
HAL Id: hal-01273480
https://hal.science/hal-01273480

Submitted on 12 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Adding Negative Prices to Priced Timed Games
Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi

Manasa, Benjamin Monmege, Ashutosh Trivedi

To cite this version:
Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi Manasa, Benjamin Mon-
mege, et al.. Adding Negative Prices to Priced Timed Games. 25th International Conference on
Concurrency Theory (CONCUR’14), Sep 2014, Rome, Italy. pp.560-575, �10.1007/978-3-662-44584-
6_38�. �hal-01273480�

https://hal.science/hal-01273480
https://hal.archives-ouvertes.fr

Adding Negative Prices to Priced Timed Games?

Thomas Brihaye1, Gilles Geeraerts2??, Shankara Narayanan Krishna3,
Lakshmi Manasa3, Benjamin Monmege2, and Ashutosh Trivedi3

1 Université de Mons, Belgium, thomas.brihaye@umons.ac.be
2 Université libre de Bruxelles, Belgium, gigeerae,benjamin.monmege@ulb.ac.be

3 IIT Bombay, India, krishnas,manasa,trivedi@cse.iitb.ac.in

Abstract. Priced timed games (PTGs) are two-player zero-sum games
played on the infinite graph of configurations of priced timed automata
where two players take turns to choose transitions in order to optimize
cost to reach target states. Bouyer et al. and Alur, Bernadsky, and Mad-
husudan independently proposed algorithms to solve PTGs with non-
negative prices under certain divergence restriction over prices. Brihaye,
Bruyère, and Raskin later provided a justification for such a restriction
by showing the undecidability of the optimal strategy synthesis problem
in the absence of this divergence restriction. This problem for PTGs with
one clock has long been conjectured to be in polynomial time, however
the current best known algorithm, by Hansen, Ibsen-Jensen, and Mil-
tersen, is exponential. We extend this picture by studying PTGs with
both negative and positive prices. We refine the undecidability results
for optimal strategy synthesis problem, and show undecidability for sev-
eral variants of optimal reachability cost objectives including reachability
cost, time-bounded reachability cost, and repeated reachability cost ob-
jectives. We also identify a subclass with bi-valued price-rates and give a
pseudo-polynomial (polynomial when prices are nonnegative) algorithm
to partially answer the conjecture on the complexity of one-clock PTGs.

1 Introduction

Timed automata [2] equip finite automata with a finite number of real-valued
variables—aptly called clocks—that evolve with a uniform rate. The syntax of
timed automata also permits specifying transition guards and location (state)
invariants using the constraints over clock valuations, and resetting the clocks
as a means to remember the time since the execution of a transition. Timed au-
tomata is a well-established formalism to specify time-critical properties of real-
time systems. Priced timed automata [3,4] (PTAs) extend timed automata with
price information by augmenting locations with price-rates and transitions with
discrete prices. The natural reachability-cost optimization problem for PTAs is

? The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n601148
(CASSTING)

?? Supported by a ‘Crédit aux chercheurs’ number 1808881 of the F.R.S./FNRS.

1 `1[x61]

1

`2

[x62]

−1

`3

[x62]

−1

`4

[x62]

1

`5

[x62]

`6

a, x>0, {x} , 0

b, x61, ∅, 1

a, x>1, ∅, 1

c, x>1, ∅, 2

a, x62, ∅, 0

a, x<1, {x} , 0

a, x>1, {x} , 0

a, x>1, {x} , 0

Fig. 1. A price timed game arena with one clock

known to be decidable with the same complexity [6] as the reachability prob-
lem (PSPACE-complete), and forms the backbone of many applications of timed
automata including scheduling and planning.

Priced timed games (PTGs) extend the reachability-cost optimization prob-
lem to the setting of competitive optimization problem, and form the basis of
optimal controller synthesis [19] for real-time systems. We study turn-based vari-
ant of these games where the game arena is a PTA with a partition of the loca-
tions between two players Player 1 and Player 2. A play of such a game begins
with a token in an initial location, and at every step the player controlling the
current location proposes a valid timed move, i.e., a time delay and a discrete
transition, and the state of the system is modified accordingly. The play stops if
the token reaches a location from a distinguished set of target locations, and the
payoff of the play is equal to the cost accumulated before reaching the target
location. If the token never reaches a target location then the game continues
forever, and the payoff in this case is +∞ irrespective of actual cost of the infi-
nite play. We characterize a PTG according to the objectives of Player 1. Since
we study zero-sum games, the objective of Player 2 is also implicitly defined.
We study PTGs with the following objectives: (i) Constrained-price reachability
objective Reach(./K) is to achieve a payoff C of the play such that C ./ K
where ./ ∈ {6, <,=, >,>} and K ∈ N; (ii) Bounded-time reachability objec-
tive TBReach(K,T) is to keep the payoff of the play less than K while keeping
the total time elapsed within T units; and (iii) Repeated reachability objective
RReach(η) is to visit target infinitely often with a payoff in the interval [−η, η].

An example of PTG with clock variable x and six locations is given in Fig. 1.
We depict Player 1 locations as circles and Player 2 locations as boxes. The
numbers inside locations denote their price-rates, while the clock constraints
next to a location depicts its invariant. We denote a transition, as usual, by an
arrow between two location annotated by a tuple a, g, r, c where a is the label,
g is the guard, r is the clocks reset set, and c is the cost of the transition.

Related work. PTGs with constrained-price reachability objective Reach(6K)
were independently introduced in [9] and [1], with semi-algorithms to decide
the existence of winning strategy for Player 1 in PTGs with nonnegative prices.
They also showed that under the strongly non-Zeno assumption on prices the

2

proposed semi-algorithms always terminate. This assumption was justified in [11]
by showing that, in the absence of non-Zeno assumption, the problem of deciding
the existence of winning strategy for the objective Reach(6 K) is undecidable
for PTGs with five or more clocks. This result has been later refined in [7] by
showing that the problem is undecidable for PTGs with three or more clocks and
nonnegative prices. In [5] is showed the undecidability of the existence of winning
strategy problem for Reach(6K) objective over PTGs with both positive and
negative price-rates and two or more clocks.

On a positive side, the existence of winning strategy for Reach(6K) problem
for PTGs with one clock when the price-rates are restricted to values 0 and d ∈ N
has been shown decidable in [11], by proving that the semi-algorithms in [9,1]
always terminate. However, the authors did not provide any complexity analysis
of their algorithm. One-clock PTGs with nonnegative prices are reconsidered
in [10], and a 3-EXPTIME algorithm is given to solve the problem, while the
best known lower bound is PTIME. A tighter analysis of the problem is presented
in [20] that lowered the known complexity of this problem to EXPTIME, namely

2O(n2+m) where n is the number of locations and m is the number of transitions.
A significant improvement over the complexity (m12nnO(1)) was given in [15] by
improving the analysis of the semi-algorithms by [9,1].

Contributions. We consider PTGs with both negative and positive prices. We
show that deciding the existence of a winning strategy for reachability objective
Reach(./K) is undecidable for PTGs with two or more clocks. In [18], a the-
ory of time-bounded verification has been proposed, arguing that restriction to
bounded-time domain reclaims the decidability of several key verification prob-
lems. As an example, we cite [12] where authors recovered the decidability of
the reachability problem for hybrid automata under time-bounded restriction.
We begin studying PTGs with bounded reachability objective TBReach(K,T)
hoping that the problem may be decidable due to time-bounded restriction.
However, we answer this question negatively by showing undecidability of the
existence of winning strategy problem for PTGs with six or more clocks. We also
show the undecidability for the corresponding problem for repeated reachability
objective RReach(η) for PTGs with three or more clocks.

On the positive side, we introduce a previously unexplored subclass of one-
clock PTGs, called one-clock bi-valued priced timed games (1BPTGs), where the
price-rates of locations are taken from a set of two integers from {−d, 0, d} (with
d any positive integer). None of the previously cited algorithms can be applied
in this case since we do not assume non-Zenoness of prices and consider both
positive and negative prices. After showing a determinacy result for 1BPTGs, we
proceed to give a pseudo-polynomial time algorithm to compute the value and
ε-optimal strategy for both players with Reach(6K) objective. The complexity
drops to polynomial for 1BPTGs if the price-rates are non-negative integers.
This gives a polynomial time algorithm for the one-clock PTG problem studied
in [11]. Due to lack of space, full proofs of the results are given in [13].

3

2 Reachability-cost games on priced game graphs

PTGs can be considered as a succinct representation of some games on uncount-
able state space characterized by the configuration graph of timed automata.

We begin by introducing the concepts and notations related to such more
general game arenas that we call priced game graphs.

Definition 1. A priced game graph is a tuple G = (V,A,E, π, Vf) where:
– V = V1] V2 is the set of vertices partitioned into the sets V1 and V2;
– A is a set of labels called actions;
– E : V ×A→ V is the edge function defining the set of labeled edges;
– π : V ×A→ R is the price function that assigns prices to edges; and
– Vf ⊆ V is the set of target vertices.

We call a game graph finite if both V and A are finite and with rational prices.

A reachability-cost game begins with a token placed on some initial vertex
v0. At each round, the player who controls the current vertex v chooses an
action a ∈ A and the token is moved to the vertex E(v, a). The two players
continue moving the token in this fashion, and give rise to an infinite sequence
of vertices and actions called a play of the game. Formally, a finite play r is a
finite sequence of vertices and actions 〈v0, a0, v1, a1, . . . , an−1, vn〉 where for each
0 6 i < n we have that vi+1 = E(vi, ai); we write Last(r) for the last vertex
of a finite play, here Last(r) = vn. An infinite play is defined analogously. We
write FPlayG (FPlayG(v)) for the set of finite plays (starting from the vertex v)
of the game graph G. We often omit the subscript when the game arena is clear
form the context. We similarly define Play and Play(v) for the set of infinite
plays. For all k > 0, we let r[k] be the prefix 〈v0, a0, . . . , ak−1, vk〉 of r, and we

denote by Cost(r[k]) =
∑k−1
i=0 π(vi, ai) its cost. We write Stop(r) for the index

of the first target vertex in r, i.e., Stop(r) = inf {k : vk ∈ F}. We define the
cost of an infinite run r = 〈v0, a1, v1, . . .〉 as Cost(r) = +∞ if Stop(r) = ∞ and
Cost(r) = Cost(r[Stop(r)]), otherwise.

A strategy for a Player i (for i ∈ {1, 2}) is a partial function σ : FPlay → A
that is defined for a run r = 〈v0, a0, v1, . . . , an−1, vn〉 if vn ∈ Vi and is such
that E(vn, σ(r)) is defined, i.e., there is a σ(r)-labeled outgoing transition from
vn. We denote by Strati(G) (or Strati when the game arena is clear) the set of
strategies for Player i. Given a strategy profile (σ1, σ2) ∈ Strat1×Strat2 for both
players, and an initial vertex v ∈ V , the unique infinite play Play(v, σ1, σ2) =
〈v0, a0, v1, . . . vk, ak, vk+1, . . .〉 is such that for all k > 0 if vk ∈ Vi, for i =
1, 2, then ak+1 = σi(r[k]) and vk+1 = E(vk, ak+1). A strategy σ is said to be
memoryless (or positional) if, for all finite plays r, r′ ∈ FPlay with Last(r) =
Last(r′) we have that σ(r) = σ(r′). Similarly, finite-memory strategies can be
defined as implementable with Moore machines, see [14] for a formal definition.

We consider optimal reachability-cost games on priced game graphs, where
the goal of Player 1 is to minimize the reachability-cost, while the goal of
Player 2 is the opposite. The standard concepts of upper value and lower value of
the optimal reachability-cost game are defined in straightforward manner. For-
mally, the upper-value ValG(v) and lower value ValG(v) of a game starting from

4

a vertex v is defined as ValG(v) = infσ1∈Strat1 supσ2∈Strat2 Cost(Play(v, σ1, σ2))
and ValG(v) = supσ2∈Strat2 infσ1∈Strat1 Cost(Play(v, σ1, σ2)). It is easy to see that

ValG(v) 6 ValG(v) for every vertex v. We say that a game is determined if the
lower and the upper values match for every vertex v, and in this case, we say that
the optimal value of the game exists and we let ValG(v) = ValG(v) = ValG(v).
The determinacy of these games follow from Martin’s determinacy theorem, and
an alternative proof is given in [14].

In the following, we write Cost(v, σ1) for the value of the strategy σ1 of
Player 1 from vertex v, i.e., Cost(v, σ1) = supσ2∈Strat2 Cost(Play(v, σ1, σ2)) . A

strategy σ∗1 of Player 1 is said to be optimal from v if Cost(v, σ∗1) = ValG(v) .
Optimal strategies do not always exist, hence we also define ε-optimal strate-
gies. For ε > 0, a strategy σ1 is an ε-optimal strategy if for all vertex v ∈ V ,
Cost(v, σ1) 6 ValG(v)+ε . In this paper we exploit the following result from [14].

Theorem 1 ([14]). Let G be a finite priced game graph.
1. Deciding ValG(v) = +∞ is in Polynomial Time.
2. Deciding ValG(v) = −∞ is in NP ∩ co-NP, can be achieved in pseudo-

polynomial time4 and is as hard as solving mean-payoff games [21].
3. Given −∞ < ValG(v) < +∞ for every vertex v, optimal strategies exist for

both players. In particular, Player 2 has optimal memoryless strategies, while
Player 1 has optimal finite-memory strategies. Moreover, the values ValG(v),
as well as optimal strategies, can be computed in pseudo-polynomial time.

It must be noticed that, in the presence of negative costs, and even when
every vertex v has a finite value ValG(v) ∈ R, memoryless optimal strategies
may not exist for Player 1, as pointed out in [14, Example 1].

3 Priced timed games

In order to formally introduce priced timed games, we need to define the concepts
of clocks, clock valuations, constraints, and zones. Let X be a finite set of real-
valued variables called clocks. A clock valuation on X is a function ν : X → R>0

and we write V (X) for the set of clock valuations. Abusing notation, we also treat
a valuation ν as a point in R|X |. If ν ∈ V (X) and t ∈ R>0 then we write ν + t
for the clock valuation defined by (ν + t)(c) = ν(c) + t for all c ∈ X . For C ⊆ X ,
we write ν[C := 0] for the valuation where ν[C := 0](c) equals 0 if c ∈ C and
ν(c) otherwise. A clock constraint over X is a conjunction of simple constraints
of the form c ./ i or c− c′ ./ i, where c, c′ ∈ X , i ∈ N and ./ ∈ {<,>,=,6,>}.
A clock zone is a finite set of clock constraints that defines a convex set of clock
valuations. We write Z(X) for the set of clock zones over the set of clocks X .

Definition 2. A priced timed game is a tuple A = (L,X , Inv, Σ, δ, ω, Lf) where:
– L = L1] L2 is a finite set of locations, partitioned into the sets L1 and L2;
– X is a finite set of clocks;

4 polynomial time if the prices are encoded in unary.

5

– Inv : L→ Z(X) associates an invariant to each location;
– Σ is a finite set of labels;
– δ : L × Σ → Z(X) × 2X × L is a transition function that maps a location
` ∈ L and label a ∈ Σ to a clock zone ζ ∈ Z(X) representing the guard on the
transition, a set of clocks R ⊆ X to be reset and successor location `′ ∈ L;

– ω : L ∪Σ → Z is the price function; and
– and Lf ⊆ L is the set of target locations.

A configuration of a PTG is a tuple (`, ν) ∈ L× V where ` is a location, ν is
a clock valuation and ν ∈ Inv(`). A timed action is a tuple τ = (t, a) ∈ R>0×Σ
where t is a time delay and a is a label. In the following, for a timed move
τ = (t, a) ∈ R>0 ×Σ, we let del(τ) = t be the delay part and lab(τ) = a be the
label part. The semantics of a PTG is given as an infinite priced game graph.

Definition 3 (Semantics). The semantics of a PTG A = (L,X , Inv, Σ, δ, ω,
Lf) is given as a priced game graph [[A]] = (S, Γ,∆, κ, Sf) where
– S = {(`, ν) ∈ L× V | ν ∈ Inv(`)} is the set of configurations of the PTG;
– Γ = R>0 ×Σ is the set of timed moves;
– ∆ : S × Γ → S is the transition function defined by (`′, ν′) = ∆((`, ν), (t, a))

if δ(`, a) = (ζ,R, `′) such that ν + t ∈ ζ, ν + t′ ∈ Inv(`) for all 0 6 t′ 6 t,
and ν′ = (ν + t)[R := 0];

– κ : S × Γ → R is such that κ((`, ν), (t, a)) = ω(`)× t+ ω(a); and
– Sf ⊆ S is such that (`, ν) ∈ Sf iff ` ∈ Lf .

The concepts of a play, its cost, and strategies of players for a PTG A is
defined via corresponding objects for its semantic priced game graph [[A]]. In the
previous section we introduced games with reachability-cost objective for priced
game graphs. We also study the following winning objectives for Player 1 in the
context of priced timed games; the objective for Player 2 is the opposite.
1. Constrained-price reachability. The constrained-price reachability ob-

jective Reach(6K) is to keep the payoff within a given bound K ∈ N. Ob-
jectives Reach(./K) for constrains ./ ∈ {<,=, >,>} are defined analogously.

2. Bounded-time reachability. Given constants K,T ∈ N, the bounded-time
reachability objective TBReach(K,T) is to keep the payoff of the play less
than or equal to K while keeping the total time elapsed within T units.

3. Repeated reachability. For this objective, we consider slightly different
semantics of the game where the play continues forever, and the repeated
reachability objective RReach(η), η ∈ R>0 is to visit target locations in-
finitely often each time with a payoff in a given interval [−η, η].
In Section 4, we sketch the proof of the following negative result regarding the

decidability of PTGs with these objectives. This result is particularly surprising
for bounded-time reachability objective, since bounded-time restriction has been
shown to recover decidability in many related problems [18,12].

Theorem 2. Let A be a priced timed game arena. The decision problems cor-
responding to the existence of winning strategy for following objectives are un-
decidable:

6

1. Reach(./K) objective for PTGs with two or more clocks and arbitrary prices;
2. TBReach(K,T) objective for PTGs with five or more clocks; and prices 0,1;
3. RReach(η) objective for PTGs with three or more clocks and arbitrary prices.

