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Abstract: We introduce a new variable selection method, suitable when
the correlation between regressors is known. It is appropriate in genomics
since once the genetic map has been built, the correlation is perfectly
known. Our method, based on the LASSO , is original since the number of
selected variables is bounded by the number of predictors, instead of be-
ing bounded by the number of observations as in the classical LASSO. It is
made possible by the construction of a specific statistical test, a transforma-
tion of the data and by the knowledge of the correlation between regressors.
We prove that the signal to noise ratio is largely increased by considering
the extremes. This new technique is inspired by stochastic processes aris-
ing from statistical genetics. It is described in a statistical genetics context,
considering a large panel of models present in the literature. Our method is
insensitive to interactions between regressors. An illustration on simulated
data is given.
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1. Introduction and background

1.1. Preliminaries

There are many issues related to high dimensional data. As mentioned in Fan
and Lv [15], one of the challenge is that “important predictors can be highly
correlated with some unimportant ones”. In genomics, correlation between pre-
dictors is highly linked to recombination between genetic markers. Then, once
the genetic map is built (see Wu et al. [42] for instance), the correlation between
predictors is perfectly known and we do not have to estimate these correlations.
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In this context, we propose in this study, to exploit this extra information and
to introduce a new variable selection method.

The number of selected variables by our method, is bounded by the number
of predictors, instead of being bounded by the number of observations as in the
classical LASSO (Tibshirani [39]). It is made possible by the construction of a
specific statistical test, a transformation of the data and by this knowledge of
the correlation between regressors. In other words, we transform the original
problem of n observations and K predictors (K ≥ n), to a situation where K is
now the number of observations and L the number of predictors (L ≥ K). The
use of a mixture model allows us to look for variables that can be viewed as
unobserved predictors. The quantity L denotes the total number of predictors
(observed and unobserved).

Moreover, in high dimensional problem, it is well known that the sparse coef-
ficient should be large enough (see for instance Bühlmann and Van de Geer [8])
in order to recover the true model (β-min condition). We prove that the per-
formances of our method can be largely increased by considering the extremes.
Indeed, the signal to noise ratio can be largely improved with the help of the se-
lective genotyping concept proposed by Lebowitz and al. [22], and heavily used
in agronomy.

Our study, inspired by stochastic processes arising from biology, focuses on
the backcross design (see below): the mathematical theory behind this concept
has been largely studied for many years (e.g. [12]). Note that we could have
focused on an evolutionary process such as the Wright Fisher model. It could
be investigated in future research.

1.2. A statistical genetic context

We study a backcross population: A× (A ×B), where A and B are purely ho-
mozygous lines and we address the problem of detecting Quantitative Trait Loci,
so-called QTL (genes influencing a quantitative trait which is able to be mea-
sured) on a given chromosome. The trait is observed on n individuals (progenies)
and we denote by Yj , j = 1, ..., n, the observations, which we will assume to
be independent and identically distributed (i.i.d.). The mechanism of genetics,
or more precisely of meiosis, implies that among the two chromosomes of each
individual, one is purely inherited from A while the other (the “recombined”
one), consists of parts originated from A and parts originated from B, due to
crossing-overs. The chromosome will be represented by the segment [0, T ]. The
distance on [0, T ] is called the genetic distance, it is measured in Morgans. The
genome X(t) of one individual takes the value +1 if, for example, the “recom-
bined chromosome” is originated from A at location t and takes the value −1
if it is originated from B . The admitted model for the stochastic structure of
X(.) is due to Haldane [18] which states that:

X(0) ∼ 1

2
(δ+1 + δ−1), X(t) = X(0)(−1)N(t)
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where for any b ∈ R, δb denotes the point mass at b and N(.) is a standard
Poisson process on [0, T ]. In a more practical point of view, the Haldane [18]
model assumes no crossover interference and the Poisson process represents the
number of crossovers on [0, T ] which happen during meiosis.

1.3. Analysis of variance model

The quantitative trait Y is affected by m additive QTLs located on the chromo-
some. Indeed, it is well known that there is a finite number of loci underlying
the variation in quantitative traits (e.g. in aquaculture and livestock, see Hayes
[20]). Let qs and t⋆s denote respectively the QTL effect and the location of the
sth QTL. Besides, we will consider 0 < t⋆1 < ... < t⋆m < T . We assume an
“analysis of variance model” for the quantitative trait:

Y = µ +

m∑

s=1

X(t⋆s) qs + σε (1.1)

where ε is a Gaussian white noise.

1.4. Mixture model

In fact the “genome information” will be available only at marker locations,
that is to say at certain fixed locations t1 = 0 < t2 < ... < tK = T , and the
observation will be

(Y, X(t1), ..., X(tK)) .

So, we observe n observations (Yj , Xj(t1), ..., Xj(tK)) i.i.d.
The aim of this study is to estimate the number m of QTLs, their locations t⋆1,
..., t⋆m and their effects q1, ..., qm. If the QTLs were located exactly on marker
locations, a classical way to solve this problem would be to perform the “least
absolute shrinkage and selection operator”, so called LASSO (Tibshirani [39])
using as regressors the genome information at marker locations. However, since
QTLs lie on the chromosome at unknown locations, we should not look for
QTLs only at marker locations but rather focus on the whole chromosome. As
a result, our problem can not be solved using classical variable selection tools:
QTL mapping requires the use of mixture models in a way we will explain below.

In what follows, r(t, t′) will denote the probability of recombination between
two loci (i.e. positions) located at t and t′. Calculation on the Poisson distribu-
tion show that

r(t, t′) = P(X(t)X(t′) = −1) = P(|N(t)−N(t′)| odd) =
1

2
(1− e−2|t−t′|),

we set in addition

r̄(t, t′) = 1− r(t, t′), ρ(t, t′) = e−2|t−t′| .
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When there is only one QTL (i.e. m = 1), conditionally to X(t1), . . . , X(tK), Y
obeys to a mixture model with known weights

p(t⋆1)f(µ+q1,σ)(.) + {1− p(t⋆1)} f(µ−q1,σ)(.), (1.2)

where f(µ,σ) is the Gaussian density with parameters (µ, σ) and where p(t⋆1) is
the probability P(X(t⋆1) = 1) conditionally to the observations of the markers.
It can be expressed from the functions r and r (see formula 4.1 for K = 2, and
formula 5.1 for K > 2).

1.5. The “Interval Mapping” of Lander and Botstein [21]

In a famous article, Lander and Botstein [21] proposed to test the presence of
the QTL (i.e. m = 0 vs m = 1), performing a likelihood ratio test (LRT) of
the null hypothesis “q1 = 0” in equation (1.2). Since t∗1 is unknown, the authors
suggested to scan the chromosome and to perform a LRT, Λn(t), at each loca-
tion t of the interval [0, T ]. It leads to a “LRT process”, Λn(.), and considering
the supremum of Λn(.) gives the LRT of “q1 = 0” on the whole chromosome.
Note that when the null hypothesis of the absence of QTL on [0, T ] is rejected,
arg supΛn(t) is a natural estimator of the QTL location. This method, very pop-
ular in genetics, is called the “Interval Mapping”. The distribution of the LRT
statistic, supΛn(.), has been given using some approximations by Cierco [12],
Azäıs and Cierco-Ayrolles [1], Azäıs and Wschebor [5]. In Rebäı et al. [36], Rebäı
et al. [35] and Chang et al. [9], the authors focus only on the null hypothesis
and are still using some approximations. Theoretical results are also present in
Chen and Chen [10] under non contiguous hypotheses. However, geneticists are
usually interested in detecting QTLs with small effects (see Hayes [20]). Then,
in Azäıs et al. [2], we have recently given the exact asymptotic distribution of
the LRT statistic under the null and contiguous hypotheses. We showed that the
LRT process, Λn(.), is asymptotically the square of a “non linear interpolated
process” centered under H0 (i.e. no QTL on the chromosome) and uncentered
of a mean function under the alternative which depends on the QTL effect q1
and its location t⋆1. Then, we presented a formula (due to the interpolation) to
compute the supremum of Λn(.).

1.6. First contribution: Asymptotic results on max test and LRT
process, and a new gene mapping method

The problem is that the use of the test statistic supΛn(.) is appropriate for
testing and localizing one QTL on [0, T ], but it is not so rewarding when more
than one QTL (i.e. m > 1) lie on [0, T ]. When there are m QTLs, conditionally
on X(t1), . . . , X(tK) , Y obeys to a mixture of 2m components

∑

(u1,...,um)∈{−1,1}m

w~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y )
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where w~t⋆(u1, ..., um) is the probability P {X(t⋆1) = u1, ..., X(t⋆m) = um} condi-
tionally on the observations of the markers (see Sections 4 and 5).

In this paper, we propose to generalize the results of Azäıs et al. [2] to the
general alternative that there existm QTLs on [0, T ] at t⋆1, · · · , t⋆m with additive
effects q1, · · · , qm. We will show that under the general alternative, the LRT
process is still asymptotically the square of a “non linear interpolated process”.
However, the mean function depends this time on the number of QTLs, their
positions and their effects. This theoretical result allows us to propose a new
method to estimate the number of QTLs, their positions and their effects using
the LASSO.

Note that we will also give the asymptotic distribution of the statistic supΛn(.)
when m > 1, since this test can be viewed as a global test or max test (see for
instance [6]). In this context, supΛn(.) matches the test statistic corresponding
to the statistical test with the smallest pvalue in a multiple testing framework.
It could be used before performing our new gene mapping method, in order to
look for “some signal” on the chromosome.
Section 10.1 illustrates on simulated data, our theoretical result regarding the
max test. We will show that the empirical power matches the theoretical power
for moderates values of n. Besides, we will illustrate in Section 10.3, that our
new method is able to recover the genes (lying between markers) in the ideal
noiseless situation (see Donoho [14]) provided that the correlation between re-
gressors is not too high. Recall that the correlation depends on the intensity of
the Poisson process that models recombinations along the genome. Note that as
expected, performances will deteriorate in the noisy setting, with false positives
appearing. A way to increase the signal to noise ratio is to focus on the extremes
(see below).

1.7. Some background about the use of the extremes in genomics:
the selective genotyping

In the past, collecting the genome information at one marker for all the indi-
viduals was very expensive. In such a context, Lebowitz and al. [22] proposed
to genotype only the individuals who present an extreme phenotype (i.e. the
smallest and the largest Y ), since they noticed that most of the information
about the QTL is present in the extreme phenotypes. This way, at a given
power, a large increase of the number of individuals leads to a decrease of the
number of individuals genotyped. Later, Lander and Botstein [21] formalized
this approach and called it “selective genotyping”. This design has been studied
theoretically by many authors considering only one fixed location of the genome
(e.g. Lebowitz and al. [22], Lander and Botstein [21], Darvasi and Soller [13],
Muranty and Goffinet [28], Rabier [30]). More recently, in Rabier [32], we in-
vestigated the asymptotic properties of the LRT statistic on the chromosome:
it can be viewed as an answer to the simulation study presented by Rabbee et
al. [29].

The model corresponding to selective genotyping is the following: we con-
sider two real thresholds S− and S+, with S− ≤ S+ and we genotype if and
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only if the phenotype Y is extreme, that is to say Y ≤ S− or Y ≥ S+. Note
that in practice, the cutoffs for genotyping are based on quantiles. However,
in most of the theoretical studies about selective genotyping, authors consider
fixed thresholds. This approximation is reasonable when we deal with a large
number of observations.

If we call X(t) the random variable such as

X(t) =

{
X(t) if Y /∈ [S− , S+]

0 otherwise ,

then, in our problem, one observation will be now

(
Y, X(t1), ..., X(tK)

)
.

Note that with our notations :

• when Y /∈ [S− , S+], we have X(t1) = X(t1), ..., X(tK) = X(tK).
• when Y ∈ [S− , S+], we have X(t1) = 0, ..., X(tK) = 0, which means
that the genome information is missing at the marker locations.

When there is only one QTL (i.e. m = 1), we have proved (see Rabier [32])
that the probability distribution of

(
Y, X(t1), ..., X(tK)

)
is proportional to the

mixture

p(t⋆1) f(µ+q1,σ)(Y ) 1Y /∈[S−,S+] + {1− p(t⋆1)} f(µ−q1,σ)(Y ) 1Y /∈[S−,S+] (1.3)

+
1

2
f(µ+q1,σ)(Y ) 1Y ∈[S−,S+] +

1

2
f(µ−q1,σ)(Y ) 1Y ∈[S−,S+] .

Recall that the function p(t⋆1) is the probability P(X(t⋆1) = 1 | X(t1), . . . , X(tK))
. Note that although p(t⋆1) is a function of X(t1),. . . , X(tK), the quantity
p(t⋆1)1Y /∈[S−,S+] present in (1.3) is a function of X(t1), ..., X(tK). In this con-
text, we have proved (Rabier [32]) that the LRT process, Λn(.), converges to the
square of a non linear interpolated process. This limiting process is the same as
the one of the complete data situation (as above) except that the mean functions
are proportional of a factor linked to the selective genotyping.

1.7.1. Second contribution: Asymptotic results regarding the extremes
(selective genotyping)

As explained before, we propose to tackle in this study, the problem of recovering
several genes lying on the genome. So, under selective genotyping, when there are
m QTLs, the probability distribution of

(
Y, X(t1), ..., X(tK)

)
is proportional

to the mixture of 2m components

∑

(u1,...,um)∈{−1,1}m

w~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y /∈[S−,S+]

+ v~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y ∈[S−,S+]
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where v~t⋆(u1, ..., um) is the probability P(X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) =
um) and where w~t⋆(u1, ..., um) is the same quantity as previously. A proof about
this mixture model is given in Section 11.3.1.

