Experimental identification of thermo-mechanical cohesive zone models for complex loading
Tarik Madani, Yann Monerie, Stéphane Pagano, Céline Pelissou, Bertrand Wattrisse

To cite this version:
Tarik Madani, Yann Monerie, Stéphane Pagano, Céline Pelissou, Bertrand Wattrisse. Experimental identification of thermo-mechanical cohesive zone models for complex loading. Workshop MIST 2015: Friction, Fracture, Failure, Oct 2015, Montpellier, France. hal-01273991

HAL Id: hal-01273991
https://hal.archives-ouvertes.fr/hal-01273991
Submitted on 15 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Experimental identification of thermo-mechanical cohesive zone models for complex loading

T. MADANI1,2 Y. MONERIE2,3 S. PAGANO2,3 C. PELISSOU1,2 B. WATTRISSE2,3
1 Institut de Radioprotection et de Sûreté Nucléaire, B.P. 3, 13115 Saint-Paul-lez-Durance Cedex, France
2 Laboratoire de Micromécanique et Intégrité des Structures, IRSN-CNRS-Université de Montpellier, France
3 Laboratoire de Mécanique et Génie Civil, Université de Montpellier, CC 048, 34095 Montpellier Cedex, France

Methodology: Inverse method

Motivation

Objectives: Identification of cohesive zone models for heterogeneous materials

Step 1: identify the stress field from the strain field.

Determine the mechanical properties of a material by minimizing the energy difference between the “measured” (U_m) and a “computed” (U_c) displacement fields.

\[E(U_c, B(p)) = \frac{1}{2T} \int_{0}^{T} (B(p) \cdot \varepsilon(U_c) - B(p) \cdot \varepsilon(U_m)) \cdot (B(p) \cdot \varepsilon(U_c) - B(p) \cdot \varepsilon(U_m)) \, dv \, dt \]

\[\min E(U_c, B(p)) \]

\[U_c \to \varepsilon_c \to \sigma_c \]

and

\[p = \{E, \nu, G, \sigma_b, k\} \]

Step 2: summarize the “volume” damage as a “surface” damage.

Constitutive Equation Gap Method (CEGM)

\[B(p) \]

Independent of loading, Explicit estimate of the elastic parameters (cubic):

\[\frac{1}{E} = \frac{1}{2} \left(\frac{1}{E_{xx}} + \frac{1}{E_{yy}} + \frac{1}{E_{zz}} \right) \]

\[\nu^{(i)} = \frac{G^{(i)}}{2} = \frac{1}{2} \left(\frac{1}{G_{xx}} + \frac{1}{G_{yy}} + \frac{1}{G_{zz}} \right) \]

\[G^{(i)} = \frac{1}{2} \left(\frac{1}{G_{xx}} + \frac{1}{G_{yy}} + \frac{1}{G_{zz}} \right) \]

\[B(p) \]

depends on the Von Mises stress \(\sigma^m \):

\[B(p) = \begin{cases} E(1 + 2K) & \sigma^m < \sigma_b \\ E(1 + 2K) - K \frac{\sigma^m - \sigma_b}{\sigma^m - \sigma_s} & \sigma_b \leq \sigma^m \leq \sigma_s \\ E(1 + 2K) - K & \sigma_s < \sigma^m \end{cases} \]

Resolution of the non-linear system obtained by the stationarity condition with respect to \(\alpha \) and \(\beta \),

- Computation of \(\sigma_b \) and \(k \) by a linear fit of the data

\[k = \frac{\text{intersection of the curve with the y axis}}{\text{slope of the curve and } \sigma_s} \]

\[a = \frac{\sigma^m}{2} \]

\[b = \frac{\sigma^m}{k} \]

Plastic identification

\[\alpha^2 = (\sigma - X)^2 P(\sigma - X) \]

Rewrite \(K \)

\[K = \frac{\Delta Y}{3 + 2 \Delta Y} \]

with \(a = \frac{1}{2K} \) and \(b = \frac{\sigma_b}{k} \)

Results: Polycrystalline structure

Distribution of transversal stress fields, mesh perfectly consistent with the material heterogeneity:

- Identification of heterogeneous fields (stress, ...) for elasto-plastic behavior: linear and non-linear hardening,
- Application of this method to real full-field measurements.

Prospect:
- Extend the constitutive equation gap method to softening behaviors.
- Identification of Cohesive Zone Models.
- Introduction of a calorimetric gap in the identification functional.

Conclusions:
- Identification of heterogeneous fields (stress, ...) for elasto-plastic behavior: linear and non-linear hardening,
- Application of this method to real full-field measurements.