To recover decidability, we consider a subclass of one-clock PTGs. In this
subclass, the set of clocks X is a singleton {x}, and price-rates of the locations
come from a doubleton set {p−, p+} with p− < p+ two distinct elements of
{−1, 0, 1} (no condition is made on the prices ω(a) of labels a ∈ Σ). We call
these restricted games one-clock bi-valued priced timed games, abbreviated as
1PTG(p−, p+), or 1BPTG if p− and p+ do not matter. All our results may
easily be extended to the case where p− and p+ are taken from the set {−d, 0, d}
with d ∈ N. We devote Section 5 to the proof of the following decidability results.

Theorem 3. We have the following results:

1. 1BPTGs are determined.
2. The value of a 1BPTG can be computed in pseudo-polynomial time.
3. Given that a 1BPTG has a finite value, an ε-optimal strategy for Player 1

can be computed in pseudo-polynomial time.
4. Aforementioned complexities drop to polynomial time for 1PTG(0, 1) with

prices of labels taken from N.

4 Undecidability results

In this section we provide a proof sketch of our undecidability result (Theo-
rem 2) by reducing the halting problem for two counter machines (see [17]) to
the existence of a winning strategy for Player 1 for the desired objective. For
all the three objectives, given a two counter machine, we construct a PTG A
whose building blocks are the modules for instructions. In these reductions the
objective of Player 1 is linked to a faithful simulation of various increment, decre-
ment, and zero-test instructions of the machine by choosing appropriate delays
to adjust the clocks to reflect changes in counter values. The goal of Player 2 is
then to verify the simulation performed by Player 1. Proofs of correctness of the
reductions, as well as more details can be found in the appendix.

Constrained-price reachability objectives Reach(./K). The result in the
case Reach(6K) is a consequence of the result in [5]. Undecidability for other
comparison operators ./ is a new contribution. We only consider the objec-
tive Reach(=1) in this section, since proofs for other constraints are similar.
Our reduction uses a PTG with two clocks x1 and x2, arbitrary price-rates
for locations and no prices for labels. Each counter machine instruction (incre-
ment, decrement, and test for zero value) is specified using a PTG module. The
main invariant in our reduction is that upon entry into a module, we have that
x1 = 1

5c17c2 and x2 = 0 where c1 (respectively, c2) is the value of counter C1 (re-
spectively, C2). We outline the simulation of a decrement instruction for counter
C1 in Fig. 2. Let us denote by xold = 1

5c17c2 the value of x1 while entering the

7

0

`k

−1

Check

0

Go

`k+1

1

Abort

0

T1{x2} x2=0

x2=0

x2>1

−1

L

−5

M

2

N

0

T

x1=1

{x1}
x2=1

{x2}
x2=1

{x2}

x161

W
D

1
Fig. 2. Decrement module for the objection Reach(=1)

module. At the location `k+1 of the module, x1 = xnew should be 5xold to cor-
rectly decrement counter C1. At location `k, Player 1 spends a non-deterministic
amount of time tk = xnew −xold such that xnew = 5xold + ε. To correctly decre-
ment C1, ε should be 0, and tk must be 4

5c17c2 . At location Check, Player 2 could
choose to go to Go (in order to continue the simulation of the machine) or go to
the widget WD1, if he suspects that ε 6= 0. If Player 2 spends time t > 0 in the
location Check before proceeding to Go, then Player 1 can enter the location
Abort (to abort the simulation), rather than going to `k+1. Player 1 spends 1+ t
time in location Abort and reaches a target T1 with cost 1 (and thus achieve
his objective). However, if t = 0 then entering location Abort will make the cost
to be greater than 1 (which is losing for Player 1). If Player 2 decides to enter
widget WD1, then the cost upon reaching the target in the widget WD1 is 1 + ε
which is 1 iff ε = 0.

Bounded-time reachability objective. We sketch the reduction for objective
TBReach(K,T). Our reduction uses a PTG with price-rates 0 or 1 on locations,
and zero prices on labels, along with five clocks x1, x2, z, a, b. On entry into a
module for the (k+ 1)th instruction, we always have one of the two clocks x1, x2
with value 1

2k+c13k+c2
and other is 0. Clock z keeps track of the total time elapsed

during simulation of an instruction: we always have z = 1 − 1
2k

at the end of

simulating kth instruction. Thus, time 1
2 is spent simulating the first instruction,

1
4 for the second instruction and so on, so that the total time spent in simulating
the main modules is less than 1. The main challenge here is to ensure that only
a bounded time is spent along the entire simulation, along with updating the
counter values correctly. Clocks a, b are used for rough work. For instance, if the
(k + 1)th instruction `k+1 is an increment of C1, and we have x1 = 1

2k+c13k+c2
,

while a = b = x2 = 0, and z = 1− 1
2k

, then at the end of the module simulating

`k+1, we want x2 = 1
2k+1+c1+13k+1+c2

and x1 = 0 and z = 1− 1
2k+1 .

Repeated reachability objective. Finally, we consider the repeated reach-
ability objective RReach(η). Our reduction uses a PTG with 3 clocks, and ar-
bitrary price-rates, but zero prices for labels. On entry into a module, we have
x1 = 1

5c17c2 , x2 = 0 and x3 = 0, where c1, c2 are the values of C1 and C2.
Fig. 3 shows module to simulate decrement C1. Location `k is entered with
x1 = 1

5c17c2 , x2 = 0 and x3 = 0. To correctly decrement C1, Player 1 should
choose a delay of 4

5c17c2 in location `k. At location Check, no time can elapse
because of the invariant. If Player 1 makes an error, and delays 4

5c17c2 + ε at `k

8

0

`k

0

Check

[x3 = 0]

`k+1

−1

A

4

B

−3

C

0

D

0

E

0

F

x3 = 0

x161

{x3} {x2}

x2=1

{x2}
x1=2

{x1}
x1=1

{x1}
x2=2

{x2}
x3=3

{x3}W
D

1

Fig. 3. Decrement module for Repeated reachability objective.

(ε 6= 0) then Player 2 can jump in widget WD1. The cost of going from location
A to F is ε; each time we come back to A, the clock values with which A was
entered are restored. Clearly, if ε 6= 0, Player 2 can incur a cost that is not in
[−η, η] by taking the loop from A to F a large number of times.

5 One-clock bi-valued priced timed games

This section is devoted to the proof of Theorem 3. First of all, let us assume that
all 1BPTGs A we consider are bounded, i.e., that there is a global invariant in
every location, of the form x 6 MK (where MK denotes the greatest constant
appearing in the clock guards and invariants of A). This restriction comes w.l.o.g
since every 1BPTG arena can be made bounded with a polynomial algorithm.5

Our proof of Theorem 3 is based on an extension of the classical notion of
regions in timed automata, in the spirit of the regions introduced to define the
corner point abstraction [8]. Indeed, to take the price into account, ε-optimal
strategies do not take uniform decisions on the classical regions. That is why we
need to subdivide each classical region into three parts: two small parts around
the corners of the region (that we will call borders in the following, considering
our one-clock setting), and a big part in-between. We will show that considering
only strategies that never jump into those big parts is sufficient (Lemma 1).
Lemma 2, later, shows a stronger result that one can restrict attention to strate-
gies that play closer and closer to the borders of the regions as time elapses.
Finally, we combine these results to show that a finite abstraction of 1BPTGs is
sufficient to compute the value as well as ε-optimal strategies (Lemma 3). This
not only yields the desired result, but also provides us further insight into the
shape of ε-optimal strategies for both players.

5.1 Reduction to η-region-uniform strategies

Since we only consider one-clock PTGs, we need not consider the standard Alur-
Dill regional equivalence relation. Instead, we consider special region equiva-
lence relation characterized by the intervals with constants appearing in guards

5 By introducing auxiliary states in order to reset the clock x at every time unit once
its value goes beyond Mk. The polynomial complexity holds only for one-clock PTGs.

9

and invariants of A inspired by Laroussinie, Markey, and Schnoebelen construc-
tion [16]. Let 0=M0<M1< · · ·<MK be the integers appearing in guards and
invariants of A. We say that two valuations ν, ν′ ∈ R>0 are region-equivalent
(or lie in the same region), and we write ν ∼ ν′, if for every k ∈ {0, . . . ,K},
ν 6 Mk iff ν′ 6 Mk, and ν > Mk iff ν′ > Mk. We define the set of regions
to be the set of equivalence classes of ∼. We extend the equivalence relation ∼
from valuations to configurations in a straightforward manner. We also general-
ize the regional equivalence relation to the plays. For two (finite or infinite) plays
r = 〈(`0, ν0), (t0, a0), . . .〉 and r′ = 〈(`′0, ν′0), (t′0, a

′
0), . . .〉 we say that r ∼ r′ if the

lengths of r and r′ are equal, and they define sequences of regional equivalent
states (i.e., (`i, νi) ∼ (`′i, ν

′
i) for all i > 0) and follow equivalent timed actions

(i.e., ai = a′i and νi + ti ∼ ν′i + t′i for all i > 0). We also consider a refinement
of region equivalence relation that we call the η-region equivalence relation, and
we write ∼η, for a given η ∈ (0, 13). Intuitively, ν ∼η ν′ if both valuations are
close or far from any borders of the regions, with respect to the distance η.

Definition 4 (η-regions). For valuations ν, ν′ ∈ R>0 we say that ν ∼η ν′ if
ν ∼ ν′ and for every k ∈ {0, . . . ,K − 1}, |ν −Mk| 6 η iff |ν′ −Mk| 6 η, and
ν > MK − η iff ν′ > MK − η. We assume the natural order � over η-regions
by their lower bounds. We call η-regions the equivalence classes of ∼η. We also
extend the relation ∼η to configurations and runs.

For instance, if M1 = 2 and M2 = 3, the set of η-regions is given by
{{0}, (0, η], (η, 2−η), [2−η, 2), {2}, (2, 2+η], (2+η, 3−η), [3−η, 3), {3}, (3,+∞)}.
We next introduce the strategies of a restricted shape with the properties that
they depend only on the η-region abstraction of runs; their decision is uniform
over each η-region; and they play η-close to the borders of the regions.

Definition 5 (η-region uniform strategies). Let η ∈ (0, 13) be a constant. A
strategy σ ∈ Strat1 ∪ Strat2 is said to be η-region-uniform if
– for all finite run r ∼η r′ ending respectively in (`, ν) and (`, ν′) (in particular
ν ∼η ν′) we have ν+ del(σ(r)) ∼η ν′+ del(σ(r′)) and lab(σ(r)) = lab(σ(r′));

– for every finite run r ending in (`, ν), if ν+del(σ(r)) ∈ (Mk,Mk+1), we have
ν + del(σ(r)) ∈ (Mk,Mk + η] ∪ [Mk+1 − η,Mk+1).

We write UStratη1 and UStratη2 for the set of η-region-uniform strategies for Play-

ers 1 and 2. We also define upper-value UVal
η
(s) when both players are restricted

to use only η-region-uniform strategies. Formally,

UVal
η
(s) = inf

σ1∈UStratη1
sup

σ2∈UStratη2
Cost(Play(s, σ1, σ2)), for all s ∈ S.

Example 1. Consider PTG A1 shown in Fig. 4 (that is not a 1BPTG since there
are three distinct price-rates). A strategy of Player 2 is entirely described by the
time spent in the initial location with initial valuation 0. For example, Player 2
can choose to delay 1/2 time units before jumping in the next location. Indeed,
the lower and upper value of the game is − 1

2 . However, this strategy is not
η-region-uniform. Instead, an η-region-uniform strategy will delay t time units
with t ∈ [0, η] ∪ [1 − η, 1]. Hence, the upper value when players can only use
η-region-uniform strategies is equal to −1.

10

0 1

−1

−1
x 6 1

x = 1, {x}

x 6 1 x = 1

x = 1

0 −1

1

1x 6 1

x = 1, {x}

x 6 1 x = 1

x = 1

Fig. 4. The value in the left-side one-clock PTG A1 with price-rates in {−1, 0, 1} is
− 1

2
, while the value in the right-side PTG A2 is 1

2
.

Contrary to this example, the next lemma shows that, in 1BPTGs, the up-
per value of the game increases when we restrict ourselves to η-region-uniform
strategies. Intuitively, every cost that Player 2 can secure with general strategies,
it can also secure it with η-region-uniform strategies against η-region-uniform
strategies of Player 1.

Lemma 1. Val(s) 6 UVal
η
(s) , for every 1BPTG A, s ∈ S and η ∈ (0, 13),

5.2 Reduction to η-convergent strategies

A similar result concerning the lower values of the games can be shown in case
of η-region-uniform strategies. In subsequent proofs, we need a stronger result
to avoid situations detailed in Example 2, where player 2 needs infinite precision
to play incrementally closer to borders (as well as an infinite memory). For this
reason, we restrict the shape of strategies to force them to play at distance η

2n

of borders when playing the nth round of the game. The slight asymmetry in
the definitions for the two players is exploited in proving subsequent results.

Definition 6 (η-convergent strategies). Let η ∈ (0, 13) be a constant. A strat-
egy σ ∈ Strat1 ∪ Strat2 is said to be η-convergent if σ is η-region-uniform and
for all finite run r of length n ending in (`, ν):
– if σ ∈ Strat1, there exists k such that either |ν + del(σ(r))−Mk| 6 η

2n+1 , or
del(σ(r)) = 0 and ν ∈ (Mk + η

2n+1 ,Mk + η];
– if σ ∈ Strat2, there exists k such that either ν + del(σ(r)) ∈ {Mk + η

2n+1 } ∪
[Mk − η

2n+1 ,Mk), or del(σ(r)) = 0 and ν ∈ (Mk + η
2n+1 ,Mk + η].

We let CStratη1 and CStratη2 be respectively the set of η-convergent strategies for
Player 1 and Player 2, and we define, for every configuration s ∈ S, CValη(s) =
supσ2∈CStratη2 infσ1∈CStratη1 Cost(Play(s, σ1, σ2)) .

Example 2. Consider the 1BPTG A3 composed of a vertex per player, on top
of the target vertex. In its vertex, having price-rate 0, Player 1 must choose
between going to the target vertex, or going to the vertex of Player 2 by resetting
clock x. In its vertex, having price-rate −1, Player 2 must go back to the vertex
of Player 1, with a guard x > 0: hence, Player 2 would like to exit as soon as
possible, but because of the guard, he must spend some time before exiting. If
Player 2 plays according to a finite-memory strategy, there must be a bound ε
such that Player 2 always stays in his state for a duration bounded from below
by ε, and Player 1 can exploit it by letting the game continue for an arbitrarily
long time to achieve an arbitrarily small payoff. On the other hand, if Player 2

11

plays an infinite-memory η-convergent strategy by staying in his location for a
duration ε/2n in his n-th visit to its location, Player 2 ensures a payoff −ε for
an arbitrarily small ε > 0, resulting in the value 0 of the game.

It is clear from the previous example that Player 2 needs infinite-memory
strategies to optimize his objective. The following lemma formalizes our intu-
ition that the lower value of the game decreases when we restrict ourselves to
η-convergent strategies. Intuitively, every cost that Player 1 can secure with
general strategies, it can also secure it with η-convergent strategies against an
η-convergent strategy of Player 2.

Lemma 2. CValη(s) 6 Val(s) , for every 1BPTG A, s ∈ S and η ∈ (0, 13).

Observe that this lemma fails to hold when location price-rates can take more
than two values as exemplified by arena A2 in Fig. 4. It shows a game with
three distinct prices with lower and upper value equal to 1/2. However, when
restricted to η-convergent strategies, the lower value equals 1.

Our next goal is to find a common bound being both a lower bound on
CValη(s) and an upper bound on UVal

η
(s) by studying the value of a reachability-

cost game on a finitary abstraction of 1BPTGs.

5.3 Finite abstraction of 1BPTGs

We now construct a finite price game graph Ã from any 1BPTG A, as a finite
abstraction of the infinite weighted game [[A]], based on η-regions. Since we have
learned that η-region-uniform strategies suffice, we limit ourselves to playing at
a distance at most η from the borders of regions. Observe that only η-regions
close to the borders are of interest, and moreover η-regions after the maximal
constant MK are not useful since A is bounded. Let IηA be the set of remaining
“useful” η-regions. For example, if constant appearing in the PTG are M1 = 2
and M2 = 3, we have IηA = {{0}, (0, η], [2 − η, 2), {2}, (2, 2 + η], [3 − η, 3), {3}}.
We next define the delay between two such η-regions I � J , denoted by d(I, J),
as the closest integer of q′ − q, where q (respectively, q′) is the lower bound
of interval I (respectively, J). For example, d((2, 2 + η], [3 − η, 3)) = 1 and
d({0}, [2− η, 2)) = 2.

Definition 7. For every 1BPTG A we define its border abstraction as a finite
priced game graph Ã = (V = V1] V2, A,E, π, Vf) where:
– Vi = {(`, I) | ` ∈ Li, I ∈ IηA, I ⊆ Inv(`)} for i ∈ {1, 2};
– A = IηA ×Σ;
– E is the set of tuples ((`, I), (J, a), (`′, J ′)) such that I � J and for all I �
K � J we have K ⊆ Inv(`) and J ⊆ ζ and J ′ = J [R := 0] with (ζ,R, `′) =
δ(`, a)};

– π((`, I), (J, a), (`′, J ′)) = ω(`)× d(I, J) + ω(a); and
– Vf = {(`, I) | ` ∈ Lf , I ∈ IηA}.

In a border abstraction game Ã, the meaning of action (J, a) is that the player
wants to let time elapse until it reaches the η-region J , then playing label a. It
simulates any timed move (t, a) with t any delay reaching a point in J .

12

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} (0, η] [1−η, 1) {1} {0}

0

1 1
2

2

0

1
1 2

0
0

0

1
1 1

0

0

−1

−1

1

3

`1

`2

`6

`5
`4

`3

Fig. 5. Finite weighted game associated with the 1BPTG of Fig. 1.

Example 3. Consider the border abstraction of the 1BPTG of Fig. 1 shown in
Fig. 5. Observe that we depict only a succinct representation of the real abstrac-
tion, since we only show the reachable part of the game from (`1, 0), and we
have removed multiple edges (introduced due to label hiding) and kept only the
most useful ones for the corresponding player. For example, consider the location
(`5, {0}). There are edges labelled by (J, a) for every interval J ∈ IηA, all directed
to (`4, {0}) due to a reset being performed there. We only show the best possi-
ble edge—the one with lowest price—since location `5 belongs to Player 1, who
seeks to minimise cost. Each vertex contains the η-region it represents. Thanks
to Theorem 1, it is possible to compute the optimal value as well as optimal
strategies for both players. Here, the value of state (`1, 0) is 1, and an optimal
strategy for Player 1 is to follow action ({0}, a) (i.e., jump to `2 immediately),
and then action ({1}, a) (i.e., to delay 1 time unit, before jumping in `3).