We will show that the mean function of the LRT process is still proportional
to the one of the complete data situation. Note that the proof is somewhat tech-
nical and some parts are presented in supplementary material. Besides, we will
compare theoretically the case where the n genotyped individuals are extreme
or not. Last, we will illustrate in Section 10.2, our new gene mapping method
under selective genotyping. As expected, the signal to noise ratio is largely in-
creased by considering extreme individuals. Recall that our proposed method
takes into account explicitly the fact that the individuals are extreme, since it
relies on the mean function of the LRT process under selective genotyping.

2. Extra models studied in this paper

In this article, we will also investigate the asymptotic properties of the LRT
process regarding other models present in the statistical genetics litterature.
Then, our new gene mapping method, will be suitable in a general framework.

2.1. Epistatic model

It is well known that interactions between QTLs (so-called epistasis phenomenon)
can be responsible for a non-negligible part of the genetic variability of a quan-
titative trait (see for instance Wu et al. [42]). Then, we propose to include
interactions into the model. We will assume that only loci with additive effects
on the trait, are involved in the interactions. The “analysis of variance model”
of formula (1.1) for the quantitative trait becomes

Y = µ +

m∑

s=1

X(t⋆s) qs +

m−1∑

s=1

m∑

s̃=s+1

X(t⋆s)X(t⋆s̃) qs,s̃ + σε (2.1)

where ε is a Gaussian white noise, and qs,s̃ is the interaction effect between loci
t⋆s and t⋆s̃.

Conditionally on X(t1), . . . , X(tK), Y obeys now to the following mixture of
2m components

∑

(u1,...,um)∈{−1,1}m

w~t⋆(u1, ..., um) f(µ+
∑

m
s=1

usqs+
∑m−1

s=1

∑
m
s̃=s+1

usus̃qs,s̃ , σ)(Y ) .

(2.2)

Recall that w~t⋆(u1, ..., um) is the probability P {X(t⋆1) = u1, ..., X(t⋆m) = um}
conditionally on the observations of markers.

In this context, we will prove that the interaction effects are not included in
the mean function of the LRT process. In other words, those effects are uniden-
tifiable when the classical LRT is used. As a consequence, our gene mapping
method is insensitive to epistatic loci in the genome. The method enables ex-
clusively the detection of additive effects.
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2.2. Interference model

Recall that Haldane modeling assumes that crossovers occur independently
along the genome. In fact, biologists have observed that a recombination event
can inhibit the formation of another recombination event nearby (e.g. Sturtevant
[38], Muller [27], McPeek and Speed [26], Lobo and Shaw [23]). This phenomenon
is called interference phenomenon.

We propose to focus here on the model introduced by Rebäı et al. [36] (see
in particular their Section 2) in which double recombination between the QTL
and its flanking markers is not allowed. Note that in Rebäı et al. [35], the au-
thors extended their previous model to several markers, keeping Haldane [18]
modeling for the genetic information at marker locations. As a result, the prob-
ability distribution of (X(t1), . . . , X(tK)) is unchanged. In order to extend the
interference model to m QTLs, we will impose that the QTLs do not belong
to the same marker intervals. Obviously, double recombination between each
QTL and the corresponding flanking markers is not allowed. Then, under the
interference model, the “analysis of variance model” for the quantitative trait
is the following:

Y = µ +
m∑

s=1

U(t⋆s) qs + σε (2.3)

where ε is a Gaussian white noise, and U(t⋆s) is the analogue of X(t⋆s) under
interference (more details in Section 8).

When there are m QTLs, conditionally to X(t1), . . . , X(tK) , we will show
that Y obeys to a mixture of 2m components

∑

(u1,...,um)∈{−1,1}m

w̃~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y )

where w̃~t⋆(u1, ..., um) is the probability P {U(t⋆1) = u1, ..., U(t⋆m) = um} condi-
tionally to the observations of the markers. Note that the weights w̃~t⋆(u1, ..., um)
are different from the weights w~t⋆(u1, ..., um) obtained under Haldane (cf. for-
mula 2.2). In this study, we will give asymptotic results about the LRT process
under interference.

3. Roadmap

In this article, we will present the following theorems and lemmas corresponding
to the different models studied:

• Theorem 4.1 : Two genetic markers
• Theorem 5.1: Several markers
• Theorem 6.1: Epistasis
• Theorem 7.1 : Selective genotyping
• Lemma 7.1 : Asymptotic Relative Efficiency for selective genotyping



CE. Rabier, C. Delmas/On gene mapping with the mixture model and the extremes 9

• Theorem 7.2 : Selective genotyping + epistasis
• Lemma 7.2: Reverse configuration of selective genotyping
• Theorem 8.1: Interference
• Theorem 8.2: Interference + epistasis

Finally, in Section 9, we will introduce our new gene mapping method.

4. Two genetic markers

To begin, we suppose that there are only two markers (K = 2) located at 0 and
T : 0 = t1 < t2 = T . Besides, let us consider the case m = 1 (i.e. one QTL
located at t⋆1). For t ∈ [t1, t2] we define

p(t) = P
{
X(t) = 1

∣∣X(t1), X(t2)
}

and
x(t) = E

{
X(t)

∣∣X(t1), X(t2)
}
= 2p(t)− 1.

It is clear that p(t⋆1) is effectively the probability appearing in (1.2). An appli-
cation of the rule of total probabilities leads to

p(t) = Q1,1
t 1X(t1)=11X(t2)=1 + Q1,−1

t 1X(t1)=11X(t2)=−1

+Q−1,1
t 1X(t1)=−11X(t2)=1 + Q−1,−1

t 1X(t1)=−11X(t2)=−1 (4.1)

where

Q1,1
t =

r̄(t1, t) r̄(t, t2)

r̄(t1, t2)
, Q1,−1

t =
r̄(t1, t) r(t, t2)

r(t1, t2)

Q−1,1
t =

r(t1, t) r̄(t, t2)

r(t1, t2)
, Q−1,−1

t =
r(t1, t) r(t, t2)

r̄(t1, t2)
.

We can notice that we have

Q−1,−1
t = 1−Q1,1

t and Q−1,1
t = 1−Q1,−1

t .

Let θ1 = (q1, µ, σ) be the parameter of the model at t fixed. The likelihood
of the triplet (Y, X(t1), X(t2)) with respect to the measure λ⊗N⊗N , λ being
the Lebesgue measure, N the counting measure on N, is ∀t ∈ [t1, t2]:

Lt(θ
1) =

[
p(t)f(µ+q1,σ)(Y ) + {1− p(t)} f(µ−q1,σ)(Y )

]
g(t) (4.2)

where the function

g(t) =
1

2

{
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}
(4.3)

+
1

2

{
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}
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can be removed because it does not depend on the parameters. By a small abuse
of notation we still denote Lt(θ

1) for the likelihood without this function. Thus
we set

Lt(θ
1) =

[
p(t)f(µ+q1,σ)(Y ) + {1− p(t)} f(µ−q1,σ)(Y )

]

and lt(θ
1) will be the loglikelihood.

Before defining the score statistic and the LRT statistic at t, let us introduce
the notation θ10 = (0, µ, σ) which will refer to the parameter θ1 under H0. Since
the Fisher Information matrix is diagonal (cf. Section 11.1), the score statistic
of the hypothesis “q1 = 0” at t, for n independent observations, will be defined
as

Sn(t) =

∂lnt
∂q1

|θ1
0√

VH0

(
∂lnt
∂q1

|θ1
0

) , (4.4)

where lnt (θ
1) denotes the log-likelihood at t, associated to n observations.

The LRT at t, for n independent observations, will be defined as

Λn(t) = 2
{
lnt (θ̂

1)− lnt (θ̂
1
|H0

)
}
,

where θ̂1 is the maximum likelihood estimator (MLE), and θ̂1|H0
the MLE under

H0. As previously said, supΛn(.) is the LRT statistic of q1 = 0 on the whole
interval [0, T ]. We refer to Azäıs et al. [2] for the asymptotic distributions of the
LRT statistic.

Let us now suppose that more than one QTL (i.e.m > 1) lie on [0, T ]. In what
follows, t⋆1, ..., t

⋆
m will denote the QTL locations, and we define the parameter

θm and θ0 in the following way : θm = (q1, ..., qm, µ, σ) and θ
m
0 = (0, ..., 0, µ, σ).

Then, the full likelihood of the triplet (Y, X(t1), X(t2)), with respect to the
measure λ⊗N ⊗N , is

Lm~t⋆(θ
m) =

∑

(u1,...,um)∈{−1,1}m

w~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) gm(t⋆1, . . . , t
⋆
m)

(4.5)

where the function gm(.) is equal to the function g(.) given in formula (4.3) and
where

w~t⋆(u1, ..., um) = P
{
X(t⋆1) = u1, ..., X(t⋆m) = um

∣∣ X(t1), X(t2)
}
.

Note that at this time, it is clear that gm(.) does not depend on t⋆1, . . . ,t
⋆
m.

However, these parameters will be useful in the generalization in the next Sec-
tion. Note that calculations on the Poisson process lead to (proof included in
the proof of Theorem 4.1, see Section 11.1)

w~t⋆(u1, ..., um)

=
{
r(t1, t

⋆
1) 1X(t1)u1=−1 + r̄(t1, t

⋆
1) 1X(t1)u1=1

}
{r(t⋆1, t⋆2) 1u1u2=−1 + r̄(t⋆1, t

⋆
2) 1u1u2=1}

. . .
{
r(t⋆m−1, t

⋆
m) 1um−1um=−1 + r̄(t⋆m−1, t

⋆
m) 1um−1um=1

}
{
r(t⋆m, t2) 1umX(t2)=−1 + r̄(t⋆m, t2)1umX(t2)=1

}
/
{
r(t1, t2) 1X(t1)X(t2)=−1 + r̄(t1, t2) 1X(t1)X(t2)=1

}
.
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As previously, we set Lm~t⋆(θ
m) the likelihood without the function g(.). Note that

since
∑

(u2,...,um)∈{−1,1}m−1

P
{
X(t⋆1) = 1, X(t⋆2) = u2, ..., X(t⋆m) = um

∣∣ X(t1), X(t2)
}
= p(t⋆),

we have the relationship

Lm~t⋆ (θ
m
10...0) = Lt⋆

1
(θ1) where θm10...0 = (q1, 0, ..., 0, µ, σ) .

In the same way, under H0,

Lm~t⋆ (θ
m
0 ) = Lt⋆

1
(θ10).

Notations 4.1. ⇒ is the weak convergence,
F.d.→ is the convergence of finite-

dimensional distributions and
L−→ is the convergence in distribution.

Our main result is the following:

Theorem 4.1. Suppose that the parameters (q1, ..., qm, µ, σ
2) vary in a compact

and that σ2 is bounded away from zero, and also that m is finite. Let H0 be the
null hypothesis of no QTL on [0, T ], and let define the following local alternatives
Ha~t⋆ : “there are m QTLs located respectively at t⋆1, ..., t

⋆
m

with effect q1 = a1/
√
n, ..., qm = am/

√
n where a1 6= 0, ..., am 6= 0” . Then,

Sn(.) ⇒ Z(.) , Λn(.)
F.d.→ Z2(.) , supΛn(.)

L−→ supZ2(.)

as n tends to infinity, under H0 and Ha~t⋆ where Z(.) is the Gaussian process
with unit variance such as

Z(t) =
α(t) Z(t1) + β(t) Z(t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)
,

Cov {Z(t1), Z(t2)} = ρ(t1, t2) = e−2|t1−t2|

where α(t) = Q1,1
t −Q−1,1

t , β(t) = Q1,1
t −Q1,−1

t and with mean function

• under H0, m(t) = 0
• under Ha~t⋆ ,

m~t⋆(t) =
α(t) m~t⋆(t1) + β(t) m~t⋆(t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)

where

m~t⋆(t1) =

m∑

s=1

as ρ(t1, t
⋆
s) / σ , m~t⋆(t2) =

m∑

s=1

as ρ(t2, t
⋆
s) / σ.

A proof is given in Section 11.1. This theorem is a generalization of Theo-
rem 2.1 of Azäıs et al. [2], that considers only one QTL on the chromosome.
According to Theorem 4.1, under the general alternative, the LRT process is
still asymptotically the square of a non linear interpolated process. However,
the mean function depends this time on the number of QTLs, their positions
and their effects.
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5. Several markers

In that case suppose that there are K markers 0 = t1 < t2 < ... < tK = T .
We consider values t, t′ or t⋆ of the parameters that are distinct of the markers
positions, and the result will be prolonged by continuity at the markers positions.
For t ∈ [t1, tK ]\TK where TK = {t1, ..., tK}, we define tℓ and tr as :

tℓ = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .

In other words, t belongs to the “Marker interval” (tℓ, tr).
Let us briefly describe the changes with the previous section. Due to the

independent increments of the Poisson process,

P {X(t) | X(t1), . . . , X(tK)} = P
{
X(t) | X(tℓ), X(tr)

}
.

As a consequence, the likelihood ratio test Λn(t) is now built on the likelihood
of the triplet

(
Y, X(tℓ), X(tr)

)
and the quantities p(t) and g(t), introduced in

formulae (4.1) and (4.3), become

p(t) = P
{
X(t) = 1 | X(tℓ), X(tr)

}
, g(t) = P

{
X(tℓ), X(tr)

}
. (5.1)

Recall that our test statistic Λn(t), is the LRT corresponding to the test of
the presence of only one QTL at t. Let us now consider the true probability
distribution. Since

P {X(t⋆1), . . . , X(t⋆m) | X(t1), . . . , X(tK)} = P
{
X(t⋆1), . . . , X(t⋆m) | X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

}

all the information is contained in the markers flanking the QTL locations. As a
result, the focus is on the probability distribution of (Y,X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm ))
and the quantities w~t⋆(u1, ..., um) and gm(.) present in formula (4.5), verify now

w~t⋆(u1, ..., um) = P
{
X(t⋆1) = u1, ..., X(t⋆m) = um

∣∣ X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )
}

(5.2)

and

gm(t⋆1, . . . , t
⋆
m) = P

{
X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

}
. (5.3)

Let us now introduce Theorem 5.1.

