw−Np+1)2N2

p .
In order to better illustrate this approach, the diagram shown in Fig. 6 represents the extraction
of two dictionaries associated to the neighborhoods of two selected points in the image.
The nuclear norm ‖zn‖∗ of zn ∈ ℝ2×2 is defined as the l1–norm of the diagonal matrix �nsuch that zn = Un�nVTn . Then, the associated proximity operator is given by [16]:

(∀zn ∈ ℝ2×2) prox
‖ · ‖∗ (zn) = Unprox
‖ · ‖1 (�n)VTn . (18)
The nuclear norm can be seen as a relaxed version of the case l0-norm of the eigenvalues
[41]. Note that the Schatten norm p of the Hessian operator with p = 1 described in B and
introduced in [13] is identical to the nuclear norm.
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Patch Neighborhood Dictionary � PSNR (dB) Elapsed time (s)
4 × 4 8 × 8 100 1.0 14.25 105
8 × 8 16 × 16 648 2.0 14.34 106
16 × 16 32 × 32 4624 2.0 14.11 375

Table 1: In�uence of patch and neighborhood size. The dictionary size factor is a multiple of the initial image size.

4. Results

4.1. In�uence of the patch and neighborhood size

We proposed here to evaluate the influence of the patch and neighborhood size of the pro-
posed patch-based regularization approach. Table 1 gives the dictionary size factor, PSNR
and elapsed time for 3 combinations of patch and neighborhood size. We can observe that the
two first are equivalent in term of computation time, with the second one providing a slightly
better PSNR. Using a combination of larger patch and neighborhood increases by a factor 3
the computation time while not improving the PSNR. Finally, we can note the dependency of
the optimal regularization parameter on the patch and neighborhood size. In the following, we
will use a 8 × 8 patch size and a 16 × 16 neighborhood size.

4.2. Evaluation of data �tting term and regularization term

In order to evaluate the proposed reconstruction method, we consider alternative regularization
approaches corresponding to different choices for the function f2 and the operator T2. The
regularization cost functions are the following

• the squared l2-norm of the gradient operator (f2( · ) = ‖ · ‖2, T2 = [D1,D2]T ),
• the squared l2-norm of the Laplacian operator (f2( · ) = ‖ · ‖2, T2 = D211 + D222) [6],
• the total variation as thel1-norm of the gradient operator (f2( · ) = ‖ · ‖1,T2 = [D1,D2]T )[42, 43],
• the nonlocal total variation as the l1-norm of the weighted nonlocal finite difference

operator (f2( · ) = ‖ · ‖1, T2 = TNL) [14],
• the Schatten norm (with p = 1, that is the nuclear norm) of the Hessian operator with

(f2( · ) = 1( · ), T2 = T) [13].
The details of the associated proximity operators and the definition of the linear operators are
given in B. Note that only the three first regularization terms have been previously tested in
this context, while the NLTV and Schatten norm of the Hessian operator have not been applied
to SIM image reconstruction. Although none of these regularization terms have been tested in
the context of Poisson–Gaussian noise model for SIM image reconstruction, we can note that
they have been considered in the context image deconvolution under a Poisson-Gaussian noise
model but with a different algorithm [36].
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Image A (resolution test) Image B (realistic sample)
Figure 7: Test images used for evaluating the data-�tting and regularization terms.

We generated two test images (See Fig. 7). The first one aims at providing a visual as-
sessment of the performance of the reconstruction in term of resolution, by integrating details
at various frequencies. To check the data fitting under the Poisson–Gaussian noise assump-
tion, we took care to integrate a large range of gray levels and to prevent any bias towards a
particular regularization term, various realistic textures (points, blobs, lines, disks) are also
used. The second image emulates several realistic intracellular features of interest for single
cell imaging such as microtubules, endoplasmic reticulum, mitochondria and vesicles. The
dynamic range of both images is [0, 255]. We simulated structured illumination images by
using a down-sampling factor of 2 and a cut-off frequency �0 = 1.53 pixel−1. The modulations
are composed of 3 equispaced phases and 3 equispaced angles with a frequency of 1 pixel−1.
The images were finally corrupted by noise, as described in Eq. (5), with � = 2, mDC = 0
and �DC = 10. For each run, we used 500 iterations and we tested 20 values logarithmically
spaced in the interval [0.01, 100] for the regularization parameters. We used the PSNR as a
criterion in order to select the best image among the 20 results. All the implementation has
been done using the MATLAB programming language.
To evaluate the performances of the reconstruction methods, we have considered the PSNR