Lemma 3. Let A be a 1BPTG and Ã be its border abstraction. Suppose that for
all 0 6 k 6 K and ` ∈ L we have that ValÃ((`, {Mk})) is finite. Then, for all ε >

0, there is η > 0 s.t. UVal
η

A((`,Mk))−ε 6 ValÃ((`, {Mk})) 6 CValηA((`,Mk))+ε.

Combining this result with Theorem 1 we obtain the following.

Corollary 1. 1BPTGs are determined and we can compute their values in
pseudo-polynomial time. Moreover, in case the values are finite, ε-optimal strate-
gies exist for both players: Player 2 may require infinite memory strategies,
whereas finite memory is sufficient for Player 1. Finally, ε-optimal strategies
can also be computed in pseudo-polynomial time.

Proof. In case of infinite values ValÃ((`, {Mk})), we can show directly that
ValA((`,Mk)) = ValÃ((`, {Mk})) = ValA((`,Mk)) . Otherwise, let ε > 0. By
Lemma 3, we know that there exists η > 0 such that for every location ` ∈ L

13

0 0
1

0

0

1
0

x 6 1, {y}
y = 0

y = 0

x = 1

x = 1

y = 1

y = 1

Fig. 6. A two-clock PTG with prices of locations in {0,+1} and value 1/2

and integer 0 6 k 6 K:

UVal
η

A((`,Mk))− ε 6 ValÃ((`, {Mk})) 6 CValηA((`,Mk)) + ε .

Moreover Lemma 1 and 2 show that:

CValη((`,Mk)) 6 Val((`,Mk)) 6 Val((`,Mk)) 6 UVal
η
((`,Mk)) .

Both inequalities combined permit to obtain

ValÃ((`, {Mk}))− ε 6 Val((`,Mk)) 6 Val((`,Mk)) 6 ValÃ((`, {Mk})) + ε .

Taking the limit when ε tends to 0, we obtain that Val((`,Mk)) = Val((`,Mk)) =
ValÃ((`, {Mk})). Therefore, 1BPTG are determined. Moreover, in case of finite
values, the proof of Lemma 3 permits to construct ε-optimal η-region-uniform
strategies σ∗1 (with finite memory) and σ∗2 (which is moreover η-convergent). ut

In the case of 1BPTGs, the finite values are integers. This property fails
if we allow more than one clock, as shows Fig. 6 with a two-clock PTG with
price-rates in {0, 1} and optimal value 1

2 . It also fails if we allow more than
two price-rates as was shown in Fig. 4. However for 1PTG(0, 1) with prices of
labels in N, the value of the game is necessarily nonnegative disallowing the
case −∞. The case +∞ can be detected in polynomial time. If the value is not
+∞, the exact computation in the finite abstraction Ã can be performed in
polynomial time (see [14] or [15]), resulting in a polynomial algorithm for PTGs.
The sketch of Theorem 3 is now complete. Notice that our proof shows that
optimal value functions (as defined in [10,20,15]) of such games have a polynomial
number of line segments, and hence algorithms presented in [10,20,15] are indeed
polynomial time.

6 Conclusion

We revisited games with reachability objective on PTGs with both positive and
negative price-rates. We showed undecidability of all classes of constrained-price
reachability objectives with two or more clocks. We also observed that adding
bounded-time restriction does not recover decidability, even with nonnegative
prices. We also partially answer the question regarding polynomial-time algo-
rithm for one-clock PTGs by showing that for a bi-valued variant the problem
is in pseudo-polynomial time. However, the existence of a polynomial-time al-
gorithm for multi-priced one-clock PTGs with nonnegative price-rates, and the
existence of algorithm for computing ε-optimal strategies for PTGs with arbi-
trary number of clocks remain open problems.

14

References

1. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted
timed games. In ICALP’04, LNCS 3142, pages 122–133. Springer, 2004.

2. R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
3. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.

TCS, 318(3):297–322, 2004.
4. G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, J. Romijn, and F. W. Vaan-

drager. Minimum-cost reachability for priced timed automata. In HSCC’01, LNCS
2034, pages 147–161. Springer, 2001.

5. J. Berendsen, T. Chen, and D. Jansen. Undecidability of cost-bounded reachability
in priced probabilistic timed automata. In Theory and Applications of Models of
Computation, LNCS 5532, pages 128–137. Springer, 2009.

6. P. Bouyer, T. Brihaye, V. Bruyère, and J.-F. Raskin. On the optimal reachability
problem of weighted timed automata. FMSD, 31(2):135–175, 2007.

7. P. Bouyer, T. Brihaye, and N. Markey. Improved undecidability results on weighted
timed automata. IPL, 98(5):188–194, 2006.

8. P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal infinite scheduling for multi-
priced timed automata. FMSD, 32(1):3–23, 2008.

9. P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced
timed game automata. In FSTTCS’04, LNCS 3328, pages 148–160. Springer, 2004.

10. P. Bouyer, K. G. Larsen, N. Markey, and J. I. Rasmussen. Almost optimal strategies
in one-clock priced timed games. In FSTTCS’06, LNCS 4337, pages 345–356.
Springer, 2006.

11. T. Brihaye, V. Bruyère, and J.-F. Raskin. On optimal timed strategies. In FOR-
MATS’05, LNCS 3829, pages 49–64. Springer, 2005.

12. T. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, and J. Worrell.
Time-bounded reachability for monotonic hybrid automata: Complexity and fixed
points. In ATVA’13, LNCS 8172, pages 55–70. Springer, 2013.

13. T. Brihaye, G. Geeraerts, S. N. Krishna, L. Manasa, B. Monmege and A. Trivedi.
Reachability-cost games with negative weights. Technical report, http://arxiv.
org/abs/1404.5894, 2014.

14. T. Brihaye, G. Geeraerts, and B. Monmege. Reachability-cost games with negative
weights. Technical report, http://www.ulb.ac.be/di/verif/monmege/download/
priced-games.pdf, 2014.

15. T. D. Hansen, R. Ibsen-Jensen, and P. B. Miltersen. A faster algorithm for solv-
ing one-clock priced timed games. In CONCUR’13, LNCS 8052, pages 531–545.
Springer, 2013.

16. F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking timed automata
with one or two clocks. In CONCUR’04, pages 387–401, 2004.

17. M. L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., 1967.
18. J. Ouaknine and J. Worrell. Towards a theory of time-bounded verification. In

Automata, Languages and Programming, LNCS 6199, pages 22–37. Springer, 2010.
19. P. J. Ramadge and W. M. Wonham. The control of discrete event systems. In

IEEE, volume 77, pages 81–98, 1989.
20. M. Rutkowski. Two-player reachability-price games on single-clock timed au-

tomata. In QAPL’11, volume 57 of EPTCS, pages 31–46, 2011.
21. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. TCS,

158:343–359, 1996.

15

http://arxiv.org/abs/1404.5894
http://arxiv.org/abs/1404.5894
http://www.ulb.ac.be/di/verif/monmege/download/priced-games.pdf
http://www.ulb.ac.be/di/verif/monmege/download/priced-games.pdf

A Motivation: A case-study from Project Cassting

Our work is partly motivated by possible applications to real case study, like
energy-aware houses, taken from the EU FP7 project Cassting. It consists in
houses equiped with solar panels and energy storage capacities (e.g., with a
water tank), that can produce some energy, use or store it, and possibly sell
it on a local grid, for use by other houses. Priced timed games may permit to
model such house, and strategy synthesis allows us to build optimal controller
for the house, aiming at energy and cost savings: player 1 models the house
and wants to minimize its cost, whereas player 2 models other houses and the
environment, modelling the worst possible situation. Pricing policy implies that
selling energy on the grid is more profitable during the day than the night,
whereas it is more profitable to use energy from the grid during the night than
the day. Moreover, weather conditions (sun or clouds, e.g.) imply that the solar
panels are not constantly producing energy. Hence, we can model the situation
with three independant phases: sunny day, cloudy day and night. In each of
these phases, we can suppose that only two rates are indeed available. During
a sunny day, selling energy will be rewarded α euros per time unit (assuming
that the energy production or consumption is constant), whereas consumption
or storing of energy does not cost anything. During a cloudy day, solar panels are
off: because of storage capacities, it is however possible to sell energy at the same
cost than previously, but the consumption may now cost α euros per time unit.
Finally, during the night, selling energy rewards β euros per time unit, whereas
consuming costs β euros per time unit. Notice that in each of the phases, we can
use bi-valued priced timed games to model the arena.

B Detailed decidability proofs

B.1 Proof of Lemma 1

With respect to rechability of the target locations, (η-)equivalent plays are in-
distinguishable. Moreover, with respect to weights, we show that plays may
avoid regions (Mk + η,Mk+1 + η) without loss of generality. Formally, a play
r = (`0, ν0), (t0, a0), . . . is said to stay η-close to borders if for all i > 0, there
exists k such that |νi + ti −Mk| 6 η. Before proving Lemma 1, we first study
more precisely the relationship between general plays and plays that stay η-close
to borders. More precisely, we now explain how to construct, from any finite play
r, a play r+ such that (i) r+ stays η-close to borders; (ii) r and r+ are region-e-
quivalent; and (iii) Cost(r) 6 Cost(r+). Intuitively, the idea is to consider the
steps of play r and to shift them towards one of the closest borders, unless the
current step is already η-close to a border: when the current location has price
p+, since we want the weight of r+ to be greater than or equal to the weight of
r, we will spend more time in this location, hence shifting the step ‘to the right’,
and symetrically in case of a location of price p−. Moreover, the construction
will trivially verify that if r′ and r are two plays that coincide on their prefix of
length n, i.e., r′[n] = r[n], then (r′)+[n] = r+[n].

16

0 η 1− η 1 1 + η 3− η 3 3 + η 5− η 5 5 + η

r
p− p+ p− p− p−p+

r+

Fig. 7. A play r and its associated play r+. The price of the location in play r, when it
matters, is denoted on the transition exiting this location: for instance the first location
of r has price p−, whereas the second has price p+. On the first transition, the second
rule of the definition applies, and less time is spent in the location of price p−. On
the second transition, the first rule applies, and more time is spent in the location of
price p+. On the third transition, the first rule applies and both plays synchronize.
The transition of time duration t = 0 (denoted as a loop) in r is supposed to be taken
in a location owned by player 1, of price p+. In particular, in r+, it is taken when the
valuation is 3 + η, which implies a time duration t+ = 0 as prescribed in the second
case of the last rule of the definition.

The construction is by induction on the length of the play. Henceforth, let
r = (`0, ν0), (t0, a0), . . . , (`i+1, νi+1) and suppose that ν0 is η-close to some Mk.
We construct a play r+ = (`+0 , ν

+
0), (t+0 , a

+
0), . . . , (`+i+1, ν

+
i+1). In case i + 1 =

0, we simply let `+0 = `0 and ν+0 = ν0. Otherwise, we consider the play r+

constructed by induction up to its configuration of index i, and we now explain
how to construct the next timed action (t+i , a

+
i). First, we let a+i = ai. Then, we

distinguish between three cases:

– if there exists k such that |νi + ti −Mk| 6 η, then we let t+i = νi + ti − ν+i ;
– if there exists k such that νi + ti ∈ (Mk + η,Mk+1− η) and ω(`i) = p−, then

we let t+i = max(Mk + η − ν+i , 0). Indeed, in this case, we want to spend as
little time as possible in the location in order to ensure Cost(r) 6 Cost(r+);

– if there exists k such that νi + ti ∈ (Mk + η,Mk+1 − η) and ω(`i) = p+,
then there are two cases. In case `i ∈ L2 or ti > 0 or ν+i 6= Mk + η, we let
t+i = Mk+1 − η − ν+i . The intution is that we try to spend as much time
as possible in the location to enforce Cost(r) 6 Cost(r+). Otherwise, i.e., if
`i ∈ L1 and ti = 0 and ν+i = Mk+η, then we let t+i = 0. Because ti = 0 = t+i ,
we will still ensure that Cost(r) 6 Cost(r+) in that case.

Notice that this definition is purely syntactic, and we will show later that all
t+i ’s are non-negative, ensuring that we are indeed constructing a play of the
game. We then let `+i+1 = `i+1, and valuation ν+i+1 is defined according to the
semantics of the game.

An example of construction of r+ is given in Fig. 7, for a play r without
reset. We have supposed that the sequence of borders is 0, 1, 3 and 5.

Lemma 4. Let r be a play that starts from some state η-close to a border. Then,
the play r+ verifies the following properties:

1. if for some j, there exists k such that |νj+tj−Mk| 6 η, then ν+j +t+j = νj+tj;

17

Mk Mk + η Mk+1 − η Mk+1

νi νi + ti ν+i

Fig. 8. Illustration for the proof of Lemma 4-2

2. if for some j, there exists k such that νj + tj ∈ (Mk + η,Mk+1 − η), then
ν+j + t+j ∈ {Mk + η,Mk+1 − η};

3. r+ is a play that stays η-close to borders;
4. r+ ∼ r;
5. Cost(r) 6 Cost(r+).

In the rest of this section, we call the five points of this Lemma ‘property 1’,
‘property 2’, and so forth.

Remark 1. Before starting the proof, notice that in case δ(`j , aj) = (ζ, ∅, `j+1),
i.e., the clock is not reset at step j, we have νj+1 = νj + tj (and we will also
have ν+j+1 = ν+j + t+j). In particular, in that case, property 1 implies that if

|νj+1 −Mk| 6 η, then ν+j+1 = νj+1, whereas property 2 implies that if νj+1 ∈
(Mk + η,Mk+1 − η), then ν+j+1 ∈ {Mk + η,Mk+1 − η}.

Proof. All properties are shown by a simultaneous induction on the length of the
play. All properties are clearly true in case of a play r reduced to a single state
(which is assumed to be η-close to a border). We now consider a play r = (`0, ν0),
(t0, a0), . . . , (`i+1, νi+1) with i+ 1 > 1, and prove the properties for the play r+

whose construction has been given before.

1. The first property is true directly by construction.
2. For the second property, by induction hypothesis, it is sufficient to prove

that if νi + ti ∈ (Mk + η,Mk+1 − η), then ν+i + t+i ∈ {Mk + η,Mk+1 − η}.
Suppose first that ω(`i) = p−: then, t+i = max(Mk + η − ν+i , 0). In case
t+i > 0, we have t+i = Mk + η− ν+i , hence, ν+i + t+i = Mk + η. Otherwise, we
have t+i = 0 so that ν+i + t+i = ν+i and ν+i > Mk + η: we have depicted an
example of the situation in Fig. 8. Since ν+i must be η-close to a border, we
have ν+i >Mk+1−η. Then, ν+i > νi+ti > νi. But, ν+i and νi are in the same
region by induction hypothesis of property 4 (no reset has been performed in
the previous transition since νi 6= ν+i , so that they are respectively equal to
ν+i−1+t+i−1 and νi−1+ti−1). This implies that ν+i ∈ [Mk+1−η,Mk+1) and νi ∈
(Mk,Mk+1−η). However, by induction hypothesis, if νi ∈ (Mk,Mk+η], then
ν+i = νi which is forbidden in this case. Hence, we have νi ∈ (Mk+η,Mk+1−
η). Hence, by induction hypothesis again, we have ν+i ∈ {Mk+η,Mk+1−η},
which finally implies that ν+i = Mk+1 − η.
Suppose then that ω(`i) = p+. The result is again immediate in case t+i =
Mk+1−η−ν+i . Otherwise, we have t+i = 0, `i ∈ L1, ti = 0 and ν+i = Mk+η.
We directly obtain ν+i + t+i = Mk + η which permits to conclude.

18

3. We now prove that r+ is indeed a play. The only non-trivial property is
that t+i is a non negative delay, especially when t+i = νi + ti − ν+i or t+i =
Mk+1 − η − ν+i .
Consider first the case t+i = νi+ti−ν+i . It has to be shown that if there exists
k such that |νi + ti −Mk| 6 η, then ν+i is not greater than νi + ti. Notice
first that νi 6 νi + ti. Hence, if νi is η-close to a border, then by property 1,
ν+i = νi 6 νi + ti. Otherwise, we know that νi /∈ [Mk − η,Mk + η], hence,
either νi < Mk− η, or νi > Mk + η. Since νi 6 νi + ti 6Mk + η, we can rule
out the case νi > Mk + η, and conclude that νi < Mk − η. By property 2
(applied to ν+i = ν+i−1+t+i−1, since no reset has just been performed, knowing

that νi is not η-close to 0), this implies that ν+i 6Mk − η 6 νi + ti.
Consider then the case t+i = Mk+1 − η − ν+i , which holds when νi + ti ∈
(Mk + η,Mk+1 − η) and ω(`i) = p+. Then, νi 6 νi + ti < Mk+1 − η. Hence,
either νi is η-close to a border (in particular when the clock has just been
reset), in which case, by property 1, we have ν+i = νi < Mk+1 − η, so that
t+i = Mk+1 − η − ν+i > 0. Or νi ∈ (Mk′ + η,Mk′+1 − η) with k′ 6 k.
By property 2, this implies that ν+i 6 Mk′+1 − η 6 Mk+1 − η, once again
implying that t+i > 0.
The fact that r+ stays η-close to the borders is directly implied by properties
1 and 2.

4. Property r+ ∼ r is also a direct consequence of properties 1 and 2.
5. It only remains to prove that Cost(r) 6 Cost(r+). Notice that the weights

Cost(r) and Cost(r+) can be decomposed as sums of weights of subplays that
start and end in the same configuration, but with intermediate configurations
that do no match. Hence, it is sufficient to prove the inequality for subplays
r and r+ that start in the same configuration (at step j, νj + tj = ν+j + t+j)
and that do not contain other identical configurations, unless possibly the
last one. For the sake of simplicity, we suppose in the following that j = 0.
In particular, we may suppose that r does not contain reset transitions or
positions j such that νj is η-close to borders, except possibly the very last
one (otherwise, the two plays would again contain matching configurations).
Since there are no resets, we have νj = νj−1 + tj−1 and ν+j = ν+j−1 + t+j−1 for
every j > 0.
We now consider separately the possibility of sets {p−, p+}.
– As a first case, consider that p− = −1 and p+ = +1. We prove by

induction over 0 > j > i that

Cost(r+[j + 1]) > Cost(r[j + 1]) + |νj+1 − ν+j+1| .