Theorem 5.1. We have the same result as in Theorem 4.1, provided that we
make some adjustments and that we redefine Z(.) in the following way :

• in the definition of α(t) and β(t), t1 becomes tℓ and t2 becomes tr

• under the null hypothesis, the process Z(.) considered at marker positions
is the ”squeleton” of an Ornstein-Uhlenbeck process: the stationary Gaus-
sian process with covariance ρ(tk, tk′ ) = exp(−2|tk − tk′ |)

• at the other positions, Z(.) is obtained from Z(tℓ) and Z(tr) by interpola-
tion and normalization using the functions α(t) and β(t)
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• at the marker positions, the expectation is such as m~t⋆(tk) =
∑m

s=1 asρ(tk, t
⋆
s)/σ

• at other positions, the expection is obtained from m~t⋆(t
ℓ) and m~t⋆(t

r) by
interpolation and normalization using the functions α(t) and β(t).

The proof of the theorem is the same as the proof of Theorem 4.1 since we
can limit our attention to the interval (tℓ, tr) when considering a unique instant
t.

6. Epistasis

We propose now to include interactions between QTLs (so-called espistasis phe-
nomenon) into our model (see for instance Wu et al. [42]). We will assume that
only loci with additive effects on the trait, are involved in interactions. The
“analysis of variance model” of formula (1.1) for the quantitative trait becomes

Y = µ +

m∑

s=1

X(t⋆s) qs +

m−1∑

s=1

m∑

s̃=s+1

X(t⋆s)X(t⋆s̃) qs,s̃ + σε

where ε is a Gaussian white noise, and qs,s̃ is the interaction effect between loci
t⋆s and t⋆s̃.

The probability distribution of (Y,X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )) is

∑

(u1,...,um)∈{−1,1}m

w~t⋆(u1, ..., um) f(µ+
∑

m
s=1

usqs+
∑m−1

s=1

∑
m
s̃=s+1

usus̃qs,s̃ , σ)(Y ) gm(t⋆1, . . . , t
⋆
m)

(6.1)

where w~t⋆(u1, ..., um) and gm(.) are given in formulae (5.2) and (5.3).

Theorem 6.1. Suppose that the parameters (q1, ..., qm, q12, ..., qm−1m, µ, σ
2) vary

in a compact and that σ2 is bounded away from zero, and also that m is finite.
Let define the local alternative

• Ha~t⋆,b~t⋆ :“There are m additive QTLs located respectively at t⋆1, ..., t
⋆
m with

effects respectively q1 = a1/
√
n, ..., qm = am/

√
n where a1 6= 0, ..., am 6=

0 . Besides, all these QTLs interact with each other : the interaction effects
are respectively q1,2 = b1,2/

√
n for loci t⋆1 and t⋆2, ..., qm−1,m = bm−1,m/

√
n

for loci t⋆m−1 and t⋆m where b1,2 6= 0, ..., bm−1,m 6= 0”.

then, with the previous notations, under Ha~t⋆,b~t⋆ ,

Sn(.) ⇒ Z(.) , Λn(.)
F.d.→ Z2(.) , supΛn(.)

L−→ supZ2(.)

where Z(.) is the Gaussian process of Theorem 5.1 uncentered with mean func-
tion m~t⋆(.) defined in Theorem 5.1.

A proof is given in Section 11.2. Note that the interaction effects are not
included in the mean function. In other words, those effects are unidentifiable
when the classical LRT is used. It is due to independent increments of the
Poisson process (cf. proof in Section 11.2).
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7. Selective genotyping

We propose to consider here the classical problem (as in Sections 4 and 5),
but incorporating now a selective genotyping in order to reduce the costs of
genotyping. To begin with, in order to make the reading easier, we won’t consider
interactions in our model. However, the epistasis will be investigated later in
this section. As mentioned in Section 1.7, the selective genotyping model is the
following: we consider two real thresholds S− and S+, with S− ≤ S+ and we
genotype if and only if the phenotype Y is extreme, that is to say Y ≤ S− or
Y ≥ S+.

If we call X(t) the random variable such as

X(t) =

{
X(t) if Y /∈ [S− , S+]

0 otherwise ,

then, in our problem, one observation will be now
(
Y, X(t1), ..., X(tK)

)
.

Note that with our notations :

• when Y /∈ [S− , S+], we have X(t1) = X(t1), ..., X(tK) = X(tK).
• when Y ∈ [S− , S+], we have X(t1) = 0, ..., X(tK) = 0, which means
that the genome information is missing at the marker locations.

To begin with, let us consider the case m = 1. According to Rabier [32], the
likelihood of the triplet

(
Y, X(tℓ), X(tr)

)
with respect to the measure λ⊗N⊗N ,

λ is ∀t ∈ [t1, tK ]\TK :

Lt(θ
1) =

[
p(t) f(µ+q1,σ)(Y )1Y /∈[S−,S+] + {1− p(t)} f(µ−q1,σ)(Y )1Y /∈[S−,S+]

(7.1)

+
1

2
f(µ+q1,σ)(Y )1Y ∈[S−,S+] +

1

2
f(µ−q1,σ)(Y )1Y ∈[S−,S+]

]
g(t)

with

g(t) = P
{
X(tℓ), X(tr)

}
1Y /∈[S−,S+] + 1Y ∈[S−,S+] . (7.2)

Note that we use the same notations p(t) for the weights since they are exactly
the same as in Section 5. Recall that

p(t) = P
{
X(t) = 1 | X(tℓ), X(tr)

}

= Q1,1
t 1X(tℓ)=11X(tr)=1 + Q1,−1

t 1X(tℓ)=11X(tr)=−1

+Q−1,1
t 1X(tℓ)=−11X(tr)=1 + Q−1,−1

t 1X(tℓ)=−11X(tr)=−1 .

Although p(t) is not a function of X(tℓ) and X(tr), p(t)1Y /∈[S−,S+] is the follow-

ing function of X(tℓ) and X(tr):

p(t)1Y /∈[S−,S+] = Q1,1
t 1X(tℓ)=11X(tr)=1 + Q1,−1

t 1X(tℓ)=11X(tr)=−1

+Q−1,1
t 1X(tℓ)=−11X(tr)=1 + Q−1,−1

t 1X(tℓ)=−11X(tr)=−1 .
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In the same way, the quantity P
{
X(tℓ), X(tr)

}
1Y /∈[S−,S+] present in the defi-

nition of g(t) verifies

P
{
X(tℓ), X(tr)

}
1Y /∈[S−,S+] =

1

2

{
r(tℓ, tr)1X(tℓ)X(tr)=1 + r(tℓ, tr)1X(tℓ)X(tr)=−1

}
.

As a result, as expected, the likelihood is a function of Y , X(tℓ), X(tr), which
was not obvious at first reading. However, the expression given in formula (7.1)
will be very convenient for the generalization to several QTLs.

The score statistic of the hypothesis “q1 = 0” at t, for n independent obser-
vations, will be defined as

Sn(t) =

∂l
n

t

∂q1
|θ1

0√
V

(
∂l

n

t

∂q1
|θ1

0

) ,

where l
n

t (θ
1) denotes the log likelihood at t, associated to n observations.

In the same way, the LRT at t, for n independent observations, will be defined
as

Λn(t) = 2
{
l
n

t (θ̂
1)− l

n

t (θ̂
1
|H0

)
}

,

where θ̂1 is the maximum likelihood estimator (MLE), and θ̂1|H0
the MLE under

H0.
Let us now suppose that more than one QTL (i.e. m > 1) lie on [0, T ].

Using the same notations as in Sections 4 and 5, t⋆1, ..., t
⋆
m denote the QTL

locations, and the parameter θm and θ0 are defined in the following way :
θm = (q1, ..., qm, µ, σ) and θm0 = (0, ..., 0, µ, σ). Besides, recall that all the in-
formation is contained in the markers flanking the QTL locations. Then, the
probability distribution of

(
Y,X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

)
, with respect

to the measure λ⊗N ⊗ · · · ⊗N , is

L
m
~t⋆(θ

m) =
∑

(u1,...,um)∈{−1,1}m

[
w~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y /∈[S−,S+]

+v~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y ∈[S−,S+]

]
gm(t⋆1, . . . , t

⋆
m)

(7.3)

with

v~t⋆(u1, ..., um) = P {X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um} ,

gm(t⋆1, . . . , t
⋆
m) = P

{
X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

}
1Y /∈[S−,S+] + 1Y∈[S−,S+] .

Recall also the definition of w~t⋆(u1, ..., um) given in formula (5.2):

w~t⋆(u1, ..., um) = P
{
X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um | X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

}
.

As before, formula (7.3) is a function of Y , X(t⋆ℓ1 ), , . . . , X(t⋆rm ). Note that the
proof of formula (7.3) is included in the proof of the following Theorem 7.1.



CE. Rabier, C. Delmas/On gene mapping with the mixture model and the extremes 16

Notations 7.1. γ, γ+ and γ− are respectively the quantities
PH0

(Y /∈ [S−, S+]), PH0
(Y > S+) and PH0

(Y < S−).

Notations 7.2. A is the quantity such as
A = σ2

{
γ + zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
, where ϕ(x) and zα denote re-

spectively the density of a standard normal distribution taken at the point x, and
the quantile of order 1− α of a standard normal distribution.

Theorem 7.1. Suppose that the parameters (q1, ..., qm, µ, σ
2) vary in a compact

and that σ2 is bounded away from zero, and also that m is finite. Then,

Sn(.) ⇒ V (.) , Λn(.)
F.d.→ V 2(.) , supΛn(.)

L−→ supV 2(.)

as n tends to infinity, under H0 and Ha~t⋆ where V (.) is the Gaussian process
with unit variance such as

V (t) =
α(t) V (tℓ) + β(t) V (tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(tℓ, tr)
,

Cov
{
V (tℓ), V (tr)

}
= ρ(tℓ, tr) = e−2|tℓ−tr|

where the functions α(.) and β(.) are given in Theorem 4.1, and with mean
function

• under H0, m(t) = 0
• under Ha~t⋆ ,

m~t⋆(t) =
α(t) m~t⋆(t

ℓ) + β(t) m~t⋆(t
r)√

α2(t) + β2(t) + 2α(t)β(t)ρ(tℓ, tr)

where

m~t⋆(t
ℓ) =

m∑

s=1

as
√
A ρ(tℓ, t⋆s) / σ

2 , m~t⋆(t
r) =

m∑

s=1

as
√
A ρ(tr, t⋆s) / σ

2 .

The proof is given in Section 11.3. Under the null hypothesis, despite the se-
lective genotyping, V (.) is exactly the same process as the process Z(.) of The-
orem 5.1 obtained for the complete data situation. However, under the general
alternative, the mean functions of the two processes are not the same anymore
: the mean functions are proportional of a factor

√
A/σ.

Before introducing our Lemma 7.1, let us recall that the Asymptotic Relative
Efficiency (ARE) determines the relative sample size required to obtain the same
local asymptotic power as the one of the test under the complete data situation
where the genome information at markers is known for all the individuals.

Lemma 7.1. Let κ denote the ARE, then we have

i) κ = γ + zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

ii) κ reaches its maximum for γ+ = γ− = γ/2 .
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This lemma is a generalization of Theorem 4.2 of Rabier [32] where the focus
was only on the case m = 1. To prove Lemma 7.1, just use the same proof as
the one of Theorem 4.2 of Rabier [32].

According to i) of Lemma 7.1, the ARE with respect to the complete data
situation, does not depend on the number of QTLs m, the constants a1, ..., am
linked to the QTL effects, and the QTLs locations t⋆1, ..., t

⋆
m. Indeed, since the

mean functions (complete data situation and selective genotyping) are propor-
tional of a factor

√
A/σ, it is obvious that the ARE does not depend on those

parameters. On the other hand, according to ii) of Lemma 7.1, if we want to
genotype only a percentage γ of the population, we should genotype the γ/2%
individuals with the largest phenotypes and γ/2% individuals with the smallest
phenotypes.

Let us consider now n⋆ individuals for a selective genotyping experiment, and
let us assume that we have the relationship n = n⋆γ. In other words, we focus
on the case where, for economical reasons, we are allowed to genotype only n
individuals. By considering n = n⋆γ, we are allowed to genotype n extreme
individuals, provided that the overall population size has been increased to n⋆.
In this context, we have

Sn⋆(tk)
Ha→ N

(√
A
γ σ4

m∑

s=1

as ρ(tk, t
⋆
s), 1

)

and the mean function of the process is still interpolated. As a result, the ratio
between the signal corresponding to selective genotyping and the one match-

ing the complete data situation is equal to
√

A
γ σ2 . This quantity verifies the

following relationship

√
A
γ σ2

=
√
zγ+ ϕ(zγ+)/γ − z1−γ− ϕ(z1−γ−)/γ + 1

and if we are willing to genotype symmetrically (i.e. γ+ = γ−), it becomes

√
A
γ σ2

=
√
2zγ/2ϕ(zγ/2)/γ + 1 .