and the SSIM criteria. The PSNR being very sensitive to bias, we used a linear regression
between the original image and the estimate to remove any systematic trend. More precisely
the PSNR is defined as: PSNR(x̄, x) = 20 log10(255∕‖x̄− (x− c0)∕c1)‖2 where the coefficient
c0 and c1 are estimated by by minimizing ‖x̂ − (c0 + c1x)‖2.Figure 8 displays the evolution of both criteria as a function of the regularization parameter.
We can notice that if the difference between the two data-fitting terms are more apparent in
term of PSNR than in term of SSIM while the optimal regularization parameter seems to be
consistent between the two performance measures. Figure 4.2 shows the images corresponding
to the best PSNR for the 12 cost functions for both test images with the PSNR values, the cor-
responding SSIM, the regularization parameter and the elapsed time. PSNR and SSIM values
seem to correlate with the visual inspection of the images. In particular, high resolution infor-
mation in the middle row of the image A seems to be better retrieved when using the proposed
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Figure 8: Evolution of the PSNR and the SSIM criterion as a function of the regularization parameters for the test
image A.

Table 2: Best PSNR (dB) / SSIM (%) performance for both test images.

‖∇‖22 ‖Δ‖22 TV ‖T‖∗ NLTV ‖T‖∗Shifted Poisson 21.35 / 82.53 21.73 / 82.96 22.79 / 84.00 23.58 / 85.94 23.02 / 82.95 24.28 / 87.18
Weighted Least-Squares 22.88 / 84.20 22.83 / 84.30 22.66 / 83.84 23.61 / 85.94 22.94 / 82.36 24.67 / 87.00

‖∇‖22 ‖Δ‖22 TV ‖T‖∗ NLTV ‖T‖∗Shifted Poisson 26.70 / 85.42 26.86 / 85.89 27.99 / 87.59 28.38 / 88.08 27.86 / 86.52 28.53 / 88.42
Weighted Least-Squares 27.82 / 86.86 27.79 / 86.97 27.68 / 87.81 28.03 / 88.51 27.12 / 85.57 28.16 / 88.61

regularization approach. Note that the proposed regularization approach leads to significant
computation times. On the one hand, all other approaches involve the optimized Matlab im-
filter function, while on the other hand, the proposed approach requires many loops which are
known to be slow in these condition. An implementation in another programming language
using multi-threading would reduce the computational burden. Finally, best PSNR and SSIM
values are displayed in Table 2 for each cost term and both images. We can see in bold that
the best data fitting term would depend on the image and the performance measure while the
proposed regularization consistently outperforms the other ones. Note that a comparison with
recent methods taking advantage of the flexibility of the Bayesian framework for the formula-
tion of the inverse problem [44] would be well suited for the reconstruction of blocky object,
with sharp and sudden changes of intensity [45].

4.3. Modulation pattern

As described in [6], one advantage of considering the SIM image reconstruction as an inverse
problem lies in the ability to reduce the number of acquired images. As an example, we can
consider a set of 3 images with different modulation orientations but no phase shift. This allows
us to effectively reduce the imaging speed and photo-toxicity which are both limiting factors
in fluorescence light microscopy. This is a nonideal case as the sum of the modulation is not
a uniform image and that therefore the noise is not spatially uniform. Nonetheless the results
displayed in Fig. 10 show that the sample is successfully recovered with PSNR of 26.75dB and
that high frequency details are well estimated as shown on the power-spectrum on the second
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Figure 9: Reconstruction of the two test images with PSNR, SSIM, regularization parameter and elapsed time for
the best PSNR. Images are displayed with gamma correction of 0.5 in order to better appreciate the details in the
low end of the dynamic range.

15



Original Wide field SIM (Shifted Poisson-‖TP‖∗)
20.38dB 26.74dB

Figure 10: Reconstruction of a simulated 3 SIM images with a reduced number of images using only 3 modulation
orientations and no phase shift. The second row displays the corresponding power spectra.

row.