For the sake of brevity, we omit the weights of the actions in this proof,
but notice that the same actions occur in r and r+ since these two plays
are equivalent (by property 4).
• Base case. If j = 0, then we have supposed that ν0 is η-close to a

border, so that ν+0 = ν0. Let k be such that6 ν1 ∈ (Mk+η,Mk+1−η).

6 Remember that we suppose that there is no synchronization for now, so that no
valuation in r is η-close to a border.

19

Then, if ω(`0) = −1, t+0 = max(Mk+η−ν0, 0). However, ν0 6 ν1 and
ν0 is η-close to a border, so that ν0 6Mk+η. Hence, t+0 = Mk+η−ν0,
which implies ν+1 = ν0 + t+0 = Mk + η. Hence,

Cost(r+[1]) = −(ν+1 − ν0) = Cost(r[1]) + ν1 − ν+1
= Cost(r[1]) + |ν1 − ν+1 | .

Consider then the case where ω(`0) = +1. Notice that we supposed
that ν1 is not η-close to a border, contrary to ν0, so that t0 > 0.
Hence, we are sure that t+0 = Mk+1 − η − ν0. This implies that
ν+1 = ν+0 + t+0 = ν0 + t+0 = Mk+1 − η > ν1 and

Cost(r+[1]) = ν+1 − ν0 = Cost(r[1]) + ν+1 − ν1
= Cost(r[1]) + |ν1 − ν+1 | .

• Inductive case. Let us suppose that the property is proved for all
indices less than or equal to j, and prove it for j+1. We let k be such
that νj+1 = νj + tj ∈ (Mk + η,Mk+1 − η). We will distinguish four
possible cases depending on ω(`j) and the relative order between
ν+j+1 and νj+1.
(a) We first suppose that ω(`j) = +1. Then,

Cost(r+[j + 1]) = Cost(r+[j]) + ν+j+1 − ν
+
j

> Cost(r[j]) + |νj − ν+j |+ ν+j+1 − ν
+
j (Ind. Hyp.)

Hence, since Cost(r[j + 1]) = Cost(r[j]) + (νj+1 − νj):

Cost(r+[j + 1]) > Cost(r[j + 1])− (νj+1 − νj)
+ |νj − ν+j |+ ν+j+1 − ν

+
j . (1)

i. In the case where ν+j+1 > νj+1, we have |νj+1−ν+j+1| = ν+j+1−
νj+1 so that (1) can be rewritten

Cost(r+[j + 1]) > Cost(r[j + 1]) + |νj+1 − ν+j+1|
+ (νj − ν+j) + |νj − ν+j |

which is greater than or equal to Cost(r[j+ 1]) + |νj+1− ν+j+1|
since νj − ν+j > −|νj − ν+j |.

ii. Similarly, in the case where ν+j+1 < νj+1, we have |νj+1 −
ν+j+1| = νj+1 − ν+j+1. Notice that this necessarily implies that

`i ∈ L1 and tj = 0 and ν+j = Mk + η: otherwise, we would

have t+j = Mk+1 − η − ν+j and thus ν+j+1 = Mk+1 − η > νj+1

that contradicts the hypothesis. In particular, we have t+j = 0

and ν+j = ν+j+1 < νj+1 = νj , so that (1) becomes

Cost(r+[j + 1]) > Cost(r[j + 1]) + |νj − ν+j |
= Cost(r[j + 1]) + |νj+1 − ν+j+1| .

20

(b) Suppose then that ω(`j) = −1. Then, a similar calculation gives

Cost(r+[j + 1]) = Cost(r+[j])− (ν+j+1 − ν
+
j)

> Cost(r[j]) + |νj − ν+j | − (ν+j+1 − ν
+
j) (Ind. Hyp.)

Hence, since Cost(r[j + 1]) = Cost(r[j])− (νj+1 − νj):

Cost(r+[j + 1]) > Cost(r[j + 1]) + (νj+1 − νj)
+ |νj − ν+j | − (ν+j+1 − ν

+
j) . (2)

i. Once again, if ν+j+1 < νj+1, we have |νj+1−ν+j+1| = νj+1−ν+j+1

so that (2) becomes

Cost(r+[j + 1]) > Cost(r[j + 1]) + |νj+1 − ν+j+1|
− (νj − ν+j) + |νj − ν+j |

which is greater than or equal to Cost(r[j+ 1])− |νj+1− ν+j+1|
since νj − ν+j 6 |νj − ν+j |.

ii. Similarly, if ν+j+1 > νj+1, we know by property 2 that ν+j+1 =

Mk+1 − η. In particular, since t+j = max(Mk + η − ν+j , 0)

and ν+j+1 = ν+j + t+j 6= Mk + η, we know that t+j = 0, and

ν+j >Mk+η. This implies ν+j+1 = ν+j = Mk+1−η > νj+1 > νj .

Knowing that |νj+1− ν+j+1| = ν+j+1− νj+1, we obtain from (2)

Cost(r+[j + 1]) > Cost(r[j + 1]) + |νj+1 − ν+j+1|
+ 2(νj+1 − ν+j+1)− 2(νj − ν+j)

= Cost(r[j + 1]) + |νj+1 − ν+j+1|+ 2(νj+1 − νj)
> Cost(r[j + 1]) + |νj+1 − ν+j+1| .

We finally have proved the property by induction. Notice in particular
that this shows that Cost(r+[j + 1]) > Cost(r[j + 1]) for every j with
ν+j+1 6= νj+1. To conclude the proof of Cost(r+) > Cost(r), it remains to

deal with the case of a possible last transition ending with ν+i+1 = νi+1.
Unless i = 0, in which case we have Cost(r+) = Cost(r), we know by
hypothesis that ν+i 6= νi. By the previous property, we have Cost(r+[i]) >
Cost(r[i])+|νi−ν+i |. Moreover, Cost(r+) = Cost(r+[i])+ω(`i)(ν

+
i+1−ν

+
i)

and Cost(r) = Cost(r[i]) +ω(`i)(νi+1− νi). In the overall (using the fact
that ν+i+1 = νi+1), we get

Cost(r+) > Cost(r) + ω(`i)(νi − ν+i) + |νi − ν+i | .

In all cases, we verify that −ω(`i)(νi − ν+i) 6 |νi − ν+i |, so that we have
proved that Cost(r+) > Cost(r).

21

– We now consider the case where p− = 0 and p+ = +1 (the case p− = −1
and p+ = 0 is very similar, and not explained in details here). We prove
another inequality by induction over 0 > j > i, namely that

Cost(r+[j + 1]) > Cost(r[j + 1]) + max(νj+1 − ν+j+1, 0) .

The proof is very similar to the previous case, and we conclude as pre-
viously. ut

We now go to the proof of Lemma 1. In case, Val(s) = −∞ the Lemma is
trivially true. We first consider the case Val(s) < +∞. Let σ′1 ∈ UStratη1 . We
now explain how to construct a strategy σ1 ∈ Strat1 such that for all states s

sup
σ′2∈UStrat

η
2

Cost(Play(s, σ′1, σ
′
2)) > sup

σ2∈Strat2
Cost(Play(s, σ1, σ2)) .

To prove such an inequality, we will consider any strategy σ2 ∈ Strat2 and
construct a strategy σ′2 ∈ UStratη2 such that

Cost(Play(s, σ′1, σ
′
2)) > Cost(Play(s, σ1, σ2)) .

Strategy σ1 follows σ′1 in case of plays staying η-close to borders. We must
however extend it to deal with the other plays faithfully. Let r = (`0, ν0),
(t0, a0), . . . , (`i, νi) be any finite play ending in a location `i of player 1, and r+ =
(`+0 , ν

+
0), (t+0 , a

+
0), . . . , (`+i , ν

+
i) the play constructed as before. By Lemma 4,

we know that r+ is a play that stays η-close to borders. Hence, σ′1(r+) =
(t′i, a), for some t′i ∈ R>0, with ν+i + t′i being η-close to a border. We let
ti = max(ν+i + t′i − νi, 0) and σ1(r) = (ti, a). Let r̃ (respectively, r′) be the
play r (respectively, r+) extended with the step prescribed by σ1 (respectively,
σ′1). Then, we prove that r′ matches the construction above starting from the
run r̃, i.e., r̃+ = r′. By construction, we only have to verify that the value of t′i
is consistent with the previous constructions, i.e., t′i = t+i .

Lemma 5. We have t′i = t+i .

Proof. In case νi 6 ν+i +t′i, since ti = max(ν+i +t′i−νi, 0), we have νi+ti = ν+i +t′i
which is η-close to borders, and t′i = νi + ti − ν+i that fits with the definition of
t+i in r̃+: hence t′i = t+i in that case.

Otherwise, we have νi > ν+i + t′i and ti = 0. In particular, νi > ν+i so that νi
cannot be η-close to a border (by Lemma 4-1). By Lemma 4-2, since ν+i < νi,
there exists k such that ν+i = Mk + η and νi ∈ (Mk + η,Mk+1− η). We are thus
in the situation `i ∈ L1 and ti = 0 and ν+i = Mk + η that prescribes a choice of
the next time delay t+i = 0. Hence, we must prove that t′i = 0. It is necessarily
the case, since Mk+η = ν+i 6 ν+i + t′i < νi with ν+i + t′i being η-close to a border
and νi ∈ (Mk + η,Mk+1 − η). Finally, we obtain t′i = 0 = t+i . ut

We now consider any strategy σ2 ∈ Strat2, and construct a strategy σ′2 ∈
UStratη2 such that Play(s, σ′1, σ

′
2) = Play(s, σ1, σ2)+ for every state s η-close to a

border. From Lemma 4, we will then get

Cost(Play(s, σ′1, σ
′
2)) > Cost(Play(s, σ1, σ2)) ,

22

which will enable us to conclude. We assume Play(s, σ1, σ2)+ = (`+0 , ν
+
0), (t+0 , a

+
0),

. . . , (`+n , ν
+
n), . . . with s = (`+0 , ν

+
0) η-close to a border. Then, we first define σ′2

over the finite plays Play(s, σ1, σ2)+[n] with n ∈ N, by letting

σ′2(Play(s, σ1, σ2)+[n]) = (t+n , a
+
n) .

Notice first that this strategy verifies Play(s, σ′1, σ
′
2)[n] = Play(s, σ1, σ2)[n]+ for

every state s η-close to a border, by induction on n ∈ N. In fact, in case
Play(s, σ1, σ2)+[n] ends with a state of player 1, the equation holds by con-
struction of σ1, and in case it ends with a state of player 2, by construction of
σ′2.

Once built on these finite plays, it is possible to extend σ′2 as an η-region-
uniform strategy defined over every play: in particular, if Play(s, σ1, σ2)+[n] ∼η
Play(s′, σ1, σ2)+[n] (with s and s′ different states η-close to a border), we have
that σ′2(Play(s, σ1, σ2)+[n]) ∼η σ′2(Play(s′, σ1, σ2)+[n]) (induced by Lemma 4-4)
validating the definition of η-region-uniform strategies.

This concludes the proof of Val(s) 6 UVal
η
(s) in case Val(s) < +∞.

Finally, the case Val(s) = +∞, corresponds to two possible situations: either
player 2 has a way to ensure that the goal is never reached, or he cannot have
such a guarantee, but still is able to make the price go bigger and bigger, i.e. he
has a family of strategies that do not forbid from reaching the goal but ensure
a price which is not bounded over the family7. It only remains to prove that
player 2 can do it so with η-region-uniform strategies too. Let σ1 ∈ UStratη1 be
an η-region-uniform strategy for player 1. We know that

sup
σ2∈Strat2

Cost(Play(s, σ1, σ2)) = +∞ .

The first case corresponds to the one where there exists a strategy σ2 ∈ Strat2
such that Cost(Play(s, σ1, σ2)) = +∞, i.e., in this outcome, the goal is not
reached. As previously, it is possible to reconstruct from σ2 an η-region-uniform
strategy σ′2 achieving the very same goal (notice that the goal is definable with
regions): the only difference is the fact that σ′2 must now mimic an infinite
number of prefixes since the outcome is no longer finite. The second case fi-
nally corresponds to the one where there is no strategy σ2 ∈ Strat2 such that
Cost(Play(s, σ1, σ2)) = +∞. We construct as previously a strategy σ1 ∈ Strat2 for
player 1 from strategy σ′1. From the fact that supσ2∈Strat2 Cost(Play(s, σ1, σ2)) >
M , we know the existence of a strategy σ2 ∈ Strat2 so that Cost(Play(s, σ1, σ2)) >
M . Since this price is finite by hypothesis, the previous construction allows us
to obtain a region-uniform strategy σ′2 verifying:

Cost(Play(s, σ′1, σ
′
2)) > Cost(Play(s, σ1, σ2)) > M

for all M ∈ R. This proves that UVal(s) = +∞.

7 Indeed, we will show in Appendix B.4 that only the first alternative is possible.

23

B.2 Proof of Lemma 2

The proof of Lemma 2 is a refinement of the proof of Lemma 1 (where, more-
over, the roles of both players are switched). To avoid the divergence phe-
nomenon of Example 2, we restrict our attention to plays staying η-close to
borders, that moreover jump closer and close to borders. More formally, a play
r = (`0, ν0), (t0, a0), . . . is said to be η-convergent if for all i > 0, there exists k
such that either |νi+ti−Mk| 6 η/2i+1, or ti = 0 and νi ∈ (Mk+η/2i+1,Mk+η].
Notice in particular that η-convergent runs stay η-close to borders. Unfortu-
nately, it is not possible to define η-convergent runs as runs such that the first
property (|νi + ti−Mk| 6 η/2i+1) always holds since it would forbid a player to
delay 0 time units when, in the round i, its valuation is νi ∈ (Mk+η/2i+1,Mk+η].
The second property is there to fix this issue.

We first study more precisely the relationship between general plays and
η-convergent plays, like we did for runs staying η-close to borders. More pre-
cisely, we now explain how to construct from any finite play r, a play r− such
that (i) r− is an η-convergent play; (ii) r and r− are region-equivalent; and
(iii) Cost(r−) 6 Cost(r). Moreover, the construction will trivially verify that if
r′ and r are two plays that coincide on their prefix of length n, i.e., r′[n] = r[n],
then (r′)−[n] = r−[n]. Indeed, the construction is by induction on the length of
the play, and very similar to the construction of r+ in the previous section. The
main difference with the case of r+, apart from the fact that we look for a play
with a smaller weight rather than a greater weight, belongs in the fact that r−

must jump closer and closer to the borders.
Henceforth, let r = (`0, ν0), (t0, a0), . . . , (`i+1, νi+1) and suppose that ν0 is η-

close to some Mk. We construct a play r− = (`−0 , ν
−
0), (t−0 , a

−
0), . . . , (`−i+1, ν

−
i+1).

In case i+ 1 = 0, we simply let `−0 = `+0 = `0 and ν−0 = ν+0 = ν0. Otherwise, we
consider the play r− constructed by induction up to its configuration of index i,
and we now explain how to construct the next timed action (t−i , a

−
i). First, we

let a−i = ai. Then, we distinguish between three cases:
– if there exists k such that |νi+ti−Mk| 6 η/2i+1, then we let t−i = νi+ti−ν−i ;
– if there exists k such that νi + ti ∈ (Mk + η/2i+1,Mk+1 − η/2i+1) and
ω(`i) = p+, then we let t−i = max(Mk + η/2i+1 − ν−i , 0);

– if there exists k such that νi + ti ∈ (Mk + η/2i+1,Mk+1 − η/2i+1) and
ω(`i) = p−, then there are two cases. In case `i ∈ L1 or ti > 0 or ν−i > Mk+η,
in which case we let t−i = Mk+1 − η/2i+1 − ν−i . Otherwise, i.e., if `i ∈ L2

and ti = 0 and ν−i 6Mk + η, then we let t−i = max(Mk + η/2i+1 − ν−i , 0).
Once again, we will verify in the next lemma that t−i is always non-negative,

ensuring that we indeed construct a valid play. Once defined t−i , we let `−i+1 =

`i+1, and valuation ν−i+1 is defined to be consistent with the semantics [[A]] of
the game.

Lemma 6. Let r be a play that starts from some state η-close to a border. Then,
the play r− constructed before verifies the following properties:
1. if for some j, there exists k such that |νj+tj−Mk| 6 η/2j+1, then ν−j +t−j =

νj + tj;

24

2. if for some j, there exists k such that νj+tj ∈ (Mk+η/2j+1,Mk+1−η/2j+1),
then
(a) ν−j + t−j ∈ {Mk + η/2j+1,Mk+1 − η/2j+1, ν−j };
(b) ν−j + t−j 6Mk+1 − η/2j+1;

(c) if t−j = 0 and ν−j 6Mk + η, then ν−j 6 νj + tj;

3. r− is an η-convergent play;
4. r− ∼ r;
5. Cost(r−) 6 Cost(r).

Remark 2. As for Lemma 1, notice that if the clock is not reset at step j, we have
νj+1 = νj+tj , and ν−j+1 = ν−j +t−j . In particular, in that case, property 1 implies

that if |νj+1 −Mk| 6 η/2j+1, then ν−j+1 = νj+1. Similarly, property 2 implies

that if νj+1 ∈ (Mk+η/2j+1,Mk+1−η/2j+1), then ν−j+1 ∈ {Mk+η/2j+1,Mk+1−
η/2j+1, ν−j }. Moreover, ν−j+1 6Mk+1 − η/2j+1 and if t−j = 0 and ν−j 6Mk + η,

then ν−j 6 νj+1. Properties (b) and (c) will be useful in the proof by induction
of subsequent properties.

Proof. All properties are shown by induction on the length of the play. All
properties are clearly true in case of a play r reduced to a single state (which
is assumed to be η-close to a border). We now consider a play r = (`0, ν0),
(t0, a0), . . . , (`i+1, νi+1) with i+ 1 > 1 and we prove the properties for the play
r− constructed before.