In other words, provided that the phenotyping is free, the signal can be largely
increased, by genotyping extreme individuals (i.e. selective genotyping) instead
of genotyping random individuals (i.e. complete data situation). According to
Figure 1, when the selective genotyping is performed symmetrically, the sig-
nal corresponding respectively to the cases γ = 0.1, γ = 0.2 and γ = 0.3,
is respectively 2.09, 1.80 and 1.61 times larger under selective genotyping than
under random genotyping. The worst case is obtained when genotyping only the
largest phenotypes (see γ+/γ = 1) or genotyping only the smallest phenotypes
(same curve as the one for γ+/γ = 1). In that case, the selective genotyping can
be less rewarding than the random genotyping (cf. γ+ = γ = 0.8).
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Obviously, when all the individuals are genotyped (γ = 1), all the efficiencies
are equal to one.

Let us now move on to the case where interactions are present into our model
(see formula 2.1). Then, under selective genotyping, we have the following result:

Theorem 7.2. Suppose that the parameters (q1, ..., qm, q1,2, ..., qm−1,m, µ, σ
2)

vary in a compact and that σ2 is bounded away from zero, and also that m is
finite. Then, with the previous notations, under Ha~t⋆,b~t⋆ ,

Sn(.) ⇒ V (.) , Λn(.)
F.d.→ V 2(.) , supΛn(.)

L−→ supV 2(.)

where V (.) is the Gaussian process of Theorem 7.1 uncentered with mean func-
tion mt⋆(.) defined in Theorem 7.1.

The proof is given in Section 11.4. As under the complete data situation
(Theorem 6.1), the interaction effects are not included in the mean function.

Sometimes, for some biological reasons, we are only able to genotype the
non extreme individuals (i.e. the individuals for which Y ∈ [S−, S+]). In this
context, we present the following lemma.

Lemma 7.2. Under the reverse configuration, that is to say if X(tk) = X(tk) 1Y ∈[S− , S+],
then we have the same results as in Theorem 7.1 and Theorem 7.2 provided that
we replace the quantity A by the quantity B defined in the following way

B = σ2
{
1− γ − zγ+ ϕ(zγ+) + z1−γ− ϕ(z1−γ−)

}
.

The proof is largely inspired of the proof of Theorems 7.1 and 7.2, and also
from Rabier [33] where this configuration is studied under the local alternative
of one QTL at t⋆ on [0, T ].
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Fig 1. Function
√

zγ+ ϕ(zγ+ )/γ − z1−γ− ϕ(z1−γ− )/γ + 1 as a function of the percentage

γ of individuals genotyped and as a function of the ratio γ+/γ.
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8. Interference phenomenon

In order to handle the interference phenomenon, we will focus on the model
introduced by Rebäı et al. [36] (see in particular their Section 2) in which dou-
ble recombination between the QTL and its flanking markers is not allowed.
Let us consider the case m = 1. Then, under the model considered by Rebäı
et al. [36], if the QTL is lying for instance between the first two markers (i.e.
t⋆1 ∈]t1, t2[), we can not have the scenario X(t1) = 1, U(t⋆1) = −1 and X(t2) = 1.
Indeed, this would have supposed that there had been a recombination between
the first marker and the QTL, and also a recombination between the second
marker and the QTL. In particular, the model considers that if we have a re-
combination between the QTL and one of its flanking marker, we could not
have a recombination between the QTL and the other flanking marker. In other
words, if X(t1) = 1 and U(t⋆1) = −1, then we have automatically X(t2) = −1.
In the same way, if X(t2) = 1 and U(t⋆1) = −1, then we have automatically
X(t1) = −1. Note that in Rebäı et al. [35], the authors extended their previous
model to several markers, keeping Haldane [18] modeling for the genetic infor-
mation at marker locations. In other words, as previously, X(0) is a random
sign and X(tk) = X(0)(−1)N(tk) where N(.) is a standard Poisson process on
[0, T ].

In this section, we will first study the classical model (see Sections 4 and 5)
under interference, and later we will consider the epistatic model. Note that the
results can easily be generalized to selective genotyping experiments.

To begin with, let us consider the case m = 1 (i.e. one QTL on [0, T ]).
According to Rabier [31], the likelihood of the triplet

(
Y, X(tℓ), X(tr)

)
with

respect to the measure λ⊗N⊗N , λ being the Lebesgue measure,N the counting
measure on N, is ∀t ∈]tℓ, tr[ :

L̃t(θ
1) =

[
p̃(t)f(µ+q1,σ)(Y ) + {1− p̃(t)} f(µ−q1,σ)(Y )

]
g(t) (8.1)

where the function

p̃(t) = P
{
U(t) = 1 | X(tℓ), X(tr)

}
, g(t) = P

{
X(tℓ), X(tr)

}
.

In particular,

p̃(t) = 1X(tℓ)=11X(tr)=1 +
tr − t

tr − tℓ
1X(tℓ)=11X(tr)=−1 +

t− tℓ

tr − tℓ
1X(tℓ)=−11X(tr)=1 .

(8.2)

As previously, the score statistic of the hypothesis “q1 = 0” at t, for n inde-
pendent observations, will be defined as

S̃n(t) =

∂l̃nt
∂q1

|θ1
0√

V

(
∂l̃nt
∂q1

|θ1
0

) ,
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where l̃nt (θ
1) denotes the log likelihood at t, associated to n observations.

In the same way, the LRT at t, for n independent observations, will be defined
as

Λ̃n(t) = 2
{
l̃nt (θ̂

1)− l̃nt (θ̂
1
|H0

)
}

.

Let us now move on to the case m > 1.
Recall that we impose that the QTLs do not belong to the same marker

intervals and that we consider Haldane modeling for the genome information
at genetic markers. As a result, since all the information is contained in the
markers flanking the QTL locations, we have the relationship

P {U(t⋆1), . . . , U(t⋆m) | X(t1), . . . , X(tK)} = P
{
U(t⋆1), . . . , U(t⋆m) | X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

}
.

The full likelihood of (Y,X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )) is

L̃m~t⋆(θ
m) =

∑

(u1,...,um)∈{−1,1}m

w̃~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) gm(t⋆1, . . . , t
⋆
m)

(8.3)

where

w̃~t⋆(u1, ..., um) = P
{
U(t⋆1) = u1, ..., U(t⋆m) = um

∣∣ X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )
}
,

gm(t⋆1, . . . , t
⋆
m) = P

{
X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

}
.

Theorem 8.1. Suppose that the parameters (q1, ..., qm, µ, σ
2) vary in a compact

and that σ2 is bounded away from zero, and also that m is finite. Then,

S̃n(.) ⇒W (.) , Λ̃n(.)
F.d.→ W 2(.) , sup Λ̃n(.)

L−→ supW 2(.)

as n tends to infinity, under H0 and Ha~t⋆ where W (.) is the Gaussian process
with unit variance such as

W (t) =
α̃(t) W (tℓ) + β̃(t) W (tr)√

α̃2(t) + β̃2(t) + 2α̃(t)β̃(t)ρ(tℓ, tr)
,

Cov
{
W (tℓ),W (tr)

}
= ρ(tℓ, tr) = e−2|tℓ−tr |

where α̃(t) = tr−t
tr−tℓ , β̃(t) = t−tℓ

tr−tℓ and with mean function

• under H0, m(t) = 0
• under Ha~t⋆ ,

m̃~t⋆(t) =
α̃(t) m̃~t⋆(t

ℓ) + β̃(t) m̃~t⋆(t
r)√

α̃2(t) + β̃2(t) + 2α̃(t)β̃(t)ρ(tℓ, tr)
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where

m̃~t⋆(t
ℓ) =

m∑

s=1

as h(t
ℓ, t⋆s) / σ , m̃~t⋆(t

r) =

m∑

s=1

as h(t
r, t⋆s) / σ ,

∀k h(tk, t
⋆
s) = ρ(tk, t

⋆ℓ
s )
{
α̃(t⋆s) + β̃(t⋆s)ρ(t

⋆ℓ
s , t

⋆r
s )
}
1t⋆s>tk

+ ρ(tk, t
⋆r
s )
{
α̃(t⋆s)ρ(t

⋆ℓ
s , t

⋆r
s ) + β̃(t⋆s)

}
1t⋆s<tk .

The proof is given in Section 11.5. Note that the functions α̃(t) and β̃(t) are
different from the ones of Theorems 4.1 and 5.1. As in Rabier [31], the limiting
process is the square of a linear interpolated process. As expected, the mean
function depends now on the number of QTLs, their positions and their effects.

Theorem 8.2. Suppose that the parameters (q1, ..., qm, q1,2, ..., qm−1,m, µ, σ
2)

vary in a compact and that σ2 is bounded away from zero, and also that m is
finite. Then, with the previous notations, under Ha~t⋆,b~t⋆ ,

S̃n(.) ⇒W (.) , Λ̃n(.)
F.d.→ W 2(.) , sup Λ̃n(.)

L−→ supW 2(.)

where W (.) is the Gaussian process of Theorem 8.1 uncentered with mean func-
tion m̃~t⋆(.) defined in Theorem 8.1.

In the same way as before, the interaction effects are not present in the mean
function.

9. A new method for gene mapping

In this section, the goal is to propose a method to estimate the number of
QTLs, their effects and their positions combining results of the theorem and a
penalized likelihood method. Note that in order to make the reading easier, we
will introduce the method in the context of Sections 4 and 5 (Haldane mapping,
no selective genotyping and no epistasis). However, it can easily be adapted to
the different models studied in this paper.

9.1. Introducing our method

According to Theorem 5.1, as soon as we discretize the score process at markers
positions, we have the following relationship when n is large:

~Sn = ~m~t⋆ + ~ε + oP (1)

where ~Sn = (Sn(t1) , Sn(t2) , ... , Sn(tK))′ , ~m~t⋆ = (m~t⋆(t1) , m~t⋆(t2) , ... , m~t⋆(tK))′

and ~ε ∼ N(0,Σ) with Σkk′ = ρ(tk, tk′).
Since most of the penalized likelihood methods rely on i.i.d. observations, we
will decorrelate the components of ~Sn keeping only points of the process taken at
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marker positions. Recall that Sn(.) is an “interpolated process”. Let us consider
the Cholesky decomposition Σ = AA′. We have

A−1~Sn = A−1B
(a1
σ
, ... ,

am
σ

)′
+ A−1~ε + oP (1)

where B is a matrix of size K ×m such as Bks = e−2|tk−t
⋆
s |.

Since the number m of QTLs and their positions t⋆1,...,t
⋆
m are unknown, we pro-

pose to focus on a new discretization of [0, T ] corresponding to all the putative
QTL locations: 0 ≤ t′1 < t′2 < ... < t′L ≤ T . ∆1, ...,∆L will be the corresponding
effects divided by σ. Note that although we focus only on the discretized process
at markers locations, we look for QTL not only on markers. The model can be
rewritten in the following way:

A−1~Sn = A−1C (∆1 , ... , ∆L)
′
+ A−1~ε + oP (1) (9.1)

where C is a matrix of size K × L such as Ckl = e−2|tk−t′l|.
Last, in order to find the non zero ∆l, a natural approach is to use the L1
penalized regression, so-called LASSO (Tibshirani [39]):

arg min
(∆1,...,∆L)

∥∥∥A−1~Sn −A−1C∆
∥∥∥
2

2
+ ζ ‖∆‖1

where ‖ ‖2 is the L2 norm, ‖ ‖1 is the L1 norm, ∆ = (∆1, ...,∆L)
′
and ζ denotes

the tuning parameter. ζ will be estimated using cross validation as described in
Chapter 7 of [19].

10. Illustrations

10.1. About the max test

To begin with, let us briefly illustrate our theoretical results regarding the max
test. Recall that it relies on the test statistic, supΛn(.). The focus is on a sparse
map: a chromosome of length 1M (T = 1), with 21 markers (K = 21) equally
spaced every 5cM. In this context, Table 1 compares the theoretical power and
the empirical power, under different configurations : either 1 QTL (m = 1) at
3cM, either 2 QTLs (m = 2) at 3cM and 28cM, or 3 QTLs (m = 3) at 3cM, 28cM
and 72cM. For all cases, the absolute value of the constant linked to the QTL
effect was equal to 2.8284 (i.e. |as| = 2.8284), allowing to deal with a small QTL
effect of 0.2 when n = 200. The theoretical power was obtained by generating
10,000 paths of the asymptotic process, whereas 1,000 samples of size n equal
to 1,000 , 200 or 100 were considered for the empirical power. The threshold
(i.e. critical value) at the 5% level was set to 7.84 using the Monte-Carlo Quasi
Monte-Carlo method, proposed by Azäıs et al. [2] and based on Genz [17]. In
order to compute the maximum of the process, simulated data were analyzed
using Lemma 1 of Azäıs et al. [2], that is to say performing LRT on markers
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γ
H
H
H
H
H

n
m 1 (+) 2 (++) 2 (+-) 3 (+-+)

1

+∞ 60.20% 99.35% 15.27% 49.74%
1,000 59.7% 98.90% 15.70% 49.00%
200 60.00% 98.80% 15.50% 47.30%
100 53.90% 98.50% 13.70% 45.80%

0.3

+∞ 48.21% 97.47% 12.71% 39.36%
1,000 47.90% 97.10% 12.20% 39.50%
200 47.70% 96.80% 10.50% 37.50%
100 46.10% 96.50% 9.40% 32.80%

Table 1

Theoretical power and empirical power associated to the test statistic supΛn(.), and as a
function of the number m of QTLs and the percentage γ of genotyped individuals ( T = 1,

K = 21, tk = 0.05(k − 1), (m = 1, t⋆
1
= 0.03), (m = 2, t⋆

1
= 0.03, t⋆

2
= 0.80), (m = 3,

t⋆1 = 0.03, t⋆2 = 0.28, t⋆3 = 0.72), all |as| = 2.828, + for positive effect, − for negative effect,
10,000 paths for the theoretical power, 1,000 samples of size n for the empirical power,

γ+/γ = 1/2).

and performing only one test in each marker interval if the ratio of the score
statistics on markers fulfills the given condition.