4.4. Reconstruction of acquired data

We have tested the proposed approaches on acquired data. For this purpose, we used two com-
mercial systems: the N–SIM from Nikon and the OMX from General Electrics. Both micro-
scopes use a similar approach for performing SIM imaging and rely on the use of a diffraction
grating which is optically conjugated with the object plane.
The N–SIM is equipped with a 100× (1.49 N.A.) objective and a 2.5× lense is set on the

camera port. A Xion Ultra 897 EMCCD camera from Andor Technology Ltd was on the
detection path leading to a pixel-size of ∼ 64 nm in the final image. A FluoCell prepared slide
#2 with BPAE cells with Mouse Anti-�-tubulin was imaged and the results obtained with the
linear and the convex nonsmooth reconstruction with a Poisson data term and a local patch
dictionary regularization are shown in Fig. 11 along, with the “wide–field” image obtained by
averaging the nine acquired images. On this image, we can notice that filaments appear much
thinner on the nonsmooth estimate than on the linear one. We can also observe that the power
spectrum seems to have a larger support.
The OMXmicroscope is equipped with a 100× (1.4N.A.) objective coupled with a 2× lense

on the camera port. This time a Evolve 512 from Photometrics was used and the final pixel-size
in the image is ∼ 80 nm. A FluoCell prepared slide #1 with BPAEC cells with F-actin stained
with Alexa fluor 488 phalloidin. Once again, both linear and the proposed nonsmooth convex
reconstruction methods reveal an increased resolution. Varying the regularization parameter
for the linear method does not allow to reduce noise without inducing a loss of resolution. The
proposed method allows us to achieve a much better compromise in this respect and clearly
outperforms the linear approach.
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Wide-field Classical Proposed

4.1 µm

Figure 11: Reconstruction of acquired �uorescently labeled tubulin cell with a NSIM microscope. Structured illumi-
nation microscopy allows us to reveal the crossing of �bers with more details than the wide�eld image. The proposed
approach is able to handle the noise and reduce the artifacts observed in the linear reconstruction (here the weighted
least-square data �tting term was used). On the second row, the power spectrum is displayed as reveals the increased
support in the frequency domain. The blue circle correspond to the resolution 128 µm.
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Wide–field Classical Proposed

5.1 µm

Figure 12: Reconstruction of acquired F-actin �uorescently labeled cell with the OMX setup. The �ne and dense
network structure of the actin cytosqueleton is better resolved when using the proposed approach. Corresponding
power spectra are displayed in the second row.
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5. Conclusion

We have proposed a new method for structured illumination image reconstruction. We have
considered a primal–dual algorithm, which does not require the direct inversion of the forward
operator, as this one is too large to be directly handled. In this framework, we have proposed a
new regularization based on learning local patch dictionaries. Two valid approximations of the
Poisson–Gaussian noise were tested and combined with several regularization to evaluate the
performance of the proposed approach. The results show that the proposed approach leads to a
significant improvement in terms of PSNR. Being able to better handle the noise perturbation
make it possible to increase the resolution and the sensitivity of SIM images. We did not
address the problem of the modulation parameter estimation, which can impact the quality
of the reconstructed images [46]; we leave this study for future work. Finally, we have seen
that the computation time associated to the proposed regularization are high. However, its
implementation could be easily parallelized taking advantage of the multi-core architecture of
modern CPUs and GPUs.
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A. Least-squares solution

General Case Let us start by considering the additive Gaussian white noise approximation.
In the following, we assume that the offset component mDC has been subtracted from the data.
In this case, maximum likelihood estimation of x̄ given the observed data y amounts to solve
the least-squares problem:

x̂ ∈ Argmin
x

‖y − SAMx‖2. (19)
The solution of Eq. (19) is the pseudo-inverse:

x̂ = (SAM)†y, (20)
which we can develop as:

x̂ = (M∗A∗S∗SAM)−1M∗A∗S∗y. (21)
We have

M∗A∗S∗y =M∗[(A∗0S
∗
0y
T
1 )
T ⋯ (A∗0S

∗
0y
T
K )
T]T (22)

=
∑K
k=1M

∗
kA

∗
0S0 yk. (23)