1. The first property is true directly by construction.
2. For the second property, by induction hypothesis, it is sufficient to prove

the property for j = i. Hence, suppose that νi + ti ∈ (Mk + η/2i+1,Mk+1 −
η/2i+1).
In case ω(`i) = p+, we have t−i ∈ {Mk +η/2i+1−ν−i , 0}. In case ω(`i) = p−,
we have t−i ∈ {Mk + η/2i+1− ν−i ,Mk+1− η/2i+1− ν−i , 0}. This implies that
ν−i +t−i ∈ {Mk+η/2i+1,Mk+1−η/2i+1, ν−i }, i.e., property (a). Property (b),
namely ν−i + t−i 6 Mk+1 − η/2i+1, needs only to be proved when ν−i +
t−i = ν−i (otherwise the property is trivially verified since Mk + η/2i+1 <
Mk+1−η/2i+1). In that case, there are two possibilities. If νi is η/2i-close to
borders, since νi 6 νi + ti, we have νi 6Mk+1 − η/2i+1, and by property 1,
ν−i = νi 6 Mk+1 − η/2i+1 (as ν−i = ν−i−1 + t−i−1 = νi−1 + ti−1 = νi). If νi is
not η/2i-close to borders, then νi ∈ (Mk′ + η/2i,Mk′+1− η/2i), with k′ 6 k.
By induction, ν−i 6Mk′+1 − η/2i, so that ν−i + t−i = ν−i 6Mk+1 − η/2i+1.
Finally, let us prove property (c). Assume that t−i = 0 and ν−i 6 Mk + η.
We now prove that ν−i 6 νi. Whatever the value of ω(`i), we have that
ν−i >Mk + η/2i+1. There are then four cases.
– In a first case, we have νi 6Mk. Whatever νi is η/2i-close to a border or

not, we obtain (by property 1 or by induction), that ν−i 6Mk 6 νi + ti.
– In a second case, we have νi ∈ (Mk,Mk+η/2i]. By property 1, we deduce

that ν−i = νi 6 νi + ti.
– The third case corresponds to νi ∈ (Mk + η/2i,Mk+1 − η/2i), which

implies that νi−1 + ti−1 = νi ∈ (Mk + η/2i,Mk+1− η/2i). By induction,

25

we obtain that ν−i = ν−i−1 + t−i−1 ∈ {Mk + η/2i,Mk+1 − η/2i, ν−i−1}.
If ν−i = Mk + η/2i < νi 6 νi + ti, we conclude directly. The case
ν−i = Mk+1 − η/2i > Mk + η leads to a contradiction. Finally, if ν−i =
ν−i−1, since we assume ν−i−1 6 Mk + η, we obtain by induction that

ν−i−1 6 νi−1 + ti−1 = νi 6 νi + ti.

– The fourth case is νi ∈ [Mk+1 − η/2i,Mk+1 − η/2i+1), but then ν−i 6
Mk + η 6Mk+1 − η/2i 6 νi 6 νi + ti.

3. We now prove that r− is indeed a play. The only non-trivial property is
that t−i is a non negative delay, especially when t−i = νi + ti − ν−i or t−i =
Mk+1 − η/2i+1 − ν−i . Consider first the case t−i = νi + ti − ν−i . It has to be
shown that if there exists k such that |νi+ ti−Mk| 6 η/2i+1, then ν−i is not
greater than νi + ti. Notice that νi 6 νi + ti. Hence, if νi is η/2i-close to a
border, then by property 1, ν−i = νi 6 νi + ti, and we are done. Otherwise
(i.e. if νi is not η/2i-close to a border), since νi 6 νi + ti 6Mk + η/2i+1, we
even know that νi < Mk − η/2i. Since no reset has been possibly performed
during action ai−1 (otherwise, νi = 0 is η/2i-close to a border), we have
νi = νi−1 + ti−1 ∈ (Mk′ + η/2i,Mk′+1 − η/2i) with k′ < k. By property
2, this implies that ν−i = ν−i−1 + t−i−1 6 Mk′+1 − η/2i. In consequence,

ν−i 6Mk − η/2i 6 νi + ti.
Consider then the case t−i = Mk+1 − η/2i+1 − ν−i , which holds when νi +
ti ∈ (Mk + η/2i+1,Mk+1 − η/2i+1) and ω(`i) = p−. Then, νi 6 νi + ti <
Mk+1−η/2i+1. Hence, either νi is η/2i-close to a border (in particular when
the clock has just been reset), in which case, by property 1, we have ν−i =
νi < Mk+1−η/2i+1, so that t−i > 0. Or νi ∈ (Mk′+η/2i,Mk′+1−η/2i) with
k′ 6 k. By property 2, this implies that ν−i 6Mk′+1−η/2i < Mk+1−η/2i+1,
once again implying that t−i > 0.
The fact that r− is an η-convergent play is then directly implied by properties
1 and 2.

4. Property r− ∼ r is also a direct consequence of properties 1 and 2.
5. It only remains to prove that Cost(r−) 6 Cost(r). Notice that, by induction,

only matters the weight since the last index j where plays r and r− have
synchronized, i.e., where νj + tj = ν−j + t−j . For the sake of simplicity, we
suppose in the following that j = 0. In particular, we may suppose that r
does not contain reset transitions or positions j such that νj is η/2j-close to
borders, except possibly the very last one. Since there are no resets, we have
νj = νj−1 + tj−1 for every j > 0.
We now consider separately the possibility of sets {p−, p+}.
– As a first case, consider that p− = −1 and p+ = +1. We prove by

induction over 0 6 j 6 i that

Cost(r−[j + 1]) 6 Cost(r[j + 1])− |νj+1 − ν−j+1| .

To simplify the notations, we forget the weights of the actions in this
proof, but notice that the same weights occur in r and r− since these
two plays are equivalent.

26

• If j = 0, then we have supposed that ν0 is η-close to a border, so that
ν−0 = ν0. Let k be such that ν1 ∈ (Mk + η/2,Mk+1 − η/2). Then, if
ω(`0) = +1, t−0 = max(Mk + η/2 − ν0, 0). If ν0 > Mk + η/2, then
ν−1 = ν−0 = ν0 so that

Cost(r−[1]) = 0 = Cost(r[1])− |ν1 − ν0| = Cost(r[1])− |ν1 − ν−1 | .

If ν0 < Mk + η/2, ν−1 = Mk + η/2 6 ν1 so that

Cost(r−[1]) = ν−1 −ν0 = Cost(r[1])−ν1+ν−1 = Cost(r[1])−|ν1−ν−1 | .

Consider then the case where ω(`0) = −1. In case ν−1 = Mk+1−η/2 >
ν1, we have

Cost(r−[1]) = −(ν−1 − ν0) = Cost(r[1])− (ν−1 − ν1)

= Cost(r[1])− |ν1 − ν−1 | .

Otherwise, we know that t0 = 0 and ν−0 6 Mk + η. Since ν0 is not
η/2-close from a border, but ν1 = ν0 should be η-close from a border,
we know that ν0 ∈ (Mk + η/2,Mk + η] ∪ [Mk+1 − η,Mk+1 − η/2).
Since ν−0 = ν0 6 Mk + η, we know that ν0 ∈ (Mk + η/2,Mk + η].
Then, we obtain ν−1 = Mk + η/2 6 ν0 = ν1, so that

Cost(r−[1]) = −(ν−1 − ν0) = Cost(r[1])− |ν−1 − ν1| .

• Let us suppose that the property is proved for all indices less than
or equal to j, and prove it for j + 1. We let k be such that νj+1 =
νj + tj ∈ (Mk + η/2j+1,Mk+1 − η/2j+1). We will distinguish four
possible cases depending on ω(`j) and the relative order between
ν−j+1 and νj+1.
(a) We first suppose that ω(`j) = −1. Then,

Cost(r−[j + 1]) = Cost(r−[j])− (ν−j+1 − ν
−
j)

6 Cost(r[j])− |νj − ν−j | − ν
−
j+1 + ν−j (Ind. Hyp.)

Cost(r−[j + 1]) 6 Cost(r[j + 1]) + (νj+1 − νj)
− |νj − ν−j | − ν

−
j+1 + ν−j . (3)

i. In the case where ν−j+1 > νj+1, we have |νj+1−ν−j+1| = ν−j+1−
νj+1 so that (3) becomes

Cost(r−[j + 1]) 6 Cost(r[j + 1])− |νj+1 − ν−j+1|
+ (ν−j − νj)− |ν

−
j − νj |

which is less than or equal to Cost(r[j + 1]) − |νj+1 − ν−j+1|
since ν−j − νj 6 |ν

−
j − νj |.

27

ii. Similarly, in the case where ν−j+1 < νj+1, we have |νj+1 −
ν−j+1| = νj+1 − ν−j+1. Notice that this necessarily implies that

`i ∈ L2 and tj = 0, ν−j 6Mk+η and t−j = max(Mk+η/2j+1−
ν−j , 0): otherwise, we would have ν−j+1 = Mk+1−η/2i+1 > νj+1

that contradicts the hypothesis. If t−j = 0, this implies that

ν−j = ν−j+1 < νj+1 = νj , so that (3) can be rewritten

Cost(r−[j + 1]) 6 Cost(r[j + 1])− νj + ν−j

= Cost(r[j + 1])− |νj+1 + ν−j+1| .

Otherwise, t−j > 0 and we have t−j = Mk + η/2j+1 − ν−j . This

is possible only if ν−j 6 Mk + η/2j+1 < νj+1 = νj . Then,

|ν−j − νj | = νj − ν−j so that

Cost(r−[j + 1]) 6 Cost(r[j + 1])− |νj+1 + ν−j+1| − 2|ν−j − νj |
6 Cost(r[j + 1])− |νj+1 + ν−j+1| .

(b) Suppose then that ω(`j) = +1. Then, a similar calculation gives

Cost(r−[j + 1]) = Cost(r−[j]) + ν−j+1 − ν
−
j

6 Cost(r[j])− |νj − ν−j |+ ν−j+1 − ν
−
j (Ind. Hyp.)

Cost(r−[j + 1]) 6 Cost(r[j + 1])− (νj+1 − νj)
− |νj − ν−j |+ ν−j+1 − ν

−
j . (4)

i. Once again, if ν−j+1 < νj+1, we have |νj+1−ν−j+1| = νj+1−ν−j+1

so that (4) is rewritten

Cost(r−[j+1]) 6 Cost(r[j+1])−|νj+1−ν−j+1|+νj−ν
−
j −|νj−ν

−
j |

which is less than or equal to Cost(r[j + 1]) − |νj+1 − ν−j+1|
since νj − ν−j 6 |νj − ν−j |.

ii. Similarly, if ν−j+1 > νj+1, we know by property 2 that ν−j+1 ∈
{Mk+1 − η/2j+1, ν−j }. If ν−j+1 = Mk+1 − η/2j+1, since t−j =

max(Mk + η/2j+1 − ν−j , 0), we know that t−j = 0, i.e., in all

case ν−j+1 = ν−j . Then, ν−j+1 = ν−j > νj+1 > νj . Knowing that

|νj+1 − ν−j+1| = ν−j+1 − νj+1, (4) becomes

Cost(r−[j + 1]) 6 Cost(r[j + 1])− |νj+1 − ν−j+1|
+ 2(ν−j+1 − νj+1) + 2(νj − ν−j)

= Cost(r[j + 1])− |νj+1 − ν−j+1|+ 2(νj − νj+1)

6 Cost(r[j + 1])− |νj+1 − ν−j+1| .

28

We finally have proved the property by induction. Notice in particular
that this shows that Cost(r−[j + 1]) 6 Cost(r[j + 1]) for every j with
ν−j+1 6= νj+1. To conclude the proof of Cost(r−) 6 Cost(r), it remains to

deal with the case of a possible last transition ending with ν−i+1 = νi+1.
Unless i = 0, in which case we have Cost(r−) = Cost(r), we know by
hypothesis that ν−i 6= νi. By the previous property, we have Cost(r−[i]) 6
Cost(r[i]) − |νi − ν−i |. Then, Cost(r−) = Cost(r−[i]) + ω(`i)(ν

−
i+1 − ν

−
i)

and Cost(r) = Cost(r[i]) + ω(`i)(νi+1 − νi). In the overall, we get

Cost(r−) 6 Cost(r) + ω(`i)(νi − ν−i)− |νi − ν−i | .

In all cases, we verify that ω(`i)(νi − ν−i) 6 |νi − ν−i |, so that we have
proved that Cost(r−) 6 Cost(r).

– We now consider the case where p− = 0 and p+ = +1 (the case p− = −1
and p+ = 0 is very similar, and not explained in details here). We prove
another inequality by induction over 0 6 j 6 i, namely that

Cost(r−[j + 1]) 6 Cost(r[j + 1])−max(νj+1 − ν−j+1, 0) .

The proof is very similar to the previous case, and we conclude as pre-
viously. ut

We now go to the proof of Lemma 2. In case, Val(s) = +∞ nothing has to
be done. We then consider the case Val(s) < +∞. Let σ′2 ∈ CStratη2 . We now
explain how to construct a strategy σ2 ∈ Strat2 such that for all state s

inf
σ′1∈CStrat

η
1

Cost(Play(s, σ′1, σ
′
2)) 6 inf

σ1∈Strat1
Cost(Play(s, σ1, σ2)) .

To prove such an inequality, we will consider any strategy σ1 ∈ Strat1 and
construct a strategy σ′1 ∈ CStratη1 such that

Cost(Play(s, σ′1, σ
′
2)) 6 Cost(Play(s, σ1, σ2)) .

Strategy σ2 follows σ′2 in case of η-convergent plays. We must however extend
it to deal with the other plays faithfully. Let r = (`0, ν0), (t0, a0), . . . , (`i, νi) be
any finite play ending in a location `i of player 2, and r− = (`−0 , ν

−
0), (t−0 , a

−
0), . . . ,

(`−i , ν
−
i) the play constructed as before. By Lemma 6, we know that r− is an

η-convergent play. Hence, σ′2(r−) = (t′i, a), for some t′i ∈ R>0, and there exists
k such that either ν−i + t′i ∈ {Mk + η/2i+1} ∪ [Mk − η/2i+1,Mk), or t′i = 0
and ν−i ∈ (Mk + η/2i+1,Mk + η]. We let ti = max(ν−i + t′i − νi, 0) and σ2(r) =
(ti, a). Let r̃ (respectively, r′) be the play r (respectively, r−) extended with
the step prescribed by σ2 (respectively, σ′2). Then, we prove that r′ matches the
construction above starting from the run r̃, i.e., r̃− = r′. By construction, we only
have to verify that the value of t′i is consistent with the previous constructions,
i.e., t′i = t−i .

Lemma 7. We have t′i = t−i .

29

Proof. The proof considers several cases.

– Suppose first that there exists k′ such that |νi + ti − Mk′ | 6 η/2i+1. In
case ν−i + t′i = νi + ti, we have t′i = νi + ti − ν−i which is equal to t−i
(since νi + ti is η/2i+1-close to a border implying that the first rule of the
construction of r̃− applies). Otherwise (i.e. when ν−i + t′i 6= νi + ti), we
know that ti = 0 (by definition of ti as max(ν−i + t′i − νi, 0)) and that
νi > ν−i + t′i > ν−i . In particular, we have νi 6= ν−i . However, since ti = 0,
|νi − Mk′ | 6 η/2i+1 6 η/2i so that we should have ν−i = νi, causing a
contradiction.

– Suppose then that there exists k′ such that νi+ ti ∈ (Mk′ + η/2i+1,Mk′+1−
η/2i+1).
• In case νi+ ti = ν−i + t′i, since σ′2 is η-convergent and ν−i + t′i not η/2i+1-

close to a border, we have t′i = 0, and ν−i ∈ (Mk + η/2i+1,Mk + η]:
in particular, k′ = k and νi + ti = ν−i ∈ (Mk + η/2i+1,Mk + η]. We
know that νi ∼ ν−i , hence there are two possibilities for the position of
νi ∈ (Mk,Mk + η].
∗ The first case is νi ∈ (Mk,Mk + η/2i): by Lemma 6-1 (applied on
νi = νi−1 + ti−1 since no reset transition may have been taken),
we know that ν−i = νi. Since ν−i = νi + ti, we have ti = 0. This
shows that t′i = 0 is consistent with the construction of r̃− that sets
t−i = νi + ti − ν−i = 0 in that case (since νi + ti ∈ (Mk,Mk + η/2i)).
∗ The second case is νi ∈ (Mk + η/2i,Mk + η]: by Lemma 6-2-(a), we

know that ν−i ∈ {Mk + η/2i,Mk+1 − η/2i, ν−i−1}. It is not possible

neither that ν−i = Mk + η/2i < νi (because ν−i = νi + ti > νi), nor
that ν−i = Mk+1 − η/2i > Mk + η (because we know that ν−i 6
Mk + η). Hence, we have ν−i = ν−i−1 (and thus t−i−1 = 0). Moreover,

by Lemma 6-2-(c), since t−i−1 = 0 and ν−i−1 = ν−i 6Mk + η, we have

ν−i = ν−i−1 6 νi−1 + ti−1 = νi. Since, we also have νi 6 νi + ti = ν−i ,

we obtain that νi = ν−i , and ti = ν−i +t′i−νi = 0. In case ω(`i) = p+,
this shows that t′i = 0 is consistent with the construction of r̃− that
sets t−i = max(Mk+η/2i+1−ν−i , 0) = 0 (since ν−i = νi > Mk+η/2i >
Mk + η/2i+1). In case ω(`i) = p−, since we are in the case where
`i ∈ L2 (since `i is a location where σ2 needs to be defined), ti = 0
and ν−i 6 Mk + η, the choice t′i = 0 is also consistent with the
construction of r̃− which sets t−i = max(Mk + η/2i+1 − ν−i , 0) = 0
(once again, because ν−i > Mk + η/2i+1).

• The last case is when νi+ti 6= ν−i +t′i, implying that ti = 0 (by definition
of ti as max(ν−i +t′i−νi, 0)). This implies that νi > ν−i +t′i > ν−i . It is not
possible that νi ∈ (Mk′ + η/2i+1,Mk′ + η/2i] ∪ [Mk′+1 − η/2i,Mk′+1 −
η/2i+1), since otherwise we would have ν−i = νi, by Lemma 6-1 (ap-
plied to ν−i = ν−i−1 + t−i−1 = νi−1 + ti−1 = νi). Hence, we have νi ∈
(Mk′ + η/2i,Mk′+1 − η/2i). In particular, by Lemma 6-2-(a), we know
that ν−i ∈ {Mk′ + η/2i,Mk′+1 − η/2i, ν−i−1}. There are two possibilities
now, depending on t′i taken from the fact that σ′2 is η-convergent.