According to Table 1, we can notice a good agreement between the empirical
power and the theoretical power for n = 200. However, the asymptotic seems
to be really reached for n =1,000. We also investigated the behavior of the test
under a selective genotyping performed symmetrically (i.e. γ+ = γ/2). Recall
that the threshold remains the same under selective genotyping (cf. Theorem
7.1). We can observe that when γ = 0.3, the empirical power still matches the
theoretical power for n =1,000. This validates our theoretical results presented
in Theorems 5.1 and 7.1.

Last, the power of the test is reported as a function of the QTL effect signs.
We can see that when the two QTLs at 3cM and 28cM have the same signs,
the power is almost equal to 1 whereas it largely decreases (≈ 15% for γ = 1)
when the signs are opposite. In this case, the max test is clearly not the most
appropriate test to perform. We refer to the recent study of [6] where the authors
compared performances of the max test and the ANOVA in another context.

10.2. Selective genotyping improves the detection process

We propose to investigate here the performances of our gene mapping method
(see Section 9). Figure 2, based on one simulated data set, illustrates the perfor-
mances of the method under selective genotyping. The considered genome is of
length 10M (T = 10), with 201 markers (K = 201) equally spaced every 5cM. 16
QTLs (m = 16) lie on the interval [0M,4M] whereas no QTL are present on the
rest of the genome (i.e. [6M,10M]). The QTL effects are equal to either +0.2 or
−0.2, each QTL having its own random sign. The presence of QTL is tracked ev-
ery 2.5cM. As a consequence, 401 regressors (L = 401) are present in the linear
model (formula 9.1). In other words, we use the discretization t′l = 0.025(l− 1),
l = 1, . . ., 401. Recall that this grid is different from the one corresponding to
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marker locations: tk = 0.05(k − 1), k = 1, . . ., 201. Figure 2A refers to the case
n = 200 whereas Figure 2B focuses on n = 100.

Assuming that, for economical reasons, the geneticist is allowed to genotype
only n individuals, we compare here the case where those n individuals are
extreme or not. In particular, when a selective genotyping was performed, the
total number of individuals was increased to n⋆, with the relationship n⋆ = n/γ.
This way, on average, n individuals are genotyped under selective genotyping
(cf. Section 7). Then, when the sample size n was equal to 100 under complete
genotyping (γ = 1), we considered respectively 1000, 500 and 333 individuals
to handle the cases γ = 0.1, 0.2, and 0.3 respectively. In the same way, when
n = 200, we considered either 2000, either 1000, or 666 individuals. According
to Figure 2A, the largest estimated effects are the ones corresponding to the
case γ = 0.1: a few QTL effects are estimated at approximately 5 (see around
1M and 4M), and at −6 around 2M. It was expected since under such selective
genotyping (i.e with n⋆ = n/γ), the quantities ∆l, present in formula (9.1), are
increased by a factor

√
A/√γ at each gene location. Then, under the configura-

tion studied, the quantities |a|
√
A/√γ are equal respectively to 5.92, 4.56 and

2.50 when γ takes respectively the values 0.1, 0.3, and 1. Note that the number
of selected regressors was between 15 and 17 in all studied cases.

In what follows, the L1 ratio will denote the ratio L1 norm of estimated effects
on [0M,4M] to L1 norm of estimated effects on [0M,10M]. This L1 ratio is an
indicator of whether or not the detected QTLs belong to the “signal area”. Recall
that on this example, all the simulated QTLs belong to the interval [0M,4M].

Then, the L1 ratio is the quantity
∑161

i=1 |∆̂i|/
∑401
i=1 |∆̂i|. The one associated to

the case n = 200 took the values 98.47% for γ = 0.1, 90.79% for γ = 0.2, and
76.44% for γ = 1. On the other hand, the L1 ratio corresponding to n = 100
was found equal to 99.55% for γ = 0.1, to 95.25% for γ = 0.2, and to 61.10% for
γ = 1. In other words, by considering extreme individuals, we largely improve
the detection process.

To confirm this finding based on one single data set, Tables 2 and 3 report in a
more general framework, the mean L1 ratio over 100 samples of size n = 200 and
n = 100 respectively. Different QTL effects are taken into consideration : |qs|
is either equal to 0.2, 0.1, or 0.05. We can notice that whatever the parameter
values, the more extremes the genotyped individuals are, the larger the L1 ratio
is. Another interesting aspect (not shown here) is in the choice of the tuning
parameter value. The MSE curve obtained by cross validation is flat under
complete genotyping (γ = 1), suggesting the absence of signal. In contrast,
under selective genotyping, we can clearly distinguished the minimum of the
curve, due to to the increase of signal.

Last, Table 4 focuses on different ways of performing the selective genotyping:
different ratios γ+/γ are investigated. As expected, when only the largest (or
the smallest) individuals are genotyped (γ+/γ = 1), the L1 ratio is the smallest.
For instance, we can see that for γ = 0.1, the L1 ratio is equal to 68.87%
when the selective genotyping is performed unilaterally, whereas it increases to
82.86% when the selective genotyping is performed symmetrically. It confirms
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our theoretical results presented in Section 7 and illustrated in Figure 1.
To conclude, selective genotyping is largely more rewarding for localizing

genes.
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Fig 2. Estimated coefficients according to our method as a function of the percentage γ of
genotyped individuals (1 sample, m = 16, T = 10, |q1| = . . . = |q16| = 0.2, QTLs randomly
located only on [0M,4M], K = 201, tk = 0.05(k− 1), L = 401, t′

l
= 0.025(k− 1), γ+/γ = 1/2,

on average n individuals genotyped).

10.3. The mixture model allows to detect genes lying between
markers

Let us illustrate here that our method allows to detect genes lying between
markers. In order to present the performances of the method in a general frame-
work, the focus is on a configuration without selective genotyping. The genome
is of length 10M (T = 10), with 101 markers (K = 101) equally spaced every
10cM. The presence of QTL is tracked every 2.5cM, so 401 regressors (L = 401)
are present in our linear model. This genetic map is slightly sparser than the
previous one in order to deal with more regressors located between markers.

10 QTLs (m = 10) are equally spaced every 50cM on the interval [5cM,
455cM], and we consider random QTL effects signs accross simulations. Note
that these QTL locations have been chosen between markers. In this context,
Table 5 compares the performances of the method as a function of the intensity
λ of the Poisson process, the absolute value |a| of the constant linked to the
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all |qs| γ
∑

161
i=1

|∆̂i|/
∑

401
i=1

|∆̂i|
∑

401
i=162

|∆̂i|/
∑

401
i=1

|∆̂i| m̂

0.2

0.1 99.61% 0.39% 15.54
0.2 97.99% 2.01% 15.3
0.3 95.84% 4.16% 17.22
1 82.57% 17.43% 16.94

0.1

0.1 89.79% 10.21% 16.11
0.2 84.00% 16.00% 18.47
0.3 83.10% 16.90% 16.83
1 62.35% 37.65% 17.62

0.05

0.1 68.66% 31.34% 15.17
0.2 63.70% 36.30% 15.86
0.3 68.24% 31.76% 16.5
1 46.49% 53.51% 18.07

Table 2

Performances of the new method as a function of the percentage γ of genotyped individuals
and as a function of the QTL effects (Mean over 100 samples, m = 16, T = 10, QTLs

randomly located only on [0M,4M], K = 201, tk = 0.05(k − 1), L = 401, t′
l
= 0.025(k − 1),

γ+/γ = 1/2, on average n = 200 individuals genotyped). The L1 ratio corresponds to the

quantity
∑

161
i=1

|∆̂i|/
∑

401
i=1

|∆̂i|, and m̂ denotes the estimated QTL number.

all |qs| γ
∑

161
i=1

|∆̂i|/
∑

401
i=1

|∆̂i|
∑

401
i=162

|∆̂i|/
∑

401
i=1

|∆̂i| m̂

0.2

0.1 96.83% 3.17% 14.75
0.2 90.32% 9.68% 18.17
0.3 88.03% 11.97% 17.45
1 70.91% 29.09% 18.47

0.1

0.1 82.26% 17.74% 14.74
0.2 73.43% 26.57% 15.64
0.3 70.95% 29.05% 16.59
1 55.41% 44.59% 18.57

0.05

0.1 61.00% 39.00% 15.06
0.2 52.73% 47.27% 15.07
0.3 52.27% 47.73% 15.38
1 45.34% 54.66% 15.64

Table 3

Performances of the new method as a function of the percentage γ of genotyped individuals
and as a function of the QTL effects (Mean over 100 samples, m = 16, T = 10, QTLs

randomly located only on [0M,4M], K = 201, tk = 0.05(k − 1), L = 401, t′
l
= 0.025(k − 1),

γ+/γ = 1/2, on average n = 100 individuals genotyped). The L1 ratio corresponds to the

quantity
∑161

i=1 |∆̂i|/
∑401

i=1 |∆̂i|, and m̂ denotes the estimated QTL number.
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γ γ+/γ
∑161

i=1 |∆̂i|/
∑401

i=1 |∆̂i|
∑401

i=162 |∆̂i|/
∑401

i=1 |∆̂i| m̂

0.1

1/2 82.86% 17.74% 14.74
3/4 79.17% 20.83% 15.35
7/8 74.61% 25.39% 15.89
1 68.87% 31.13% 16.26

0.2

1/2 73.43% 26.57% 15.64
3/4 71.27% 28.73% 16.36
7/8 68.19% 31.81% 17.15
1 63.80% 36.20% 16.95

0.3

1/2 70.95% 29.05% 16.59
3/4 68.84% 31.16% 15.39
7/8 65.36% 34.63% 15.75
1 61.76% 36.24% 16.63

Table 4

Performances of the new method as a function of the ratio γ+/γ (Mean over 100 samples,
m = 16, |q1| = . . . = |q16| = 0.1, T = 10, QTLs randomly located only on [0M,4M],

K = 201, tk = 0.05(k − 1), L = 401, t′
l
= 0.025(k − 1), γ+/γ = 1/2, on average n = 100

individuals genotyped). The L1 ratio corresponds to the quantity
∑161

i=1 |∆̂i|/
∑401

i=1 |∆̂i|, and
m̂ denotes the estimated QTL number.

QTL effects, and whether or not some noise is present in the model. Recall that
under Haldane mapping, recombination is modeled according to a standard
Poisson process on [0, T ] (i.e. λ = 1). However, according to many biological
studies (e.g [40]), a higher recombination rate is observed in some areas, so
called hotspots (mostly located at the ends of the chromosomes). As a result,
we studied different recombination rates accross the genome. So, let us assume
now that N(.) is a Poisson process of intensity λ on [0, T ]. Recall that r(t, t′)
denotes the probability of recombination between two loci located at t and t′.
Then, we have the relationships

r(t, t′) = P(X(t)X(t′) = −1) = P(|N(t)−N(t′)| odd) =

∞∑

k=0

(λ |t− t′|)2k+1

(2k + 1)!

= e−λ|t−t′|sh(λ |t− t′|) = 1

2
(1− e−2λ|t−t′|) .

Since 1−2r(t, t′) = e−2λ|t−t′|, all the quantities ρ(t, t′) present in the covariance

and in the mean functions of our different theorems, become equal to e−2λ|t−t′|.
In other words, the parameter λ acts as a multiplying factor for the distance
between loci.

To begin with, in order to check if our method is able to recover the genes, let
us investigate the L1 penalization in the ideal noiseless situation (see Donoho
[14]). Recall that, even with noiseless data, we have to deal withK equations and
L unknown parameters (L > K), which makes difficult the resolution of such
system of equations. However, Donoho [14] has shown that the solution given
by L1 penalization is a good approximation for recovering the sparse unknown
vector.

According to Table 5, when λ takes respectively the values 5 and 10, the
number of truly detected genes is equal to 9.93 and 9.84 respectively, without
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λ Method |a| True positives False positives FDR

1

Noiseless - 8.36 6.94 9.83%

Noisy

20 8.40 12.55 35.44%
12 7.55 16.34 46.07%
8 5.74 18.35 55.39%
4 1.93 11.62 84.61%

5

Noiseless - 9.93 0 0%

Noisy

20 9.87 3.68 2.64%
12 9.52 6.42 10.37%
8 8.17 7.69 17.01%
4 0.95 1.71 34.74%

10

Noiseless - 9.84 0 0%

Noisy

20 8.07 1.33 0.81%
12 4.68 1.78 4.03%
8 1.41 0.99 14.25%
4 0.03 0.03 48.45%

Table 5

Performances of the method as a function of the intensity λ of the Poisson process, the
absolute value |a| of the constant linked to the QTL effects, and whether or not some noise
is present in the model (T = 10, m = 10, t⋆s = 0.5(s− 1) + 0.05, random QTL effect signs,

K = 101, tk = 0.10(k − 1), L = 401, t′
l
= 0.025(k − 1), 1,000 paths of the asymptotic

processes, FDR=False Discovery Rate within 5cM)

any false positives in both cases. In other words, our method is able to find the
genes perfectly in this noiseless setting. Note that when the recombination rate
decreases (λ = 1), the number of true positives drops to 8.36 and some false
positives are even detected (6.94). Note that in what follows, we will consider as
a false discovery, a selected regressor which is not located in a neighbourhood
of 5cM of a true QTL locations (e.g. Broman and Speed [7]). In that sense, the
definition of a false discovery differs slightly from the one of a false positive. The
FDR will be the percentage of such false discoveries among all the discoveries.
Coming back to our example (λ = 1), we can notice that the FDR is fair since
it is maintained slightly below 10%.