Thus, we can notice that least-squares estimation reverts to applying the inverse operator (M∗A∗S∗SAM)−1
to a single image, which is simply the sum of the yk, after they have been up-sampled, re-filtered
and re-modulated.
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Table 3: Detailed notations used in the paper.

n index of the component of a vector (e.g. x)
k index for modulations
q index of cost term (integer)
r iteration counter of an algorithm
N pixel number of x
L pixel number of y
K number of modulations
Q number of cost term
R number of iterations
T number of translations (NLTV)
% radial frequency
�1, �2 frequencies
� camera gain
�DC dark current noise mean offset
�2DC dark current noise variance
!k pulsation 2�� of the modulation
'k phases of the modulation
�, �, � algorithm parameters
x̄ ground truth image x
x estimated image (vector)
yk measurements (vector)
z the image of Tqx (vector)
IK identity matrix

IK K ×K identity matrix
Mk modulations (diagonal matrix)
A0 point spread function (matrix)
S0 down-sampling (matrix)
y measurements (stacked vector)
M stacked modulations
A stacked point spread function
S down-sampling (stacked matrix)
W diagonal weight matrix
p number of photo electrons (stacked vector)
n Gaussian white noise (stacked vector)
�k phase matrix
� stacked phase matrix

 stacked frequency matrix
L Operator for linear regularized least-squares
D1 finite difference operator
D211 second order finite difference operator
Tq generic operator in the cost term
T Stacked gradient operator
T Laplacian operator
T Stacked Hessian operator
T Patch extraction operator
fq function in the cost term

20



Moreover,A∗S∗SA = (IK⊗A∗0S∗0)(IK⊗S0A0) = IK⊗A∗0S∗0S0A0 is a block-diagonal matrix
whose action is to apply the filter A∗0S∗0S0A0 to every image in the stack of K images. So,
(M∗A∗S∗ASM)−1 =

(

∑K
k=1M

∗
kA

∗
0S
∗
0S0A0Mk

)−1. In general, this inverse operator cannot be
further simplified. It can be applied numerically using an iterative algorithm like the conjugate
gradient (see [6]). In the remainder of this section, we discuss cases in which a decomposition
is possible.

Case of annihilating modulations Let us assume that S0A0 = IN . This would have
little interest in practice as the resolution is not degraded, given that no low pass filtering is
considered. However, we will see that it can help us formalizing the reconstruction algorithm
proposed in [3]. In this specific case,

x̂ =M†y =
(

K
∑

k=1
M∗
kMk

)−1( K
∑

k=1
M∗
kyk

)

. (24)

The operator (∑K
k=1M

∗
kMk)−1 is a simple pixelwise division by the sum of the squared pixel

values of the K modulation patterns mk. In the case where the modulation operator M is
injective, then the division is well defined and the estimator exists. Moreover, considering
sinusoidal modulation as defined by Eq. (2) and the specific case where the phase shift are
defined as 'k = �k∕K and the amplitudes are equal, such that �K = � for k ∈ [1,⋯ , K] ,
then we have ∑K

k=1M
∗
kMk = (1 + �2∕2)K . Therefore the reconstruction amounts to simply

modulating the acquired images and normalizing by this constant. However, this ideal case is
never encountered in practice.

Case of separable modulations with no blur operator Further on, let us consider the
case where the modulation matrix can be decomposed as:

M = P1�P2
 (25)
where matrices P1 and P2 are KN ×KN permutation matrices, � a full column rank matrix
and 
 a tight frame such that 
∗
 = cIKN . Then, the estimate x̂ can be obtained as:

x̂ = (P1�P2
)†y =
1
c


∗P∗2�
†P∗1y (26)

Indeed, using the properties of the permutation matrices we have P∗1P1 = IKN and since by
definition, we have�†� = IKN as well, it follows that:

(

1
c


∗P∗2�
†P∗1

)

(

P1�P2

)

= 1
c


∗
 = IKN (27)
using the tight frame property of 
.
This decomposition of the operatorM is particularly well suited to describe the set of sinu-

soidal modulation for a single pattern frequency pair (!1,k, !2,k) = (!1, !2) but with several
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phase shifts'k as defined by Eq. (2). In this context, the matrix
 is a of sizeN×3with the fol-
lowing shape: 
 = [a, c, s]where the two vectors c and s are defined for n = (n1, n2) ∈ N1×N2by:

⎧

⎪

⎨

⎪

⎩

an1,n2 = 1
cn1,n2 = cos(n1!1 + n2!2)
sn1,n2 = sin(n1!1 + n2!2)

(28)

The corresponding� matrix is then of the form IK ⊗�0 with:

�0 =
⎡

⎢

⎢

⎣

1 �1 cos('1) −�1 sin('1)
⋮ ⋮ ⋮
1 �K cos('K ) −�K sin('K )

⎤

⎥

⎥

⎦

(29)

and we have in this case the relationship: �† = IN ⊗�†0. Finally, the least-squares estimate
can be rewritten as:

x̂ = 1
c


∗P∗2
(

IK ⊗�
†
0

)

P2y. (30)

Case of separable modulation with blur operator Now in order to understand the effect
of the point spread functionA0 on the reconstruction, we consider the case where we can write:

y = P1�P2SA
x (31)
where again the matrices P1 and P2 areKN×KN permutation matrices,� a full column rank
matrix and 
 a tight frame such that 
∗
 = cIKN . The permutation of the operator � and
SA is possible when the matrix� only operates on different images and not on pixels (see [4]).
This is the case for sinusoidal modulations used in SIM and we have then:

x̂ = (SA
)†P1(IK ⊗�
†
0)P2 (32)

which leads to the least-squares solution:
x̂ = (SA

∗A∗S∗)−1
∗A∗S∗P1(IK ⊗�

†
0)P2y (33)

where the operator SA

∗A∗S∗ can be inverted in Fourier domain and corresponds to a de-
convolution by the sum of the modulated point spread function. Note that this direct solution
is only valid for a limited type of modulations and it corresponds to the steps described in
e.g. [3, 4, 47] where the modulation components are separated using the phase information by
inverting the matrix �0 and the resulting components are modulated (corresponding to the
action of 
∗) in order to shift back the frequencies components as described in Fig. 3.

B. Cost terms

We list here the implementation details for the other tested cost functions used in the numerical
experiments.
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Least-squares SIM (LS) When considering an additive Gaussian white noise model, the
negative log-likelihood leads to a least-squares approach. The least-squares data term for SIM
imaging is defined by 1

2‖y−SAMx‖
2
2, corresponding to the combination of the function fLS =

1
2‖ · −y‖22 and the linear operator TLS = SAM. The proximity operator [35] associated to fLS
is then [28] : ∀
 > 0,∀z ∈ ℝLK , prox
fLS (z) = (z + 
 y)∕(1 + 
).

Gradient squared l2�norm (‖∇‖2) While more efficient algorithms exist for minimizing
the squared l2-norm of the gradient of x, especially combined with a least-squares data term,
we may still use the proposed approach. In this case, the operator is defined by the two first
order derivatives along the horizontal D1 and vertical D2 directions, stacked together as T =
[D1,D2]T. The adjoint of this operator is then the opposite of the divergence operator defined
as T∗ = DT1z1 + D

T
2 z2 where z1 and z2 are the gradient components. The gradient D1 and

are D2 computed using a forward finite differences scheme and their adjoints DT1 and DT2 are
backward finite differences with Neumann boundary conditions in both cases. For Tikhonov
regularization, the associated function is then the squared l2–norm, i.e. f = ‖ · ‖2 whose
proximity operator in this case is given by prox
f (z) = z∕(1 + 
) for every z ∈ ℝ2N .

Laplacian squared l2�norm (‖Δ‖2) A Laplacian squared l2–norm regularization was
introduced in [6] for SIM image reconstruction. We can consider this regularization using
the proposed minimization algorithm by combining the squared l2–norm with the Laplacian
operator T = D211+D

2
22 where D211 and D222 are the second order derivatives in the horizontaland vertical directions. Note that the Laplacian operator is self-adjoint. Furthermore, we can

use here the same function f = ‖ · ‖2 and the associated proximity operator as for Tikhonov
regularization. Note that in the context of this study, unlike in [6], we do not consider the
posterior mean estimate but only a maximum a posteriori (MAP) estimate.