30

∗ The first possibility is ν−i + t′i ∈ {Mk + η/2i+1}∪ [Mk− η/2i+1,Mk).
Notice that ν−i ∼ νi and ν−i +t′i ∈ [ν−i , νi), so that ν−i +t′i ∼ νi. Hence,
ν−i + t′i ∈ (Mk′ ,Mk′+1). Knowing that ν−i + t′i < νi < Mk′+1 − η/2i,
and that |ν−i + t′i − Mk| 6 η/2i+1, we conclude that k′ = k and
ν−i + t′i ∈ (Mk′ ,Mk′ + η/2i+1]. It is therefore only possible that
ν−i + t′i = Mk′ + η/2i+1, i.e., t′i = Mk′ + η/2i+1 − ν−i . This choice
is consistent with the construction of r̃−, whatever the price of `i,
which sets t−i = max(Mk′ + η/2i+1 − ν−i , 0) = Mk′ + η/2i+1 − ν−i
(since ν−i 6Mk′+η/2i+1): in particular if ω(`i) = p−, we are indeed
in the case `i ∈ L2, ti = 0 and ν−i 6Mk′ + η.
∗ The second possibility is that t′i = 0 and ν−i ∈ (Mk+η/2i+1,Mk+η],

in which case we again deduce from νi ∼ ν−i that k′ = k. We have
t−i = max(Mk′+η/2i+1−ν−i , 0) = 0 = t′i (since ν−i >Mk′+η/2i+1),
whatever the price of `i: once again, if ω(`i) = p−, we are indeed in
the case `i ∈ L2, ti = 0 and ν−i 6Mk′ + η. ut

We now consider any strategy σ1 ∈ Strat1, and construct a strategy σ′1 ∈
CStratη1 such that Play(s, σ′1, σ

′
2) = Play(s, σ1, σ2)− for every state s η-close to a

border. From Lemma 6, we will then get

Cost(Play(s, σ′1, σ
′
2)) 6 Cost(Play(s, σ1, σ2)) ,

which will enable us to conclude. We let Play(s, σ1, σ2)− = (`−0 , ν
−
0), (t−0 , a

−
0), . . . ,

(`−n , ν
−
n), . . . with s = (`−0 , ν

−
0) η-close to a border. Then, we first define σ′1 over

the finite plays Play(s, σ1, σ2)−[n] with n ∈ N, by letting

σ′1(Play(s, σ1, σ2)−[n]) = (t−n , a
−
n) .

Notice first that this strategy verifies Play(s, σ′1, σ
′
2)[n] = Play(s, σ1, σ2)[n]− for

every state s η-close to a border, by induction on n ∈ N. In fact, in case
Play(s, σ1, σ2)−[n] ends with a state of player 2, the equation holds by con-
struction of σ2, and in case it ends with a state of player 1, by construction of
σ′1.

Once built on these finite plays, it is possible to extend σ′1 as an η-convergent
strategy defined over every play: in particular, the η-region-uniformity is possi-
ble, since, if Play(s, σ1, σ2)−[n] ∼η Play(s′, σ1, σ2)−[n] (with s and s′ η-close to
a border), we have σ′1(Play(s, σ1, σ2)−[n]) ∼η σ′1(Play(s′, σ1, σ2)−[n]) (induced
by Lemma 6-4) validating the definition of η-region-uniform strategies. The η-
convergence is ensured by Lemma 6-3.

This concludes the proof of Val(s) > UValη(s) in case Val(s) > −∞.

Finally, in case Val(s) = −∞, we have to show that CValη(s) = −∞ too.
Notice that Val(s) = −∞ means that for all strategy σ2 ∈ Strat2 of player 2, we
have

inf
σ1∈Strat1

Cost(Play(s, σ1, σ2)) = −∞ ,

i.e., player 1 has a sequence of strategies ensuring the reachability of the goal with
smaller and smaller prices. Hence, let σ′2 ∈ CStratη2 be an η-convergent strategy

31

for player 2, and M ∈ R be any constant. We construct as previously a strategy
σ2 ∈ Strat2 for player 2. From the fact that infσ1∈Strat1 Cost(Play(s, σ1, σ2)) < M ,
we know the existence of a strategy σ1 ∈ Strat1 so that Cost(Play(s, σ1, σ2)) < M .
In particular, this price is finite so that the previous construction allows us to
obtain an η-convergent strategy σ′1 verifying that

Cost(Play(s, σ′1, σ
′
2)) 6 Cost(Play(s, σ1, σ2)) < M .

This proves that CVal(s) = −∞.

B.3 Proof of Lemma 3

The proof uses the fact that we can translate a strategy in Ã into η-region-
uniform/η-convergent strategies in the original game A and vice versa.

Since we assume that ValÃ((`, {Mk})) is finite, let ξ∗1 and ξ∗2 the optimal
strategies for both players provided by Theorem 1. Strategy ξ∗1 uses a finite
memory whereas ξ∗2 is memoryless. They verify, for all `, and 0 6 k 6 K:

ValÃ((`, {Mk})) = Cost(Play((`, {Mk}), ξ∗1 , ξ∗2)) .

We first show inequality UVal
η

A((`,Mk)) − ε 6 ValÃ((`, {Mk})). In case

UVal
η

A((`,Mk)) = −∞, the inequality is trivially verified. Since ValÃ((`, {Mk}))
is finite for every `, and 0 6 k 6 K, we know that every play where player 1
follows strategy ξ∗1 reaches the target set of states. Let L ∈ N be the maximum
Length(r) for every such play r: notice that L is finite since the game arena is
finite and that ξ∗1 has finite memory. For all ε > 0, we let η be a positive rational
number less than ε/(2L) and we explain how to construct an η-region-uniform

strategy σ
(ε)
1 of A so that

sup
σ2∈UStratη2 (A)

Cost(Play((`,Mk), σ
(ε)
1 , σ2)) 6 Cost(Play((`, {Mk}), ξ∗1 , ξ∗2)) + ε (5)

Since σ
(ε)
1 will only have to play against an η-region-uniform strategy σ2, we

may define only σ
(ε)
1 on finite plays r only visiting η-regions in IηA, i.e., that

only stops at distance at most η from the integers Mk. Such a play r can indeed
be translated in a play ρ of Ã, by simply translating each state (`i, νi) (with νi
at distance at most η from some Mk by assumption) it encounters into (`i, Ii)
with Ii ∈ IηA the interval containing νi. Then, we let (J, a) = ξ∗1(ρ). Let also
denote by (`′, ν) the last state of r, as well as I the interval of IηA containing

ν. Notice that I � J . In case J = I, we let σ
(ε)
1 (r) = (0, a) forcing player 1 to

play immediately. In case J is a singleton {Mk}, we let σ
(ε)
1 (r) = (Mk − ν, a).

In case J = [Mk − η,Mk), we let σ
(ε)
1 (r) = (Mk − η − ν, a). Finally, in case

J = (Mk,Mk + η], we let σ
(ε)
1 (r) = (Mk + η − ν, a). Notice that in all case, the

fact that ν ∈ I implies that the delay prescribed in σ
(ε)
1 (r) is not less than 0.

32

We now prove (5). For that purpose, we consider a strategy σ2 ∈ UStratη2(A).
We reconstruct from it a strategy ξ2 ∈ Strat2(Ã) such that Play((`, {Mk}), ξ∗1 , ξ2)

is the sequence of η-regions visited by the play Play((`,Mk), σ
(ε)
1 , σ2), which

stays η-close to borders, since σ
(ε)
1 and σ2 are η-region-uniform strategies. The

following lemma compares the weight of these two plays.

Lemma 8. Let r be a play of A staying η-close to borders and r̃ its abstraction
in terms of η-regions. Then,

|Cost(r̃)− Cost(r)| 6 2η Length(r̃) .

Proof. Nothing has to be done in case Cost(r) (or equivalently Cost(r̃)) is equal
to +∞. Hence, we can suppose that these two runs have a finite length. We show
by induction on 0 6 n 6 Length(r̃) = Length(r) that

|Cost(r̃[n])− Cost(r[n])| 6 2η n .

For n = 0, nothing has to be proved since Cost(r̃[0]) = Cost(r[0]) = 0.
Suppose that the property holds until step n < Length(r̃) = Length(r). We

now prove it for index n + 1. Let (`, ν) and (`, I) be the last states of r[n] and
r̃[n], respectively. We denote by t the delay taken in r at step n, and J the choice
of successor in r̃ at step n. Since the same action occurs at step n, we have

Cost(r̃[n+ 1])− Cost(r[n+ 1]) = Cost(r̃[n])− Cost(r[n]) + ω(`)(d(I, J)− t) .

We clearly have |d(I, J)− t| 6 2η so that, by induction hypothesis,

|Cost(r̃[n+ 1])− Cost(r[n+ 1])| 6 2η n+ 2η = 2η (n+ 1) .

Hence, the property is proved by induction. ut

By Lemma 8, we have

Cost(Play((`,Mk), σ
(ε)
1 , σ2)) 6 Cost(Play((`, {Mk}), ξ∗1 , ξ2)) +

2η Length(Play((`, {Mk}), ξ∗1 , ξ2))

6 Cost(Play((`, {Mk}), ξ∗1 , ξ2)) + 2η L

6 Cost(Play((`, {Mk}), ξ∗1 , ξ∗2)) + ε

where the last inequality comes from the definition of η, and ξ∗2 is the op-
timal strategy for player 2 in Ã. In particular, notice that this shows that

Cost(Play((`,Mk), σ
(ε)
1 , σ2)), and hence UVal

η

A((`,Mk)), is less than +∞.

We then show inequality ValÃ((`, {Mk})) 6 CValηA((`,Mk)) + ε. In case
CValηA((`,Mk)) = +∞, the inequality is trivially verified. For all ε > 0, we let
η be a positive rational number less than ε/3 and we explain how to construct

(from ξ∗2) an η-convergent strategy σ
(ε)
2 of A so that

Cost(Play((`, {Mk}), ξ∗1 , ξ∗2))−ε 6 inf
σ1∈CStratη1 (A)

Cost(Play((`,Mk), σ1, σ
(ε)
2)) . (6)

33

The construction of σ
(ε)
2 is inspired from the previous case, but special care

has to be made to prevent player 1 from decreasing its cost in A by accumulating

errors made by player 2. Once again, since σ
(ε)
2 will be evaluated against an

η-convergent play of player 1, we only define it on finite plays r that are η-
convergent. Let (`′, ν) be the last configuration of r, n its length and I ∈ IηA the
interval containing ν. Let (J, a) = ξ∗2(`′, I) (remember that ξ∗2 is memoryless so
that only the last configuration of the play is useful). Once again, we necessarily

have I � J . In case J is a singleton {Mk}, we let σ
(ε)
2 (r) = (Mk − ν, a). In

case J = [Mk − η,Mk), we let σ
(ε)
2 (r) = (max(Mk − η/2n+1 − ν, 0), a). In case

J = (Mk,Mk + η], we let σ
(ε)
2 (r) = (max(Mk + η/2n+1 − ν, 0), a). The use of a

maximum operator to define the delay in the two last cases permits to delay 0
in case ν is either too close or too far from Mk to go exactly at distance η/2n+1

from Mk.

Then, to prove inequality (6), we consider any η-convergent strategy σ1 of
player 1. As in the previous case, we can construct from σ1 a strategy ξ1 ∈
Strat1(Ã) verifying that Play((`, {Mk}), ξ1, ξ∗2) is the sequence of η-regions visited

by the play Play((`,Mk), σ1, σ
(ε)
2). The following lemma permits to compare the

weight of these two plays.

Lemma 9. Let r = (`0, ν0), (t0, a0), . . . , (`i+1, νi+1), . . . be a play of A, such that
ν0 = Mk′ for some k′, and r̃ its abstraction in terms of η-regions. Suppose that
r is η-convergent. Then,

|Cost(r̃)− Cost(r)| 6 3η .

Proof. We define the latency λn of an index n 6 Length(r̃) = Length(r) as the
greatest index 0 < m 6 n such that tm−1 6= 0 or the clock has been reset by
action am−1 in location `m−1, or 0 if such an index m does not exist. Notice
that if n < n′ and λn = λn′ , then we have tm = 0 for every m ∈ {n, . . . , n′ − 1},
and νn = νn′ . We also know that νλn is η/2λn+1-close to a border: indeed, either
tλn−1 6= 0 (which permits to conclude by definition of η-convergent plays), or
the clock has been reset by action aλn−1, in which case νλn = 0.

We then prove by induction on 0 6 n 6 Length(r̃) = Length(r) that

|Cost(r̃[n])− Cost(r[n])| 6 3η

(
1− 1

2λn

)
.

The property is trivially verified for n = 0, since λn = 0, and Cost(r̃[n]) =
Cost(r[n]) = 0.

Suppose now that the property holds for n < Length(r̃) = Length(r). We now
prove it for n+ 1. We split our study with respect to the value of λn+1.

– If λn+1 = n + 1, then we know that tn 6= 0 or that the clock has just been
reset. Denote by I the η-region containing νn and J the η-region containing
νn + tn.

34

• If tn = 0, then d(I, J) = 0, and

|Cost(r̃[n+ 1])− Cost(r[n+ 1])| = |Cost(r̃[n])− Cost(r[n])|

6 3η

(
1− 1

2λn

)
(Ind. Hyp.)

6 3η

(
1− 1

2λn+1

)
since λn+1 = n+ 1 > n > λn.

• Otherwise, tn 6= 0 so that, νn + tn is η/2n+1-close to a border (since the
play is supposed to be η-convergent). By reasoning on the transition from
step λn − 1 to step λn, we also know that νn is η/2λn -close to a border.
By definition of d(I, J), we obtain |d(I, J)− tn| 6 η(1/2n+1 + 1/2λn). In
the overall, we get

|Cost(r̃[n+ 1])− Cost(r[n+ 1])|
6 |Cost(r̃[n])− Cost(r[n])|+ |ω(`n)(d(I, J)− tn)|

6 3η

(
1− 1

2λn

)
+ η

(
1

2n+1
+

1

2λn

)
= η

(
3− 1

2λn−1
+

1

2n+1

)
6 η

(
3− 3

2n+1

)
= 3η

(
1− 1

2λn+1

)
the last inequality coming from the fact that λn 6 n, so that 1/2n−1 6
1/2λn−1.

– If λn+1 < n, then we know that λn+1 = λn and tn = 0, so that

|Cost(r̃[n+ 1])− Cost(r[n+ 1])| = |Cost(r̃[n])− Cost(r[n])|

6 3η

(
1− 1

2λn

)
(Ind. Hyp.)

6 3η

(
1− 1

2λn+1

)
.

The property is proved by induction, and we conclude as in Lemma 8. ut

Since Play((`,Mk), σ1, σ
(ε)
2) is an η-convergent play by construction, this

lemma permits to conclude that

Cost(Play((`, {Mk}), ξ1, ξ∗2))− ε 6 Cost(Play((`,Mk), σ1, σ
(ε)
2)) .

Once again, notice that this shows that Cost(Play((`,Mk), σ1, σ
(ε)
2)), and hence

also CValηA((`,Mk)), is greater than −∞.

35

B.4 Proof of the infinite case of Corollary 1

If ValÃ((`, {Mk})) = −∞, then it is sufficient to prove that ValA((`,Mk)) = −∞.
To do so, let M ∈ R and ξ1 a strategy of player 1 such that Cost((`, {Mk}), ξ1) 6
M . From the construction in [14], we know that we can choose ξ1 with the
following structure: the strategy follows the mean-payoff strategy, storing in its
memory the cost accumulated so far, and stops the mean-payoff execution to
reach a target state whenever the cost is low enough. In particular, the length
of this computation is bounded by a linear function over M of the shape CM
with C only depending on A. Following the same reconstruction as the one
given in Lemma 3, with η 6 ε/(CM max |π|), we can map strategy ξ1 into

an η-region-uniform strategy σ
(ε)
1 of A. In the overall, whatever strategy σ2

of player 2, we can build ξ2 in Ã that mimicks the play following the profile
(σ1, σ2) of strategies in A. However, the length of this play will necessarily be
bounded by CM , so that the difference of weight between the two plays is
bounded by ε. This suffices to prove that UVal

η

A((`,Mk)) 6 M . By Lemma 1,
this shows that ValA((`,Mk)) 6 M . Since this holds for every M , we conclude
that ValA((`,Mk)) = −∞.

Finally, if ValÃ((`, {Mk})) = +∞, then we prove that CValηA((`,Mk)) = +∞,
that is sufficient for the result by Lemma 2. We will indeed show that player
2 has a strategy σ2 to ensure a value +∞, i.e., ensuring that player 1 cannot
reach the target set of states. We again use our knowledge on the strategy ξ2
ensuring a cost +∞ in Ã: following the construction of Theorem 3, we know
that a memoryless strategy is enough. Similarly to the previous cases, we can
reconstruct a strategy σ2 in A. In particular, it automatically ensure that the
target set of states is not reachable by any strategy of player 1, which permits
to conclude easily.

C Detailed undecidability proofs

C.1 Counter machines

A two-counter machine M is a tuple (L,C) where L = {`0, `1, . . . , `n} is the set
of instructions—including a distinguished terminal instruction `n called HALT—
and C = {c1, c2} is the set of two counters. The instructions L are one of the
following types:
1. (increment c) `i : c := c+ 1; goto `k,
2. (decrement c) `i : c := c− 1; goto `k,
3. (zero-check c) `i : if (c > 0) then goto `k else goto `m,
4. (Halt) `n : HALT.

where c ∈ C, `i, `k, `m ∈ L. A configuration of a two-counter machine is a
tuple (l, c, d) where l ∈ L is an instruction, and c, d are natural numbers that
specify the value of counters c1 and c2, respectively. The initial configuration
is (`0, 0, 0). A run of a two-counter machine is a (finite or infinite) sequence of
configurations 〈k0, k1, . . .〉 where k0 is the initial configuration, and the relation
between subsequent configurations is governed by transitions between respective

36

instructions. The run is a finite sequence if and only if the last configuration is
the terminal instruction `n. Note that a two-counter machine has exactly one
run starting from the initial configuration. The halting problem for a two-counter
machine asks whether its unique run ends at the terminal instruction `n. It is well
known ([17]) that the halting problem for two-counter machines is undecidable.

C.2 Constrained-price reachability

Theorem 4. Deciding the existence of a strategy for constrained-reachability
objective Reach(./1) with ./ ∈ {6, <,=, >,>} is undecidable for PTGs with two
clocks or more.