On the other hand, in the noisy setting, we can see that the best configuration
seems to match the case λ equal to 5, corresponding to a moderate recombination
rate between regressors. Indeed, the high correlation (λ = 1) makes the problem
more difficult, whereas when the correlation between regressor is too low (λ =
10), the signal captured by the test statistics on markers is too small. Recall
that signal depends on the correlation between markers and QTLs. Last, Table
6 shows that, as expected, for a given value of the absolute value |q| of the QTL
effects, the detection power increases with the number of individuals n.

11. Proofs

11.1. Proof of Theorem 4.1

The proof is divided into four parts:

• Preliminaries (i.e. computation of the Fisher Information Matrix)
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λ Method n |q| True positives False positives FDR

1

Noiseless - - 8.36 6.94 9.83%

Noisy
5,000

0.4 8.32 11.95 34.21%
0.2 7.36 15.52 45.13%

1,000
0.4 5.66 17.54 55.15%
0.2 3.57 16.74 64.09%

5

Noiseless - - 9.93 0 0%

Noisy
5,000

0.4 9.9 4.37 3.31%
0.2 9.42 6.2 9.26%

1,000
0.4 7.91 8.39 20.62%
0.2 3.4 4.97 25.77%

10

Noiseless - 9.84 0 0%

Noisy
5,000

0.4 8.22 1.62 2.05%
0.2 4.91 1.44 2.86%

1,000
0.4 1.93 1.24 16.25%
0.2 0.2 0.21 20%

Table 6

Performances of the method as a function of the intensity λ of the Poisson process, the
absolute value |q| of the QTL effects, the number of individuals n, and whether or not some
noise is present in the model (T = 10, m = 10, t⋆s = 0.5(s− 1) + 0.05, random QTL effect
signs, K = 101, tk = 0.10(k − 1), L = 401, t′

l
= 0.025(k − 1), 1,000 paths of the asymptotic

processes, FDR=False Discovery Rate within 5cM)

• Weak convergence of the score process under H0

• Study of the score process under the local alternative Ha~t⋆

• Study of the supremum of the LRT process.

Note that under H0, the proof has already been given in Azäıs et al. [2].
However, the weak convergence of the score process has not been proved in
details. Indeed, the authors only mentioned the continuous mapping theorem,
after having proved the convergence of finite-dimensional. As a consequence,
we propose to give here a more rigorous proof by showing the tightness of the
score process. Recall that the tightness and the convergence of finite-dimensional
imply the weak convergence of the score process (see for instance Theorem 4.9
of Azäıs and Wschebor [5]).

In what follows, we will consider values t, t⋆1, ..., t
⋆
m of the parameters that are

distinct of the markers positions (i.e. t1 and t2), and the result will be extended
by continuity at the markers positions.

11.1.1. Preliminaries

The proof starts with the computation of the Fisher Information Matrix. As a
result, calculations are exactly the same as in Azäıs et al. [2], see Section “Study
of the score process under the null hypothesis” of the proof of their Theorem
2.1. We propose to recall here the key elements of the proof.

First, the authors compute the score function at a point θ10 = (0, µ, σ) that
belongs to H0:

∂lt
∂q1

|θ1
0
=
Y − µ

σ2
x(t) (11.1)
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∂lt
∂µ

|θ1
0
=
Y − µ

σ2
,

∂lt
∂σ

|θ1
0
= − 1

σ
+

(Y − µ)2

σ3
.

Then, they introduce their key Lemma (Lemma 2.3 of Azäıs et al. [2]), which
states that

x(t) = α(t)X(t1) + β(t)X(t2) (11.2)

where α(t) = Q1,1
t −Q−1,1

t and β(t) = Q1,1
t −Q1,−1

t .
As a result, the Fisher information at θ10 , denoted Iθ10 , verifies

Iθ1
0
= Diag

{
α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)

σ2
,

1

σ2
,

2

σ2

}
. (11.3)

11.1.2. Weak convergence of the score process under H0

Convergence of finite-dimensional

We have ∀k = 1, 2:

Sn(tk) =

∂lntk
∂q1

|θ1
0√

VH0

(
∂lntk
∂q1

|θ1
0

) =

n∑

j=1

εj Xj(tk)√
n

.

Since
∂lntk
∂q1

|θ1
0
is centered under H0, a direct application of the central limit

theorem implies that

Sn(tk)
L−→ N(0, 1) .

Then, since we have the relationship (cf. formula (11.2))

Sn(t) =
α(t)Sn(t1) + β(t)Sn(t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)
,

the continous mapping theorem implies that

Sn(t)
L−→ Z(t) .

It proves the convergence of finite-dimensional.

Tightness

Since we have already proved the convergence of finite-dimensional, let us focus
on the tightness of the score process. Since p(t) and α2(t)+β2(t)+2α(t)β(t)ρ(t1, t2)
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are continuous functions, each path of the process Sn(.) is a continuous func-
tion on [t1, t2]. Recall the modulus of continuity of a continous function h(t) on
[t1, t2]:

̟h(δ) = sup
|t′−t|<δ

|h(t′)− h(t)| where t1 < δ ≤ t2.

According to Theorem 8.2 of Billingsley (1999), the score process is tight if and
only if the two following conditions hold:

1. the sequence Sn(t1) is tight.
2. For each positive ε and η, there exists a δ, with t1 < δ < t2, and an integer
n0 such that P (̟Sn

(δ) ≥ η) ≤ ε ∀n ≥ n0.

According to Prohorov, the sequence Sn(t1) is tight. Then, Condition 1 is veri-
fied. Let us define the functions α′(t) and β′(t) in the following way:

α′(t) = α(t)/
√
α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2),

β′(t) = β(t)/
√
α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2).

First, we can notice that ∀δ such as t1 < δ ≤ t2,

̟Sn
(δ) = sup

|t′−t|<δ

|Sn(t′)− Sn(t)|

= sup
|t′−t|<δ

|(α′ (t′)− α′ (t))Sn (t1) + (β′(t′)− β′(t))Sn (t2)|

≤ max (|Sn (t1)| , |Sn (t2)|) (̟α′ (δ) +̟β′ (δ)) . (11.4)

Furthermore, the sequence max (|Sn (t1)| , |Sn (t2)|) is uniformly tight. This way,

∀ε > 0 ∃M > 0 ∀n ≥ 1 P (max (|Sn(t1)| , |Sn(t2)|) ≥M) ≤ ε. (11.5)

According to Heine’s theorem, since α′(t) and β′(t) are continuous on the com-
pact [t1, t2], these functions are uniformly continuous. So,

∀υ > 0 ∃δ such as t1 < δ < t2, ̟α′(δ) +̟β′(δ) < υ. (11.6)

Let η be a positive quantity. Using formulae (11.5) and (11.6) and imposing
υ = η/M , we have

P (max (|Sn(t1)| , |Sn(t2)|) (̟α′(δ) +̟β′(δ)) ≥ η ) ≤ ε.

As a consequence, according to formula (11.4), we have

∀n ≥ 1 P (̟Sn
(δ) ≥ η) ≤ ε.

It proves Condition 2 of Theorem 8.2 of Billingsley (1999). As a result, the
tightness of the score process is proved. To conclude, the tightness and the con-
vergence of finite-dimensional imply the weak convergence of the score process.
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11.1.3. Study of the score process under the local alternative Ha~t⋆

There are m QTLs located on [0, T ] and the model for the quantitative trait is
the following:

Y = µ +

m∑

s=1

X(t⋆s) qs + σε (11.7)

where ε is a Gaussian white noise.
Since the score test statistic at t can be obtained using the following non

linear interpolation

Sn(t) =
α(t) Sn(t1) + β(t) Sn(t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)
,

, the mean function will be also a non linear interpolation

m~t⋆(t) =
α(t) m~t⋆(t1) + β(t) m~t⋆(t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)
.

Let us compute the quantities m~t⋆(t1) and m~t⋆(t2).
Without loss of generality, let’s consider location tk which refers to the loca-

tion of marker k. According to formulae (11.1) and (11.12), we have

Sn(tk) =
1√
n

n∑

j=1

εj Xj(tk) +
1

σn

n∑

j=1

{
m∑

s=1

Xj(t
⋆
s) as

}
Xj(tk)

= S0
n(tk) +

1

σn

n∑

j=1

{
m∑

s=1

Xj(t
⋆
s) as

}
Xj(tk) (11.8)

where S0
n(tk) is the score obtained under H0 at location tk.

By the law of large number :

1

n

n∑

j=1

{
m∑

s=1

Xj(t
⋆
s) as

}
Xj(tk) → E

[{
m∑

s=1

X(t⋆s) as

}
X(tk)

]
.

We have

E

[{
m∑

s=1

X(t⋆s) as

}
X(tk)

]
=

m∑

s=1

as e
−2|t⋆s−tk| =

m∑

s=1

as ρ(t
⋆
s , tk) .

Then,

m~t⋆(tk) =
1

σ

m∑

s=1

as ρ(t
⋆
s, tk) .

As a consequence, if we consider tk = t1 or tk = t2, we have

m~t⋆(t1) =
1

σ

m∑

s=1

as ρ(t
⋆
s, t1) , m~t⋆(t2) =

1

σ

m∑

s=1

as ρ(t
⋆
s , t2) .
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11.1.4. Study of the supremum of the LRT process

At fixed t, the model is regular and it is well known that we have the following
relationship under H0 (i.e. no QTL on the whole interval studied)

Λn(t) = S2
n(t) + oP (1)

and where oP (1) is short for a sequence of random vectors that converges to
zeros in probability. Let us consider now t as an extra parameter. It easy to
check that at H0 the Fisher Information relative to t is zero so that the model is
not regular. As a consequence, Azäıs et al. [2] studied this irregular model and
proved that

supΛn(t) = supS2
n(t) + oP (1) . (11.9)

Note that the proof is based on results of Azäıs et al. [4], Azäıs et al. [3] and
Gassiat [16] on empirical process theory. This result has been obtained under
H0 and under the local alternative of only one QTL (i.e. m = 1), located at t⋆1
on [0, T ]. This way, our goal is now to show that the remainder converges also
to zero under Ha~t⋆ .

Recall that the parameters θm and θm0 are defined in the following way :
θm = (q1, ..., qm, µ, σ) and θ

m
0 = (0, ..., 0, µ, σ). Recall also that the full likelihood

of the triplet (Y, X(t1), X(t2)), with respect to the measure λ⊗N⊗N , is given
in formula (4.5). According to Bayes rules,

w~t⋆(u1, ..., um) =
P {X(t⋆1) = u1, ..., X(t⋆m) = um, X(t1), X(t2}

P {X(t1), X(t2)}
.

Besides, we have the relationships

P {X(t⋆1) = u1, ..., X(t⋆m) = um, X(t1), X(t2)}
= P {X(t1)}P {X(t⋆1) = u1 | X(t1)}
× P {X(t⋆2) = u2 | X(t⋆1) = u1} · · ·P

{
X(t⋆m) = um | X(t⋆m−1) = um−1

}

× P {X(t2) | X(t⋆m) = um}

=
1

2

{
r(t1, t

⋆
1) 1X(t1)u1=−1 + r̄(t1, t

⋆
1) 1X(t1)u1=1

}

× {r(t⋆1 , t⋆2) 1u1u2=−1 + r̄(t⋆1, t
⋆
2) 1u1u2=1}

× . . .×
{
r(t⋆m−1, t

⋆
m) 1um−1um=−1 + r̄(t⋆m−1, t

⋆
m) 1um−1um=1

}

×
{
r(t⋆m, t2) 1umX(t2)=−1 + r̄(t⋆m, t2)1umX(t2)=1

}

and in the same way,

P {X(t1), X(t2)} =
1

2

{
r(t1, t2) 1X(t1)X(t2)=−1 + r̄(t1, t2) 1X(t1)X(t2)=1

}
.
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As a result,

w~t⋆(u1, ..., um)

=
{
r(t1, t

⋆
1) 1X(t1)u1=−1 + r̄(t1, t

⋆
1) 1X(t1)u1=1

}
{r(t⋆1, t⋆2) 1u1u2=−1 + r̄(t⋆1, t

⋆
2) 1u1u2=1}

. . .
{
r(t⋆m−1, t

⋆
m) 1um−1um=−1 + r̄(t⋆m−1, t

⋆
m) 1um−1um=1

}
{
r(t⋆m, t2) 1umX(t2)=−1 + r̄(t⋆m, t2)1umX(t2)=1

}
/
{
r(t1, t2) 1X(t1)X(t2)=−1 + r̄(t1, t2) 1X(t1)X(t2)=1

}
.

The likelihood Lm,n~t⋆
(θm) for n observations is obtained by the product of

n terms as in formula (4.5). Let Qn and Pn be two sequences of probabil-
ity measures defined on the same space (Ωn, An). Qn (respectively Pn) is the
probability distribution with density Lm,n~t⋆

(θm) (respectively Lm,n~t⋆
(θm0 )).

In what follows, log dQn

dPn
will denote the log likelihood ratio. By definition,

we have the relationship,

log
dQn
dPn

= log

{
Lm,n~t⋆

(θm)

Lm,n~t⋆
(θm0 )

}
. (11.10)

Since the model is differentiable in quadratic mean at θm and according to the
central limit theorem :

log

(
dQn
dPn

)
H0→ N(−1

2
ϑ2, ϑ2) with ϑ2 ∈ R

+⋆ .

As a result, according to iii) of Le Cam’s first lemma, we have Qn ⊳ Pn, that
is to say the sequence Qn is contiguous with respect to the sequence Pn. Then,
formula (11.9) is also true under the alternative Ha~t⋆ .