Total variation (TV) The total variation seminorm can be defined as the l1–norm of the
gradients of x [42,43]. Therefore, we can use this time the same operator T as for Tikhonov
regularization, but with a different function f . Indeed, in order to achieve an isotropic total
variation, a vectorial form of the l1–norm denoted by fTV = ‖ · ‖1,2 should be applied, by
considering the two gradient components as a vector [28]:

(∀z = [z⊤1 , z
⊤
2 ]
⊤) ∈ ℝ2N ‖z‖1,2 =

∑N
n=1

√

[z1]2n + [z2]2n. (34)
Then the proximity operator is applied component-wise for n ∈ [1, N] as:

(∀zn ∈ ℝ2) prox
‖ · ‖1,2 (zn) =

⎧

⎪

⎨

⎪

⎩

zn −

zn

√

[z1]2n+[z2]2n
,

√

[z1]2n + [z2]2n ≥ 


0 otherwise.
(35)

Schatten norm of the Hessian operator (p(T)) Recently, a new regularization based
on the Schatten norm of the Hessian operator has been proposed [13]. This approach has been
developed in order to reduce the staircase artifacts observed with total variation regularization.
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In order to include this regularization constraint, we consider the Hessian operator defined
at each location n ∈ {1,… , N} as:

[Tx]n =
[

[D211x]n [D212x]n
[D212x]n [D222x]n

]

(36)

and composed of the second order derivative along horizontal, diagonal and vertical direction
denoted respectively D211, D212 and D222. The adjoint of this operator is defined by:

T∗z = D
2∗
11z11 + D

2∗
12(z12 + z21) + D

2∗
22z22 (37)

for every
z =

[

z11 z12
z21 z22

]

where z11, z12 = z21 and z22 represent the four components of the Hessian operator, each of
size ℝN .

In a similar way to the nuclear norm, the Schatten norm p of zn ∈ ℝ2×2 is defined as the
lp–norm of the diagonal matrix �n such that zn = Un�nVTn , and the proximity operator has
the following expression [16]:

(∀zn ∈ ℝ2×2) prox
p (zn) = Unprox
‖ · ‖p (�n)VTn . (38)

Nonlocal total variation (NLTV) The nonlocal total variation (NLTV) penalization was
introduced in [14] and extended to various inverse problems in [15,48] by considering differen-
tial operators defined on the graph associated to the sites of the image grid. It was also recently
extended to multispectral images in [16]. The operator associated to the NLTV regularization
can be described as weighted nonlocal gradients defined as [49]:

[TNLx]n =
⎡

⎢

⎢

⎣

[

W1(F1x − x)
]

n
⋮

[

WT (FT x − x)
]

n

⎤

⎥

⎥

⎦

(39)

where for t ∈ 1,… , T , we define some diagonal weight matrices as functions of the distance
between patches Wt = diag

(

exp
(

− 1�B(Ftx̃ − x̃)
2
))

with Ft a translation operator and B a
convolution by a lowpass filter such as a box-filter, or a Gaussian filter and � a positive scalar.
The image x̃ can be obtained by minimizing the classical total variation for example. Note that
the computation of the convolution could be done using separable recursive filters as proposed
in [50]. However, since the estimation of the weights is performed only once, this step is not
critical in terms of computation time. The T translations Ft are chosen so that they describe asquare neighborhood of sizeNw ×Nw while the operator B corresponding to an image patch
whose sizeNp ×Np is given by the width of the support of the filter in the case of a box–filter.The adjoint of the operator TNL is defined by:

(∀z ∈ ℝTN ) T∗NLz =
T
∑

t=1
Wt(F∗t − I)zt, (40)
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where F∗t with t ∈ 1,… , T are the translation with the corresponding opposite directions. The
function associated to the NLTV regularization is a l1,2–norm defined by:

(∀z ∈ ℝTN ) ‖z‖1,2 =
N
∑

n=1

( T
∑

t=1
z2n,t

)

1
2

. (41)

The associated proximity operator is then defined by:

(∀zn ∈ ℝT ) prox
‖ · ‖1,2 (zn) =
⎧

⎪

⎨

⎪

⎩

zn −

zn

√

∑T
t=1 [zt]2n

,
√

∑T
t=1 [zt]2n ≥ 


0 otherwise.
(42)
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[32] Vũ BC. A splitting algorithm for dual monotone inclusions involving cocoercive opera-
tors. Advances in Computational Mathematics. 2011 Nov;38(3):667–681.