Proof. We prove that the existence of a strategy for constrained-reachability
objective Reach(=1) is undecidable. The proofs for other objectives follow a
similar approach: we outline the changes at the end of this proof. In order to
obtain the undecidability result, we use a reduction from the halting problem
for two counter machines. Our reduction uses a PTG with arbitrary price-rates,
and zero prices on labels, along with two clocks x1, x2.

We specify a module for each instruction of the counter machine. On entry
into a module for increment/decrement/zero check, we always have that x1 =

1
5c17c2 and x2 = 0 where c1 (resp. c2) is the value of counter C1 (resp. C2). Given
a two counter machine, we construct a PTG A whose building blocks are the
modules for instructions. The role of Player 1 will be to simulate faithfully the
machine by choosing appropriate delays to adjust the clocks to reflect changes
in counter values. Player 2 will have the opportunity to verify that Player 1 did
not cheat while simulating the machine. We shall now present the modules for
decrement, increment and zero-check instructions of the two counter machine.

Simulate decrement instruction. Fig. 2 gives the complete module for the
instruction to decrement C1. Let us denote by xold = 1

5c17c2 the value of x1 while
entering the module. At the location `k+1 of the module, x1 = xnew should be
5xold to correctly decrement counter C1.

At location `k, Player 1 spends a nondeterministic amount of time k = xnew−
xold such that xnew = 5xold + ε. To correctly decrement C1, ε should be 0, and
k must be 4

5c17c2 . At location Check, Player 2 could choose to go to Go (in
order to continue the simulation of the machine) or to go to the widget WD1, if
he suspects that ε 6= 0. If Player 2 spends t time in the location Check before
proceeding to `k+1, then Player 1 can enter the location Abort from Go (to
abort the simulation), spend 1 + t time in location Abort and reach a target T1
with cost = 1 (and thus achieve his objective). However, if t = 0 then entering
location Abort will make the cost to be > 1 (which is losing for Player 1). In
this case, player 1 will prefer entering `k+1 from Go.

If player 2 spends t time in location Check, and enters widget WD1, then the
cost upon reaching the target in the widget WD1 is 1 + ε which is 1 iff ε = 0
(see Table 1).

Let us summarize the construction. Let us assume that when entering `k
(see Fig. 2) the value of x1 (resp. x2) is 1

5c17c2 (resp. 0). First, let us consider

37

Table 1. Cost Incurred in WD1

Location → L M N T

x1 while entering xnew + t delay in
Check is t

0

x2 while entering xnew − xold + t 1− xold 0 1

Time elapsed at 1− xnew − t xold 1 -

Cost incurred at −1 + xnew + t −5xold 2 -

Total cost upon
reaching target

cost of −t due to delay in
Check and xnew = 5xold + ε

gives a total cost
−t+ 1 + xnew + t− 5xold =

1 + ε = 1 iff ε = 0

0

`k

0

I

−5

Check

0

Go

`k+1

1

Abort T1
x1=1

{x1}
0<x1<1 {x2} x2=0

x2=0

x2>1

−5

L

−1

M

6

N T

x1=1

{x1}
x2=2

{x2}
x2=1

{x2}

x161

W
I 1

Fig. 9. Reach(=1) : Widget to simulate increment counter C1 instructions

the case where Player 1 simulates correctly the machine (i.e., if Player 1 spends
4

5c17c2 time units in `k). In this case, Player 2 has three possibilities: (i) either
Player 2 goes immediately to Go, in this case Player 1 has no incentive to go
to the location Abort and thus the simulation of the machines goes on; (ii) or
Player 2 goes to Go after delaying some time t > 0 in the location Check, in
this case Player 1 will go to the location Abort in order to immediately achieve
his objective; (iii) or Player 2 goes to the widget WD1, in this case, as Player
1 has correctly simulated the machine, Player 1 achieves his objective. Let us
now turn to the case where Player 1 does not simulate the machine faithfully.
In this case, Player 2 has the possibility to reach the target location with a cost
different from 1 by using the widget WD1. In conclusion, if Player 1 simulates
the machine properly either the simulation continues or he achieves his objective
immediately; and if Player 1 does not simulate the machine properly, then Player
2 has a strategy to reach a target location with a cost different from 1.

Simulate Increment instruction. Fig. 9 gives the complete module for incre-
ment instruction. The construction is similar to that as decrement.

Simulate Zero-check instruction. The module for the Zero check instruction
(`k : if C2 = 0 goto `k+1 else goto `k+2) is depicted in Fig. 10 and its widgets
are in Fig. 11 and 12.

Player 1 guesses whether C2 is zero or not and Player 2 has the possibility
to check if the guess of Player 1 is correct by entering the corresponding widget.

38

0

`k
0

Checkc2=0

W=0
2

0

Checkc2 6=0

W6=0
2

`k+1

`k+2

x2 = 0

x2 = 0

x2 = 0

x2 = 0

x2 = 0

x2 = 0

Fig. 10. Widget WZ2 simulating zero-check for C2

0

A

0

B

−1

Check

WD1

1

Abort

1

D T2T3

x2=0
x161, {x2}

x1=1 ∧ x2 = 0 x1>1, {x2}

x2>1x2=1
1

AbortT1

x2=0

x2>1

Fig. 11. Widget W=0
2 . Note that if the delay in Check is > 0 then Player 1 will go to

Abort and reach a target with cost = 1. Widget WD1 is the same as in the decrement

module. Delay at B is k = 4×5i

5c17c2
+ε. If ε 6= 0 then Player 2 will enter the widget WD1

and the target in WD1 is reached with cost 6= 1.

0

A

0

B

−1

Checkc1

WD1

−1

Checkc2

WD20C

1

D

1 C′T2

T3

x2=0
x161, {x2}

x161, {x2}

x1=1 ∧ x2=0

x1<1 ∧ x2=0

x1=1 ∧ x2=0

x2=1

x2>1
1

Abort T1

x2=0

x2>1

x1>1, {x2}

1

Abort T4

x2=0
x2>1

x1>1, {x2}

Fig. 12. Widget W 6=0
2 . Widget WD2 is similar to WD1 in the decrement module shown

earlier, except that the prices are adjusted to verify decrement of counter C2 instead
of C1.

39

In the widget depicted in Fig. 11, in order to verify if C2 is indeed zero, C1 is
repeatedly decremented (using a construction similar to Decrement module in
Fig. 2) until C1 becomes 0. At that point, if x1 is not 1 then clearly C2 was
nonzero, and Player 1 has made an error in guessing. In this case, the total cost
incurred will be greater than 1. However, if indeed C2 was zero, then the total
cost incurred is 1 for the following reasons:

– If some time has elapsed at location Check, and still x1 is less than 1, Player 1
can go to Abort from location B. However, if time has elapsed at Check and
x1 > 1, the only option is to go to Abort from Check; then Abort goes to
T2. If Player 1 cannot control x1 not exceeding 1, then in that case, Player 2
will spend 0 units of time in Check, and then Player 1 will pay a cost > 1
on reaching T2.

In a similar manner, if Player 1 guesses that C2 6= 0, then Player 2 verifies
it by entering the widget in Fig. 12. In this case, C1 is first decremented (the
decrement module may be called several times) until it reaches 0, and then C2

is decremented until it also reaches 0 (the decrement module is called at least
once):

– Entry to C happens with x1 < 1 and x2 = 0. To get to C ′, some time elapse
is needed at C. However, then x2 > 0, so directly there is no access to C ′,
without going to Checkc2 (ensuring that the decrement module for C2 is
taken at least once). To not get punished through Checkc2 , Player 1 has to
elapse a time of the form 6

5i7j : hence, if C2 = 0, this time elapse must be
6
5i , if C was entered with x1 = 1

5i . Due to C2 = 0, at some point, 6
5i will

exceed 1; at that time, Player 2 will spend 0 unit of time in Check, and go
to Abort. That will punish Player 1.

Note that Player 2 can not delay in the zero check module due to clock con-
straints. In the widgets W=0

1 and W 6=0
1 however, Player 2 can delay at the Check

locations. As in the decrement module, we offer to Player 1 the option to abort
(via the Abort location) : if t units of time was spent at location Check, then
the cost incurred will be 1 + p − t where p > 0 is chosen by Player 1. Table 2
shows the cost incurred in the widget W6=0

2 when Player 1 guesses C2 6= 0.

To summarize the zero check instruction for C2: assume that at location `k,
we enter with x1 = 1

5i (hence C2 = 0) and x2 = 0. First let us consider the
case when Player 1 guesses correctly that C2 is zero: in this case, Player 2 has
2 possibilities: (i) continue with the next instruction, (ii) simulate the widget
W=0

2 . In both cases, no time elapse is possible at location Checkc2 . Player 1
achieves his objective even on entering widget W=0

2 due to his correct guess. Let
us now turn to the case when Player 1 made a wrong guess. Then, Player 2 has
the capability to invoke widget W 6=0

2 and in this case, Player 1 will incur a cost
different from 1. A similar analysis applies to the case when we start in `k with
x1 = 1

5i7j .

Correctness of the construction. On entry into the location `n (encoding
the HALT instruction of the two-counter machine), we reset clock x1 to 0; `n
has cost 1, and the edge coming out of `n goes to a Goal location, with guard
x1=1.

40

Table 2. Cost incurred in widget W 6=0
2

Location → A B D T3 C C′ T2

x1 while
entering

1
5c17c2

5i

5c17c2

loop taken
i times

1
5i

5c17c2
= 1

⇒ i = c1 ∧
c2 = 0

7j

7c2

loop taken
j times

1
5i7j

5c17c2
= 1

⇒ i = c1 ∧
j = c2 > 0

x2 while
entering

0 0 0 > 1 0 0 1

Time
elapsed at

0 4×5i

5c17c2
+ ε > 1 0 6×7j

7c2
+ ε 1 0

Cost
incurred at

0 0 > 1 0 0 1

Total cost > 1 1

1. Assume that the two counter machine halts. If Player 1 simulates all the
instructions correctly, he will incur a cost 1, by either reaching the goal
location after `n, or by entering a widget (the second case only occurs if
Player 2 decides to check whether Player 1 simulates the machine faithfully.
If Player 1 makes an error in his computation, Player 2 can always enter
an appropriate widget, making the cost different from 1. In summary, if the
two counter machine halts, Player 1 has a strategy to achieve his goal (i.e.,
reaching a target location with a cost equal to 1).

2. Assume that the two counter machine does not halt.
– If Player 1 simulates all the instructions correctly, and if Player 2 never

enters a widget, then Player 1 incurs cost ∞ as the path never reaches
a target.

– Suppose now that Player 1 makes an error. In this case, Player 2 always
has the capability to reach a target set with a cost different from 1.

In summary, if the two counter machine does not halt, Player 1 does not
have a strategy to achieve his goal.
Thus, Player 1 incurs a cost 1 iff he chooses the strategy of faithfully sim-

ulating the two counter machine, when the machine halts. When the machine
does not halt, the cost incurred by Player 1 is different from 1 if Player 1 made
a simulation error and Player 2 entered a widget. Else if a widget is not entered
then the run does not end and cost is +∞. ut

We briefly discuss the difference with the proofs for other constrained-price
reachability objectives.
– Reach(<1). We use 2 clocks x1, x2, and a module for each instruction of the

two counter machine. On entry into a module for increment/decrement/zero
check, x1 = 1

5c17c2 and x2 = 0.
We discuss the case of decrementing counter C1. Fig. 13 gives the complete
module for the instruction to decrement C1. To simulate the decrementation
correctly, Player 1 has to elapse 4

5c17c2 units of time at `k. At the location
Check, Player 2 can either continue to `k+1 after elapsing t > 0 units of

41

0

`k

−1

Check

0

Go

`k+1

1

Abort T
0<x1<1 {x2} x2=0

x2=0

x2=1

1

A

5

B

−1

C T1

x1=1

{x1}
x2=1

{x2}
0<x2<1

W
D

< 1

−1

L

−5

M

2

N

−1

N T2
x1=1

{x1}
x2=1

{x2}
x2=1

{x2}
0<x2<1

W
D

> 1

Fig. 13. Reach(<1): Simulation to decrement counter C1

time, or enter a widget to check the choice of Player 1. Consider the case
when Player 2 proceeds to `k+1 after elapsing a time t > 0. This incurs a
cost −t. Then Player 1 can go to location Abort, and spend 1 unit of time
there, reaching a target with cost 1 − t < 1. Assume now that Player 1
spends 4

5c17c2 + ε units of time in `k, and Player 1 spends t > 0 units of time
at Check. Since Player 1 has elapsed more time than what he should have,
Player 2 enters the widget WD>

1 . The cost incurred so far is −t. On entry
into WD>

1 , we have x1 = 5
5c17c2 + ε+ t, x2 = 4

5c17c2 + ε+ t. Then, the total
accumulated cost becomes −1 + 5

5c17c2 + ε on coming out of L, and then
becomes −1 + ε on coming out of M ; this further becomes 1 + ε on entering
O. At location O, time 0 < p < 1 has to be spent, making the total cost to
be 1 − p + ε. Time p is chosen by Player 2. Thus, if ε = 0 (hence, Player 1
made no error), the cost incurred is less than 1; however, when ε > 0, p can
always be chosen to be at most ε, thereby making the total cost at least 1.
A similar analysis can be done when Player 1 incurs a delay 4

5c17c2 −ε, ε > 0
at location `k. In this case, Player 2 enters widget WD<

1 .
The increment and zero-check instructions are obtained by a similar ap-
proach.

– Reach(61). We use 2 clocks x1, x2, and a module for each instruction of the
two counter machine. On entry into a module for increment/decrement/zero
check, x1 = 1

5c17c2 and x2 = 0 where c1(c2) is the value of counter C1(C2).
We discuss the case of decrementing counter C1. Fig. 14 gives the complete
module for the instruction to decrement C1. As in the case of the objective
Reach(<1), Player 1 has to elapse a time 4

5c17c2 at `k. If Player 2 elapses
t > 0 units of time in Check and proceeds to `k+1, then Player 1 has the
option to go to Abort, and reach a target with a total cost of −t + 1 + k,
where 1 + k is the time elapsed at Abort. k can be chosen by Player 1 so
that 1 + k − t 6 1.
Let us consider the case when Player 1 spends 4

5c17c2 − ε units of time in
`k, with ε > 0 and Player 1 spends t > 0 units of time at Check. Player 2
then will proceed to the widget WD<

1 . On entry into WD<
1 , we have x1 =

42

0

`k

−1

Check

0

Go

`k+1

1

Abort T
0<x1<1 {x2} x2=0

x2=0

x2>1

1

A

5

B

−1

C T1

x1=1

{x1}
x2=1

{x2}
0<x2<1

W
D

< 1
−1

L

−5

M

2

N

−1

N T2
x1=1

{x1}
x2=1

{x2}
x2=1

{x2}
0<x2<1

W
D

> 1

Fig. 14. Reach(61): Simulation to decrement counter C1

5
5c17c2 −ε+ t, x2 = 4

5c17c2 −ε+ t, and an incurred cost of −t. On entering M ,
we have an accumulated cost of 1− 5

5c17c2 + ε− 2t, and further on entering
N , the accumulated cost becomes 1 + ε− 2t. Finally, when T is entered, the
total cost is 1 + ε − 2t − p, where 0 < p < 1 is a delay chosen by Player 2.
Clearly, 1 + ε − 2t − p < 1 if ε = 0. However, if ε 6= 0, Player 2 can adjust
the values of p, t in such a way that 2t + p < ε, there by making the total
cost > 1.
A similar analysis can be done when Player 1 incurs a delay 4

5c17c2 +ε, ε > 0
at location `k. In this case, Player 2 enters widget WD>

1 .
The increment and zero-check instructions are obtained by a similar ap-
proach.

– Reach(>1). We use 2 clocks x1, x2, and a module for each instruction of the
two counter machine. On entry into a module for increment/decrement/zero
check, x1 = 1

5c17c2 and x2 = 0 where c1(c2) is the value of counter C1(C2).
We discuss the case of decrementing counter C1. Fig. 15 gives the complete
module for the instruction to decrement C1. As in the previous two objec-
tives, Player 1 has to spend a time 4

5c17c2 at `k. If Player 2 elapses t > 0
units of time in Check and proceeds to `k+1, then Player 1 has the option
to go to Abort, and reach a target with a total cost of t+ k, where k < 1 is
the time elapsed at Abort by Player 1. k can be chosen by Player 1 so that
t+ k > 1.
Let us consider the case when Player 1 spends 4

5c17c2 − ε units of time in
`k, with ε > 0 and Player 1 spends t > 0 units of time at Check. Player 2
then will proceed to the widget WD<

1 . On entry into WD<
1 , we have x1 =

5
5c17c2 − ε + t, x2 = 4

5c17c2 − ε + t, and an incurred cost of t. On entering
M , we have an accumulated cost of −1 + 5

5c17c2 − ε + 2t, and further on
entering N , the accumulated cost becomes −1− ε+ 2t. On entering O, the
accumulated cost becomes 1 − ε + 2t, and finally, on entering T , the total
cost is 1− ε+ 2t+ p, where 0 < p < 1 is a delay chosen by Player 2. Clearly,
1− ε+ 2t+ p > 1 if ε = 0. However, if ε 6= 0, Player 2 can adjust the values
of p, t in such a way that 2t+ p 6 ε, there by making the total cost 6 1.

43

0

`k

1

Check

0

Go

`k+1

1

Abort T
0<x1<1 x1 6 1

{x2}
x2=0

x2=0

x2<1

1

A

5

B

−1

C T1

x1=1

{x1}
x2=1

{x2}
0<x2<1

W
D

> 1
−1

L

−5

M

2

N

−1

N T2
x1=1

{x1}
x2=1

{x2}
x2=1

{x2}
0<x2<1

W
D

< 1

Fig. 15. Reach(> 1) : Simulation to Decrement Counter C1

– Reach(>1). It can be seen that a proof along similar lines as in the case of
Reach(>1) can be given.

C.3 Bounded-time reachability objective

Lemma 10. The existence of a strategy for bounded-time reachability objective
TBReach(18, 40) is undecidable for PTGs with price-rates taken from {0, 1} and
5 clocks or more.

Proof. We prove that the existence of a strategy for bounded-time reachability
objective ensuring a cost at most 18 within 40 time units of total elapsed time
is undecidable. In order to obtain the undecidability result, we use a reduction
from the halting problem for two counter machines. Our reduction uses PTGs
with price-rates in {0, 1}, zero prices of labels, and 6 clocks.