11.2. Proof of Theorem 6.1

Since the process Sn(.) is an interpolated process, we can focus, without loss
of generality, only on location tk (i.e. the location of marker k). According to
formulae (2.1) and (11.1), we have

Sn(tk) =
1√
n

n∑

j=1

εj Xj(tk) +
1

σn

n∑

j=1

{
m∑

s=1

Xj(t
⋆
s) as

}
Xj(tk)

+
1

σn

n∑

j=1

{
m−1∑

s=1

m∑

s̃=s+1

Xj(t
⋆
s)Xj(t

⋆
s̃) bs,s̃

}
Xj(tk)

= S0
n(tk) +

1

σn

n∑

j=1

{
m∑

s=1

Xj(t
⋆
s) as

}
Xj(tk)

+
1

σn

n∑

j=1

{
m−1∑

s=1

m∑

s̃=s+1

Xj(t
⋆
s)Xj(t

⋆
s̃) bs,s̃

}
Xj(tk)
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where S0
n(tk) is the score obtained under H0 at location tk.

As in the previous proofs, by the law of large number

1

n

n∑

j=1

{
m∑

s=1

Xj(t
⋆
s) as

}
Xj(tk) →

m∑

s=1

as ρ(t
⋆
s , tk) .

In the same way,

1

σn

n∑

j=1

{
m−1∑

s=1

m∑

s̃=s+1

Xj(t
⋆
s)Xj(t

⋆
s̃) bs,s̃

}
Xj(tk) → E

[{
m−1∑

s=1

m∑

s̃=s+1

X(t⋆s)X(t⋆s̃) bs,s̃

}
X(tk)

]

We have the relationship

E {X(t⋆s)X(t⋆s̃)X(tk)} = E
[
X(t⋆s)X(t⋆s̃)

{
21X(tk)=1 − 1

}]

= 2 E
[
X(t⋆s)X(t⋆s̃)1X(tk)=1

]
− ρ(t⋆s, t

⋆
s̃)

Then, if tk < min(t⋆s, t
⋆
s̃) or tk > max(t⋆s, t

⋆
s̃), we have

E
[
X(t⋆s)X(t⋆s̃)1X(tk)=1

]
= E [X(t⋆s)X(t⋆s̃) | X(tk) = 1] /2 = E [X(t⋆s)X(t⋆s̃)] /2 = ρ(t⋆s, t

⋆
s̃)/2 .

Besides, if min(t⋆s , t
⋆
s̃) < tk < max(t⋆s, t

⋆
s̃),

E
[
X(t⋆s)X(t⋆s̃)1X(tk)=1

]
= E [X(t⋆s)X(t⋆s̃) | X(tk) = 1] /2

= E [X(t⋆s) | X(tk) = 1]E [X(t⋆s̃) | X(tk) = 1] /2

= ρ(t⋆s, tk)ρ(tk, t
⋆
s̃)/2 = ρ(t⋆s, t

⋆
s̃)/2 .

As a result, we always have

E {X(t⋆s)X(t⋆s̃)X(tk)} = 0 .

To conclude,

1

n

n∑

j=1

{
m∑

s=1

Xj(t
⋆
s) as

}
Xj(tk) +

1

σn

n∑

j=1

{
m−1∑

s=1

m∑

s̃=s+1

Xj(t
⋆
s)Xj(t

⋆
s̃) bs,s̃

}
Xj(tk)

(11.11)

→
m∑

s=1

as ρ(t
⋆
s, tk) .

We can notice that the interaction effects have disappeared and that we have ex-
actly the same mean function as in Theorem 5.1: m~t⋆(tk) =

∑m
s=1 asρ(tk, t

⋆
s)/σ.

Since the model (based on formula 6.1) is differentiable in quadratic mean at
(0, ..., 0, µ, σ2) (i.e. no additive and no epistatic effect), this result is also suitable
for the LRT process.
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11.3. Proof of Theorem 7.1

11.3.1. Proof of formula (7.3)

Recall that K genetic markers are located at 0 = t1 < t2 < . . . < tK =
T . Besides, m QTLs lie on [0, T ] at locations t⋆1, t

⋆
2, ..., t

⋆
m, that are distinct

of marker locations. By definition t⋆1 < t⋆2 < ... < t⋆m. Let us compute the
probability distribution of

(
Y,X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

)
.

We have

P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] , X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm ))

=
∑

(u1,...,um)∈{−1,1}m

P(Y ∈ [y , y + dy] | X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um)

× P(X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um, X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )) .

Besides,

P(Y ∈ [y , y + dy] | X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um)

=
P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] | X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um)

P(Y /∈ [S−, S+] | X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um)

=
f(µ+u1q1+u2q2+...+umqm,σ)(y) 1y/∈[S−,S+]

P(Y /∈ [S−, S+] | X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um)

On the other hand,

P(X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um, X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm ))

= P(Y /∈ [S−, S+], X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um, X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm ))

= P(Y /∈ [S−, S+] | X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um)

P(X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um, X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm ))

As a result,

P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] , X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm ))

=
∑

(u1,...,um)∈{−1,1}m

f(µ+u1q1+u2q2+umqm,σ)(y) 1y/∈[S−,S+]

× P(X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um, X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )) .

In the same way, when the genome information is missing at marker locations
(i.e. the phenotype is not extreme), we find

P(Y ∈ [y , y + dy] , X(t⋆ℓ1 ) = 0, X(t⋆r1 ) = 0, . . . , X(t⋆ℓm) = 0, X(t⋆rm ) = 0)

=
∑

(u1,...,um)∈{−1,1}m

P(Y ∈ [y , y + dy] , Y ∈ [S−, S+], X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um)

=
∑

(u1,...,um)∈{−1,1}m

f(µ+u1q1+...+umqm,σ)(y) 1y∈[S−,S+] P(X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um) .
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Then, the probability distribution of
(
Y,X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

)
,

with respect to the measure λ⊗N ⊗ . . .⊗N , is

L
m
~t⋆(θ

m) =
∑

(u1,...,um)∈{−1,1}m

[
w~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y /∈[S−,S+]

+ v~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y ∈[S−,S+]

]
gm(t⋆1, . . . , t

⋆
m)

with

w~t⋆(u1, ..., um) = P(X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um | X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )) ,

v~t⋆(u1, ..., um) = P(X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um)

and

gm(t⋆1, . . . , t
⋆
m) = P(X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )) 1Y /∈[S−,S+] + 1Y∈[S−,S+] .

11.3.2. Study of the score process under H0

The score process Sn(.) has already been studied in Rabier [32]. Let us recall the
key elements of the proof. By definition, the score statistic at t is the following

Sn(t) =

∂l
n

t

∂q1
|θ1

0√
V

(
∂l

n

t

∂q1
|θ1

0

) where θ10 = (0, µ, σ) .

The score function verifies

∂l
n

t

∂q1
|θ1

0
=

n∑

j=1

Yj − µ

σ2
{2pj(t)− 1} 1Yj /∈[S−,S+]

=
α(t)

σ

n∑

j=1

εj Xj(t
ℓ) +

β(t)

σ

n∑

j=1

εj Xj(t
r) .

As a result, the limiting process is a non linear interpolated process.
On the other hand, at location tk:

Sn(tk) =

∂l
n

tk

∂q |θ0√
V

(
∂l

n

tk

∂q |θ0
) =

n∑

j=1

σεj Xj(tk)√
n A

.

According to the Central Limit Theorem,

Sn(tk)
L−→ N(0, 1) .

Besides, we have the relationship

CovH0

{
Sn(tk), Sn(tk′)

}
= ρ(tk, tk′) .
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11.3.3. Study of the score process under the local alternative Ha~t⋆

There are m QTLs located on [0, T ] and that the model for the quantitative
trait is the following:

Y = µ +

m∑

s=1

X(t⋆s) qs + σε (11.12)

where ε is a Gaussian white noise.
Since the score test statistic at t can be obtained using the following non

linear interpolation

Sn(t) =
α(t) Sn(t

ℓ) + β(t) Sn(t
r)√

α2(t) + β2(t) + 2α(t)β(t)ρ(tℓ, tr)
,

, the mean function will be also a non linear interpolation

m~t⋆(t) =
α(t) m~t⋆(t

ℓ) + β(t) m~t⋆(t
r)√

α2(t) + β2(t) + 2α(t)β(t)ρ(tℓ, tr)
.

Let us compute the quantities m~t⋆(t
ℓ) and m~t⋆(t

r).
Without loss of generality, let’s consider location tk which refers to the loca-

tion of marker k.

Sn(tk) =
n∑

j=1

(Yj − µ) Xj(tk)√
n A

=
n∑

j=1

m∑

s=1

qs Xj(t
⋆
s) Xj(tk)√
n A

+
n∑

j=1

σεj Xj(tk)√
n A

. (11.13)

We will see, that we can apply the Law of Large Numbers for the first term
and the Central Limit Theorem for the second term. To begin, let’s focus on
the first term. We have

E
{
X(t⋆s) X(tk)

}
=

E
[
1Y /∈[S−,S+]

{
1X(t⋆s)=11X(tk)=1 + 1X(t⋆s)=−11X(tk)=−1

}]

− E
[
1Y /∈[S−,S+]

{
1X(t⋆s)=−11X(tk)=1 + 1X(t⋆s)=11X(tk)=−1

}]
.

According to calculations present in the joint supplementary material,

E
[
1Y /∈[S−,S+]

{
1X(t⋆s)=11X(tk)=1 + 1X(t⋆s)=−11X(tk)=−1

}]

= r(tk, t
⋆
s)

{
1− Φ

(
S+ − µ

σ

)
+ Φ

(
S− − µ

σ

)}
+ o(1) ,

where Φ is the cumulative distribution of a standard normal distribution. In the
same way,

E
[
1Y /∈[S−,S+]

{
1X(t⋆s)=−11X(tk)=1 + 1X(t⋆s)=11X(tk)=−1

}]

= r(tk, t
⋆
s)

{
1− Φ

(
S+ − µ

σ

)
+ Φ

(
S− − µ

σ

)}
+ o(1) .
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Since we have the relationships

1− Φ

(
S+ − µ

σ

)
+ Φ

(
S− − µ

σ

)
= γ and r(tk, t

⋆
s)− r(tk, t

⋆
s) = ρ(tk, t

⋆
s),

then we have

E
{
X(t⋆s) X(tk)

}
= ρ(tk, t

⋆
s) γ + o(1) .

As a consequence, according to the Law of Large Numbers,

n∑

j=1

m∑

s=1

qs Xj(t
⋆
s) Xj(tk)√
n A

→
m∑

s=1

as ρ(tk, t
⋆
s) γ√

A
. (11.14)

Let us now focus on the second term of formula (11.13). According to a technical
proof present in the supplementary material, we have

E
{
σε X(tk)

}
=
{
zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)

} m∑

s=1

ρ(t⋆s , tk) qs + o( max
1≤s≤m

|qs|) .

Besides, according to iii) of Lemma 5 of Rabier [30],

E

[{
σε X(tk)

}2]
= E

(
σ2 ε2 1Y /∈[S−,S+]

)

=
∑

(u1,...,um)∈{−1,1}m

E
{
σ2 ε2 1Y /∈[S−,S+] | X(t⋆1) = u1, . . . , X(t⋆m) = um

}

× P {X(t⋆1) = u1, . . . , X(t⋆m) = um}
→

∑

(u1,...,um)∈{−1,1}m

A P {X(t⋆1) = u1, . . . , X(t⋆m) = um} → A .

As a result,

E

[{
σε X(tk)

}2]→ A and V





n∑

j=1

σεj Xj(tk)√
n A



→ 1 .

Then, according to the Central Limit Theorem,

n∑

j=1

σεj Xj(tk)√
n A

L−→ N

[∑m
s=1 ρ(t

⋆
s, tk) as√
A

{
zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)

}
, 1

]
.

(11.15)

Finally, according to formulae (11.14) and (11.15),

Sn(tk)
L−→ N

[
m∑

s=1

ρ(tk, t
⋆
s) as

√
A/σ2, 1

]
.
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11.3.4. Study of the supremum of the LRT process

At fixed t, the model is regular and it is well known that we have the following
relationship under H0 (i.e. no QTL on the whole interval studied)

Λn(t) = S
2

n (t) + oP (1)

and where oP (1) is short for a sequence of random vectors that converges to zeros
in probability. The problem is that, when t is not fixed, the Fisher Information
relative to t at H0 is zero so that the model is not regular. As a result, let us
consider now t as an extra parameter. Let t⋆1 and θ

1⋆, be the true parameters that
will be assumed to belong to H0. Note that t⋆1 makes no sense for θ belonging
to H0.

Without loss of generality, let us consider that µ and σ are known (µ = 0
and σ = 1) and as previously, let us consider values of t distinct of the markers
positions. Besides, let us consider only two genetic markers located at t1 = 0
and t2 = T . Note that in order to make the reading easier, we will use the
notation fq(.) instead of f(q,1)(.) to denote a Gaussian density with mean q and
unit variance.

For computing scores at each t separately, the likelihood of (Y, X(t1), X(t2))
can be considered in the following way ∀t ∈]t1, t2[ :

L(ψ q1, t(q1)) =
[
p {t(q1)} fψq1(Y )1Y /∈[S−,S+] + [1− p {t(q1)}] f−ψq1(Y )1Y /∈[S−,S+]

(11.16)

+
1

2
fψq1(Y )1Y ∈[S−,S+] +

1

2
f−ψq1(Y )1Y ∈[S−,S+]

]
g(t)

where t(q1) is a continuous function on [0, 1] into ]t1, t2[, p(t) is the classical
weight (cf. Sections 4 and 5) and g(t) is given in formula (7.2). Then, at each
value of q1 corresponds a value of t, denoted t(q1).