[33] Condat L. A primal–dual splitting method for convex optimization involving Lips-
chitzian, proximable and linear composite terms. Journal of Optimization Theory and
Applications. 2013 Aug;158(2):460–479.

[34] Komodakis N, Pesquet JC. Playing with Duality: An overview of recent primal-dual
approaches for solving large-scale optimization problems. IEEE Signal Processing Mag-
azine. 2015 Nov;32(6):31–54.

[35] Moreau JJ. Proximité et dualité dans un espace hilbertien. Bulletin de la Société Mathé-
matique de France. 1965;93:273–299.

[36] Chouzenoux E, Jezierska A, Pesquet J, Talbot H. A convex approach for image restora-
tion with exact Poisson–Gaussian likelihood. SIAM Journal on Imaging Sciences. 2015
Jan;8(4):2662–2682.

[37] Csiszar I. A class of measures of informativity of observation channels. Periodica Math-
ematica Hungarica. 1972;2(1-4):191–213.

27



[38] Combettes PL, Pesquet J. A Douglas-Rachford splitting approach to nonsmooth convex
variational signal recovery. IEEE Journal of Selected Topics in Signal Processing. 2007
Dec;1(4):564–574.

[39] Chakrabarti A, Zickler T. Image restoration with signal-dependent camera noise.
arXiv:12042994 [cs, stat]. 2012 Apr;ArXiv: 1204.2994.

[40] Boulanger J, KervrannC, Bouthemy P, Elbau P, Sibarita JB, Salamero J. Patch-based non-
local functional for denoising fluorescence microscopy image sequences. IEEE Transac-
tions on Medical Imaging. 2010 Feb;29(2):442–454.

[41] Cai JF, Candès EJ, Shen Z. A singular value thresholding algorithm for matrix comple-
tion. SIAM Journal on Optimization. 2010;20(4):1956–1982.

[42] Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms.
Physica D: Nonlinear Phenomena. 1992 Nov;60(1–4):259–268.

[43] Condat L. Discrete total variation: new definition and minimization. SIAM Journal on
Imaging Sciences. 2017 Jan;10(3):1258–1290.

[44] Kaipio J, Somersalo E. Statistical and computational inverse problems. Applied Mathe-
matical Sciences. New York: Springer-Verlag; 2005.

[45] Calvetti D, Somersalo E. Hypermodels in the Bayesian imaging framework. Inverse
Problems. 2008;24(3):034013.

[46] Condat L, Boulanger J, PustelnikN, Sahnoun S, Sengmanivong L. A 2-D spectral analysis
method to estimate the modulation parameters in structured illumination microscopy. In:
11th International Symposium on Biomedical Imaging (ISBI’14); 2014. p. 604–607.

[47] Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, et al.
Three-dimensional resolution doubling in wide-field fluorescence microscopy by struc-
tured illumination. Biophysical Journal. 2008 Jun;94(12):4957–4970.

[48] Peyré G, Bougleux S, Cohen L. Non-local regularization of inverse problems. In: Forsyth
D, Torr P, Zisserman A, editors. Computer Vision – ECCV 2008. No. 5304 in Lecture
Notes in Computer Science. Springer Berlin Heidelberg; 2008. p. 57–68.

[49] Chierchia G, Pustelnik N, Pesquet JC, Pesquet-Popescu B. Epigraphical splitting for
solving constrained convex formulations of inverse problems with proximal tools. Signal,
Image and Video Processing. 2015;9(8):1737–1749.

[50] Condat L. A simple trick to speed up and improve the non-local means. Caen, France;
2010. research report hal-00512801.

28


	Introduction
	Presentation of the problem
	Notations
	Forward problem
	Regularized least-squares solution

	Proposed approach
	Primal–dual proximal minimization
	Poisson–Gaussian approximation
	Regularization by local dictionaries of patches

	Results
	Influence of the patch and neighborhood size
	Evaluation of data fitting term and regularization term
	Modulation pattern
	Reconstruction of acquired data

	Conclusion
	Acknowledgments
	Least-squares solution
	Cost terms