Let us compute the score function corresponding to L̃ at q1 = 0. Recall that
the null hypothesis is reached if and only if the QTL effect is null.

∂logL

∂q1
|q1=0 = ψ

{
2Q1,1

t(0) − 1
}
Y 1X(t1)=11X(t2)=1 + ψ

{
2Q1,−1

t(0) − 1
}
Y 1X(t1)=11X(t2)=−1

+ ψ
{
2Q−1,1

t(0) − 1
}
Y 1X(t1)=−11X(t2)=1 + ψ

{
2Q−1,−1

t(0) − 1
}
Y 1X(t1)=−11X(t2)=−1

= ψ [α {t(0)}+ β {t(0)}] Y 1X(t1)=11X(t2)=1

+ ψ [α {t(0)} − β {t(0)}] Y 1X(t1)=11X(t2)=−1

+ ψ [β {t(0)} − α {t(0)}] Y 1X(t1)=−11X(t2)=1

− ψ [β {t(0)}+ α {t(0)}] Y 1X(t1)=−11X(t2)=−1

= ψ α {t(0)} Y X(t1) + ψ β {t(0)} Y X(t2)

where α(.) and β(.) are the classical quantities introduced in Theorems 4.1 and
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5.1. We have

EH0

{(
∂logL

∂q1
|q1=0

)2
}

=
A
σ4
ψ2
[
α2 {t(0)} + β2 {t(0)} + 2α {t(0)}β {t(0)} ρ(t1, t2)

]
.

This quantity is always different from 0. As previously, for any function t(q1),
each sub-model L̃(q1, t(q1))q1∈R is differentiable in quadratic mean and Assump-
tion 2 of Azäıs et al. [4] is verified. Besides, the set of log likelihood is Glivenko-
Cantelli (cf. example 19.7 with r = 1 of Van der Vaart [41]), so Assumption 1
of Azäıs et al. [4] holds.

As in Azäıs et al. [4], let us define the set of scores renormalized D. In our
case :

D =

{
sign(ψ)

α {t(0)} Y X(t1) + β {t(0)} Y X(t2)√
α2 {t(0)} + β2 {t(0)} + 2α {t(0)} β {t(0)} ρ(t1, t2)

; t(0) ∈]t1, t2[ ; ψ ∈ R

}

which can be rewritten

D =

{
ψ′ α(t) Y X(t1) + β(t) Y X(t2)√

α2(t) + β2(t) + 2α(t)β(t) ρ(t1, t2)
; t ∈]t1, t2[ ; ψ′ ∈ {−1, 1}

}
.

Since we have already shown the tightness of the score process Sn(.), D̃ is
Donsker (cf. [41]). In particular it proves that Theorem 1 of Azäıs et al. [3]
applies in the sense that

sup
(t,θ)

l
n

t (θ)− l
n

t⋆
1
(θ1⋆) = sup

d∈D








1√
n

n∑

j=1

d(Xj)





2

1∑n
j=1

d(Xj)≥0


+oP (1) (11.17)

where the observation Xj stands for (Yj , Xj(t1), Xj(t2)). Note that since ψ′ ∈
{−1, 1}, the indicator function can be removed in formula (11.17).

Since the model (based on formula 7.3) is differentiable in quadratic mean at
θm0 = (0, ..., 0, µ, σ), we can apply Le Cam first lemma and formula (11.17) is
also suitable under the contiguous alternative Ha~t⋆ .

11.4. Proof of Theorem 7.2

Since the process Sn(.) is an interpolated process, we can focus, without loss
of generality, only on location tk (i.e. the location of marker k). According to
formulae (2.1) and (11.13), we have

Sn(tk) =

n∑

j=1

m∑

s=1

as Xj(t
⋆
s) Xj(tk)

n
√
A

+

n∑

j=1

σεj Xj(tk)√
n A

(11.18)

+
1

n
√
A

n∑

j=1

{
m−1∑

s=1

m∑

s̃=s+1

Xj(t
⋆
s)Xj(t

⋆
s̃) bs,s̃

}
Xj(tk) .
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According to calculations present in the supplementary material, when 1 ≤ s ≤
m− 1 and s+ 1 ≤ s̃ ≤ m,

E
{
X(t⋆s)X(t⋆s̃)X(tk)

}
= o(1) .

Then, according to the law of large numbers,

Sn(tk) =

n∑

j=1

m∑

s=1

as Xj(t
⋆
s) Xj(tk)

n
√
A

+

n∑

j=1

σεj Xj(tk)√
n A

+ oP (1) .

As a result, using formulae (11.14) and (11.15),

Sn(tk)
L−→ N

[
m∑

s=1

ρ(tk, t
⋆
s) as

√
A/σ2, 1

]
.

We can notice that we have exactly the same function as in Theorem 7.2.

11.5. Proof of Theorem 8.1

11.5.1. Study of the score process under H0

The score process S̃n(.) has already been studied in details in Rabier [31], under
H0. We propose to recall here the main elements of the proof. By definition, the
score statistic at t is the following

S̃n(t) =

∂l̃nt
∂q1

|θ1
0√

V

(
∂l̃nt
∂q1

|θ1
0

) where θ10 = (0, µ, σ) .

The score function verifies

∂l̃nt
∂q1

|θ1
0
=

n∑

j=1

Yj − µ

σ2
{2p̃j(t)− 1}

=
α̃(t)

σ

n∑

j=1

εj Xj(t
ℓ) +

β̃(t)

σ

n∑

j=1

εj Xj(t
r) . (11.19)

Recall also that the score statistic at tk which refers to the location of marker
k, verifies:

S̃n(tk) =
n∑

j=1

(Yj − µ) Xj(tk)√
n

=
n∑

j=1

σεj Xj(tk)√
n

.

Finally, according to formula (11.19) and the computation of the Fisher infor-
mation matrix, the score statistic at t can be obtained using the following linear
interpolation

S̃n(t) =
α̃(t) S̃n(t

ℓ) + β̃(t) S̃n(t
r)√

α̃2(t) + β̃2(t) + 2α̃(t)β̃(t)ρ(tℓ, tr)
.
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11.5.2. Study of the score process under the local alternative Ha~t⋆

Since the mean function is the following linear interpolation

m̃~t⋆(t) =
α̃(t) m̃~t⋆(t

ℓ) + β̃(t) m̃~t⋆(t
r)√

α̃2(t) + β̃2(t) + 2α̃(t)β̃(t)ρ(tℓ, tr)
,

we only need to compute the quantities m̃~t⋆(t
ℓ) and m̃~t⋆(t

r).
Without loss of generality, let us consider location tk. According to formula

(2.3),

S̃n(tk) =
n∑

j=1

(Yj − µ) Xj(tk)√
n

=
1

σn

n∑

j=1

m∑

s=1

as Uj(t
⋆
s) Xj(tk) +

1√
n

n∑

j=1

εj Xj(tk) .

As in the previous proofs, we can apply the law of large number to the first
term. Then, we have

1

σn

n∑

j=1

{
m∑

s=1

Uj(t
⋆
s) as

}
Xj(tk) →

m∑

s=1

as h(tk, t
⋆
s)/σ

where

h(tk, t
⋆
s) = ρ(tk, t

⋆ℓ
s )
{
α̃(t⋆s) + β̃(t⋆s)ρ(t

⋆ℓ
s , t

⋆r
s )
}
1t⋆s>tk

+ ρ(tk, t
⋆r
s )
{
α̃(t⋆s)ρ(t

⋆ℓ
s , t

⋆r
s ) + β̃(t⋆s)

}
1t⋆s<tk .

Indeed, the quantity h(tk, t
⋆
s) is equal to E {Uj(t⋆s)Xj(tk)}, which was computed

in Theorem 2 of Rabier [31].

11.6. Proof of Theorem 8.2

Let us first introduce the model for the quantitative trait in presence of inter-
ference and epistasis:

Y = µ +

m∑

s=1

U(t⋆s) qs +

m−1∑

s=1

m∑

s̃=s+1

U(t⋆s)U(t⋆s̃) qs,s̃ + σε (11.20)

where ε is a Gaussian white noise, and qs,s̃ is the interaction effect between
loci t⋆s and t⋆s̃ . Recall that we impose that the QTLs do not belong to the same
marker intervals.
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Since the process S̃n(.) is an interpolated process, we can focus, without loss
of generality, only on location tk (i.e. the location of marker k). According to
formulae (11.20), we have

S̃n(tk) =
1√
n

n∑

j=1

εj Xj(tk) +
1

σn

n∑

j=1

{
m∑

s=1

Uj(t
⋆
s) as

}
Xj(tk)

+
1

σn

n∑

j=1

{
m−1∑

s=1

m∑

s̃=s+1

Uj(t
⋆
s)Uj(t

⋆
s̃) bs,s̃

}
Xj(tk) .

According to the previous section, by the law of large number, we have

1

σn

n∑

j=1

{
m∑

s=1

Uj(t
⋆
s) as

}
Xj(tk) →

m∑

s=1

as h(t
⋆
s, tk)/σ .

In the same way,

1

σn

n∑

j=1

{
m−1∑

s=1

m∑

s̃=s+1

Uj(t
⋆
s)Uj(t

⋆
s̃) bs,s̃

}
Xj(tk) → E

[{
m−1∑

s=1

m∑

s̃=s+1

U(t⋆s)U(t⋆s̃) bs,s̃

}
X(tk)

]

If tk < min(t⋆s, t
⋆
s̃) or tk > max(t⋆s, t

⋆
s̃), since under the interference model t⋆s and

t⋆s̃ do not belong to the same marker interval, we have

E
[
U(t⋆s)U(t⋆s̃)1X(tk)=1

]
= E [U(t⋆s)U(t⋆s̃) | X(tk) = 1] /2 = E [U(t⋆s)U(t⋆s̃)] /2 .

As a consequence,

E {U(t⋆s)U(t⋆s̃)X(tk)} = E
[
U(t⋆s)U(t⋆s̃)

{
21X(tk)=1 − 1

}]
= 0 .

Let us consider now the case min(t⋆s , t
⋆
s̃) < tk < max(t⋆s , t

⋆
s̃). By definition,

conditionnally to X(tk), U(t⋆s) and U(t⋆s̃) are independent. As a consequence,
we have the relationship

E {U(t⋆s)U(t⋆s̃)X(tk)}
= E {U(t⋆s)U(t⋆s̃) | X(tk) = 1}P {X(tk) = 1} − E {U(t⋆s)U(t⋆s̃) | X(tk) = −1}P {X(tk) = −1}
= E {U(t⋆s) | X(tk) = 1}E {U(t⋆s̃) | X(tk) = 1} /2
− E {U(t⋆s) | X(tk) = −1}E {U(t⋆s̃) | X(tk) = −1} /2.
Besides, we have

E {U(t⋆s)} =
1

2
E {U(t⋆s) | X(tk) = 1}+ 1

2
E {U(t⋆s) | X(tk) = −1}

E {U(t⋆s̃)} =
1

2
E {U(t⋆s̃) | X(tk) = 1}+ 1

2
E {U(t⋆s̃) | X(tk) = −1} .

It is easy to check that U(t⋆s) and U(t⋆s̃) take value +1 and −1 with equal
probability (cf. formula 8.2). Then,

E {U(t⋆s) | X(tk) = 1} = −E {U(t⋆s) | X(tk) = −1}
E {U(t⋆s̃) | X(tk) = 1} = −E {U(t⋆s̃) | X(tk) = −1} .
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As a result,

E {U(t⋆s)U(t⋆s̃)X(tk)} = 0 .

This gives the result.
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[5] AZAÏS, J.M. AND WSCHEBOR, M. (2009). Level sets and extrema of
random processes and fields. Wiley, New-York.

[6] ARIAS-CASTRO, E., CANDES, E.J., PLAN, Y. (2011). Global testing
under sparse alternatives: ANOVA, multiple comparisons and the higher
criticism. The Annals of Statistics, 39(5) 2533-2556.

[7] BROMAN, K. AND SPEED T. (2002). A model selection approach for
the identification of quantitative trait loci in experimental crosses. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 64(4)
641-656.

[8] BUHLMANN, P. AND VAN DE GEER, S. (2011). Statistics for high-
dimensional data: methods, theory and applications, Springer Science.

[9] CHANG, M.N., WU, R., WU, S.S., CASELLA, G. (2009). Score statistics
for mapping quantitative trait loci. Stat. Appl. Genet. Mol. Biol., 8(1) 16.

[10] CHEN, Z., CHEN, H. (2005). On some statistical aspects of the interval
mapping for QTL detection. Statistica Sinica, 15 909-925.

[11] CHURCHILL, G.A. AND DOERGE, R.W. (1994). Empirical threshold
values for quantitative trait mapping. Genetics, 138 963-971.

[12] CIERCO, C. (1998). Asymptotic distribution of the maximum likelihood
ratio test for gene detection. Statistics, 31 261-285.

[13] DARVASI D. AND SOLLER M. (1992). Selective genotyping for deter-
mination of linkage between a marker locus and a quantitative trait locus.
Theor. Appl. Genet., 85 353-359.



CE. Rabier, C. Delmas/On gene mapping with the mixture model and the extremes 46

[14] DONOHO D. (2006). For most large underdetermined systems of linear
equations the minimal L1-norm solution is also the sparsest solution Comm.
Pure Appl. Math., 59(6) 797-829.

[15] FAN, J., LV, J. (2008). Sure independence screening for ultrahigh dimen-
sional feature space Journal of the Royal Statistical Society: Series B, 70(5)
849-911.

[16] GASSIAT, E. (2002). Likelihood ratio inequalities with applications to
various mixtures. Ann. Inst. Henri Poincaré (B), 6 897-906.
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