We specify a module for each instruction of the two counter machine. On
entry into a module for the (k+1)th instruction, we have one of the clocks x1, x2
having the value as 1

2k+c13k+c2
, and the other one having value 0. Values c1 and

c2 represent the values of the two counters, after simulation of k instructions. A
clock z keeps track of the total time elapsed during simulation of an instruction:
we always have z = 1− 1

2k
at the end of simulating k instructions. Thus, a time

of 1
2 is spent simulating the first instruction, a time of 1

4 is spent simulating the
second instruction and so on, so that the total time spent in simulating the main
modules corresponding to increment/decrement/zero check is less than 1 at any
point of time. Two clocks a and b are used for rough work, and for enforcing
urgency in some locations.

Again, the role of Player 1 is to simulate the machine faithfully by choos-
ing appropriate delays to adjust clock values in order to reflect the changes in
counter values, and also to reflect the total time elapsed. Player 2 will have the
opportunity to check if Player cheated while simulating the machine. We now
present the modules for decrement, increment and zero-check instructions.

44

Simulate increment instruction. Fig. 16 gives the complete increment mod-
ule with respect to counter C1. Assume this is the (k + 1)th instruction that
we are simulating. Also, as mentioned earlier, one of x1, x2 will have the value
of 1

2k+c13k+c2
on entry, while the other will be zero. Without loss of generality,

assume x1 = 1
2k+c13k+c2

, while a = b = x2 = 0, and z = 1 − 1
2k

. At the end of

the module we want x2 = 1
2k+1+c1+13k+1+c2

and x1 = 0 and z = 1− 1
2k+1 .

Let t1 and t2 be respectively the time spent at locations `k+1 and L. We
want to check that t1 + t2 = 1

2k+1 , t2 = 1
2k+1+c1+13k+1+c2

. This will ensure that
the clocks keep track of the total time elapsed, as well as the increment of C1.
Player 2 has two widgets at his disposal to check each of these:

1. WZ is a widget (that can be used by Player 2) in order to check that the
total time elapsed in any module corresponding is correct. More precisely
Player 2 has the opportunity to check (by means of the module WZ) that
the execution of the module corresponding to the (k+ 1)th instruction takes
exaclty 1

2k+1 time units (recall that this time is recorded in clock z).
2. WI1 is a widget (that can be used by Player 2) in order to check that counter
C1 is indeed incremented properly.

Upon entering the location Check, the values of clocks are a = t1 + t2, z =
1− 1

2k
+ t1 + t2, x1 = t2, x2 = 1

2k+c13k+c2
+ t1 + t2 and b = 0.

– Widget WZ: The role of widget WZ is to check if the value of the clock z is
1− 1

2k+1 when the location Check is reached. The PTG corresponding to WZ
is depicted in Fig. 16, and a cost analysis of WZ is presented in Table 3.8

WZ is a general template for two widgets, based on the actual values of the
price-rates. These two widgets are WZ< and WZ>. In widget WZ>, price-
rates b1 = c1 = c2 = e = 1 and the other ones are zero, while in widget
WZ<, price-rates a1 = d = e = 1 and the other ones are zero.
It can be seen that if t1 + t2 <

1
2k+1 , then the total cost incurred in WZ<

is strictly more than 18; similarly, if t1 + t2 > 1
2k+1 , then the total cost

incurred in WZ> is strictly more than 18. Player 2 can choose one these
widgets appropriately. In case t1 + t2 = 1

2k+1 , then the total cost incurred in
either widget is exactly 18.

– Widget WI1: The widget WI1 in Fig. 16 ensures that upon entering the
location Check, the value of the clock x2 = t2 = 1

2k+1+c1+13k+1+c2
= 1

12 ×
1

2k+c13k+c2
= n

12 . This indeed accounts for increment of counter C1, and also

for reaching the end of k + 1th instruction while keeping the value of C2

unchanged.
The widget WI1 in Fig. 16 is again a general template for two widgets
WI<1 and WI>1 , obtained by fixing the prices at various locations. The prices
a, b, c, d, e, f are values > 0. It must be noted that we only need prices in
{0, 1} for each location; using general prices is a short hand notation for a
longer path which will use only prices from {0, 1}. In widget WI<1 , (in the
shorthand notation), we have prices a = d = 1, f = 11, h = 6 and the rest

8 Notice that in the table, the line “time elapse” represents time elapsed in the current
location, and not the time elapsed before reaching the current location.

45

0

`k+1

0

L

0

Check

[b = 0]

`k+2

{x2} 0 < x1, x2, z < 1

{b}

{x1, a}

a1

A1

b1

B1

c1

C1

a2

A2

b2 B2

c2

C2

d

D

e

EF

z=1

{z}
a=1

{a}
b=1

{b}
z=1

{z}

a=1 {a}

b=1

{b}
a=1a=18

W
Z

a

A

b

B

c

C

d

D

e E

f

F

g

G

h

HI

x2=1

{x2}
a=2

{a}
x1=3

{x1}

x2 = 1 {x2}

a=1

{a}
b=3 {b}

x2 = 1 {x2}

x2=1

{x2}
b=1

{b}
b=1W

I 1

ρ1 2

F

0

G

0

I

x2=1

{x2}
b=1

{b}

ρ2 1

F1

0

G1

1

F2

0

G2

0

I

x2=1

{x2}
b=1

{b}
x2=1

{x2}
b=1

{b}

Fig. 16. TBReach(18, 40): Simulation of instruction : `k+1: increment C1. WZ is a
template for two widgets WZ< and WZ>, based on the actual values of price-rate
parameters. WZ> has prices b1 = c1 = c2 = e = 1 and rest are 0, while WZ< has
a1 = d = e = 1 and rest are zero. Similarly, widget WI1 is template for two widgets
WI<1 (a = d = 1, f = 11, h = 6) and WI>1 (c = 1, g = 12, h = 17). Path ρ1 is the
shorthand notation with larger prices for longhand notation of path ρ2 using prices 0,1
only.

46

Table 3. TBReach(18, 40) : Cost Incurred in WZ: Total time elapsed= 19− t < 20

Location →
i ∈ {1, 2} Ai Bi Ci D E

z
on entry

1− 1
2k

+ t1 + t2
= 1− 1

2k
+ t

t = t1 + t2

0 1− 1
2k

- -

a
on entry

t 1
2k

0 1

b
on entry

0 1
2k
− t 1− t 0 -

time
elapsed at

1
2k
− t 1− 1

2k
t 1− t 17

Widget WZ>

check t > 1
2k+1

prices
b1, c1, c2, e : 1

rest : 0

cost incurred at 0 1− 1
2k

at B1

2t
t at C1

t at C2

0 17

Total Cost
at target

- - - -

1− 1
2k

+ 2t+ 17
= 18 if t = 1

2k+1

> 18 if t > 1
2k+1

Widget WZ<

check t < 1
2k+1

prices
a1, d, e : 1

rest : 0

cost incurred at
1
2k
− t

at A1
0 0 1− t 17

Total Cost
at target

- - - -

18 + 1
2k
− 2t

= 18 if t = 1
2k+1

> 18 if t < 1
2k+1

are zero. Likewise, in widget WI>1 , we have (in shorthand notation), prices
c = 1, g = 12, h = 17 and the rest of the prices 0. Player 2 uses WI<1 to
check if t2 <

n
12 , and uses WI>1 to check if t2 >

n
12 . Table 4 runs the reader

through the widgets WI<1 and WI>1 . While reading the table, keep in mind
that n = 1

2k+c13k+c2
and that t = t1 + t2. As can be seen from the table, the

total cost incurred is exactly 18 iff t2 = n
12 .

To summarize the simulation of the (k + 1)th instruction, which is an incre-
ment C1 instruction: assume we enter `k+1 with values x1 = 1

2k+c13k+c2
, while

a = b = x2 = 0, and z = 1 − 1
2k

. First let us consider the case when Player 1
correctly simulates the machine, respecting the time limit: then Player 1 spends
a total of 1

2k+1 time across `k+1 and L, and a time 1
2k+1+c1+13k+1+c2

at L. Player
2 has 3 possibilities : (i)either Player 2 directly goes to the next instruction `k+2

47

Table 4. TBReach(18, 40): Cost incurred in WI1. Recall t1 + t2 = t. Also, total time
elapsed in WI>1 and WI<1 in the long hand notation is 6 3 + 12 + 17 = 32

Loc → A B C D E F G H I

x1
on entry

n+ t 1 + n+ t1 2 + n 0 - - - - -

x2
on entry

t2 0 1− t1 1− t1 − n 1− t1 t2 0 - -

a
on entry

t 1 + t1 0 1− n 0 - - - -

b
on entry

0 1− t2 2− t 3− t− n 3− t 0 1− t2 0 1

time
elapsed at

1− t2 1− t1 1− n n t 1− t2 t2 1 0

WI<1
checks

if t2<
n
12

prices
a, d=1

f=11,h=6
rest : 0

cost
incurred at

1− t2 0 0 n 0 11− 11t2 0 6 -

Total cost
at target

- - - - - - - -
18− 12t2 + n
=18 if t2= n

12

>18 if t2<
n
12

WI>1
checks

if t2>
n
12

prices
c=1, g=12,
h=17

rest : 0

cost
incurred at

0 0 1− n 0 0 0 12t2 17 -

Total cost
at target

- - - - - - - -
18 + 12t2 − n
=18 if t2= n

12

>18 if t2>
n
12

and thus the simulation of the machine goes on, or (ii) Player 2 goes to one
of the widgets WZ> or WZ<; in this case, since Player 1 has spent the right
amount of time in `k+1 and L together, he achieves his objective, or (iii) Player
2 goes to one of the widgets WI>1 or WI<1 ; again, in this case, since Player 1 has
spent the right amount of time at L, he achieves his objective. Let us now turn
to the case when Player 1 does not spend the right amount of time in `k and
L together; in this case, Player 2 can always enter one of the widgets WZ> or
WZ< and reach a target with a cost > 18. Similarly, if Player 1 does not spend

48

0

`k+1

0

L

0

Check

[b = 0]

WZ WI

{x2} 0 < x1, x2, z < 1

{b}
0

Z

[b = 0]

0

Checkc1=0

W=0
1

0

Checkc1 6=0

W6=0
1

`1k+2

`2k+2

{x1}

b = 0

{a}

b = 0

b = 0

{a}
b = 0

Fig. 17. TBReach(18, 40): Simulation of instruction zero check C1 = 0. Widget WZ
given in Fig. 16, and WI is similar to WI1 differing only in prices. WI verifies if x2 =
1
6

1

2k+c13k+c2
.

the right amount of time in L (and therefore did not increment C1 properly),
then again Player 2 has the possibility to reach a target with a cost > 18 using
one of the widgets WI>1 or WI<1 .

Simulate decrement instruction. The module to decrement counter C1 is
the same as the module to increment C1 in Fig. 16. We replace only the widget
WI1 by the widget WD1. This widget ensures that the time spent t2 at L (and
hence the value of x2) is 1

2k+1+c1−13k+1+c2
= 1

2k+c13k+1+c2
= 1

3
1

2k+c13k+c2
. WD1

can be obtained by a simple modification of the prices in WI1.

Simulate Zero-check instruction. Consider `k+1: if C1 = 0 then goto l1k+2

else goto l2k+2. During the simulation of this instruction, we need to ensure that
all the clocks are updated to account for reaching the end of (k+1)th instruction
and the counter values remain unchanged.

The module for zero check is given in Fig. 17. At the location labelled Check,
the widgets WZ and WI ensure that the clocks z and x2 are updated to account
for reaching the end of the (k+1)th instruction. This is similar to the increment
module. If the values of clocks on entering `k+1 are z = 1− 1

2k
, x1 = 1

2k+c13k+c2

then upon entering Check they are z = 1 − 1
2k+1 , x2 = 1

2k+1+c13k+1+c2
. No time

elapses at the Check location. At location Z, no time elapses, and Player 1
guesses the value of counter C1 and goes to either of the locations Checkc1=0

or Checkc1 6=0. Based on the choice of Player 1, Player 2 can go to one of the

widgets W=0
1 (in Fig. 18) or W6=0

1 (similar to W=0
1), if he suspects that Player 1

has made a wrong guess.

– Widget W=0
1 given in Fig. 18. We have x2 = 1

2k+1+c13k+1+c2
, on entering the

L1 of Widget W=0
1 . To check if c1 = 0, we first convert x2 to be of the form

1
2c13c2 by multiplying x2 by 6k+1.

49

0{z}
L1

0

L2

0

Check1

[b = 0]

0

L3

0

L4

0

Check2

[b = 0]

DB a

Hex x′

{x1} a 6 1

{b}

a = 1, {x2}

a < 1

{z, x2}

{x2} a 6 1

{b}

a 6 1

{z, x1}

0

I

0

J

0

M

0

Checkx

[b = 0]

DB x

1

N1T1

1

N2 T2

a=1
∧z=0

x1=1

x2<1
{x2}

z=1

{x1}

x2>0 ∧ x1=0 ∧ z=0
x1 > 0

{b}
{x1}

x2 > 1{x1}x2 = 1 {x1}

x1 = 18 x1 = 19

a

A

b

B

c

C

d

D

e

E F
z=1

{z}
a=2

{a}
z=1

{z}
b=2

{b}
b=17D

B
a

a1

A1

b1

B1

c1

C1

d1

D1

e1

E1

f1

F1 I

x1=1

{x1}

x2 = 1
{x2}

b=1

{b}
z=2

{z}

x2 = 1
{x2}

x2=1

{x2}
z=1

{z}
z=1H

ex
x

Fig. 18. TBReach(18, 40): Widget W=0
1 entered with a = 1

2k+1 = α and x1 = x3 =
1

2k+1+c13k+1+c2
= β. Widget DBa checks if upon entry a = α+ t and z = t then t = α.

Times spent : 1 − t at A, 1 − α at B, α at C, t at D and 17 at E. DBa stands for 2
widgets, to check α > t (a, c, e = 1) and to check α < t (d, b, e = 1). Widget Hex x
checks that if x1 = t, x2 = β + t + k and z = t + k then t = 6β. Again, this stands
for two widgets, one when t < 6β (a1 = 1, e1 = 6, f1 = 17), and the other when
t > 6β (d1 = 6, b1 = 1, f1 = 12). DBx is same as DBa where a, z are replaced by x2
and x1 respectively. Widget Hex x′ is the same as widget Hex x with roles of x1 and
x2 reversed.

50

Let α = 1
2k+1 and β = 1

2k+1+c13k+1+c2
. The location L1 is entered with

a = 1
2k+1 = α and x2 = 1

2k+1+c13k+1+c2
= β. Let t1, t2 be the times spent

at locations L1, L2 respectively. Then, on entering Check1, we have a =
α + t1 + t2, z = t1 + t2, x2 = β + t1 + t2 and x1 = t2. The widget DB a
(Fig. 18) ensures that t1 + t2 = α, i.e; a has been doubled. Similarly, the
widget Hex x (Fig. 18) ensures that t2 = 6β. No time is spent at Check1.
We repeatedly keep multiplying a by 2 until a becomes equal to 1. For this,
we once take the path L1 to Check1, using clock x1, and the next time, use
the path L3 to Check2, using clock x2. Note that when a becomes 1 after k+1
iterations, we have also multiplied β with 6k+1. Due to the alternation of
clocks x1, x2 in paths L1 to Check1 and Check1 to Check2, the value β ∗6k+1

could be either in x1 or x2 while the other clock is 0. We ensure (via locations
I, J) that x2 = 6k+1β and x1 = 0 upon entering M . Hence, we get after k+1
iterations, a = 1 = 2k+1α and x2 = 6k+1β = 6k+1 1

2k+1+c13k+1+c2
= 1

2c13c2 .
At this point, we are at location M .
Now each time the loop between M and Checkx is taken, value in x2 is
doubled; the widget DB x checks this. Repeatedly doubling x2 i times gives
x2 = 2i 1

2c13c2 . If this value is 1, then we know i = c1, and c2 = 0. When this
happens we reach location N1, from where a target is reached with cost 18.
If c2 6= 0, then after some j iterations of the loop between Checkx and M ,
we will obtain x2 = 1

3c2 . Note that we can neither go to N1 nor N2 at this
point, so the only option is to continue the loop between M and Checkx.
Clearly, x2 will never become 1; so the only option is for x2 to grow larger
than 1. At that point, the transition to N2 is enabled, and we reach a target
with a cost 19.

– Time spent in widget W=0
1 : if L1 was entered for the first time with a =

1
2k+1 = α, then the time spent in L1 and L2 before Check1 is entered is
t = α. After visiting L1, L2, the next time we use L3, L4. Since we enter
L3 for the first time with a = 2α, the time spent in L3, L4 is 2α. The
next time we visit L1, we will be spending 4α and so on. Proceeding like
this, we know that the total time spent in this loop before M is reached is
α+ 2α+ 4α+ · · ·+ 1

2 which is always < 1. A similar argument holds for the
time spent in the loop between M and Checkx. This apart, we spend 18 or
19 units of time (at N1 or N2) or at most 25 units of time in the widgets
(Hex x), thus adding upto a total time that is at most < 28.

– The widget W 6=0
1 is similar to W=0

1 . The loop between M and Checkx is
retained, as is. In addition, when x2 < 1 and x1 = 0, we go to a location
M1 from M . The idea is to first multiply x2 repeatedly till we obtain x2 =
1

3c2 < 1, at which point of time, we go to M1. From M1, we have a loop
between M1 and an urgent Player 2 location Check′x, and a widget Triple x
is attached to Check′x. Each time we come back to M1 from Check′x, we reset
x1. Finally, if we get x2 = 1, x1 = 0, then we go from M1 to a location M2

having price 1. Elapsing 18 units of time in M2, we reach a target with cost
18. However, if x2 exceeds 1, then with the guard x2 > 1, x1 = 0?, we go
from M1 to a location M3 having price 1. To reach a target from M3, one

51

has to elapse 19 units of time, thereby incurring a cost 19. Clearly, the route
via M3 will be needed iff c2 = 0.

– The total time spent in W6=0
1 will also be less than 28.

To summarize the zero check instruction for C1: assume we start with x1 =
1

2k+c13k+c2
, z = 1

2k
at location `k+1 of Fig. 17. Let us consider the case when

Player 1 correctly simulates the instructions within time limits. In this case,
location Check is reached with z = 1

2k+1 and x2 = 1
2k+c1+13k+c2+1 . Player 2 has

the possibility to test if this is indeed the case, by visiting widgets WZ,WI;
however Player 1 will achieve his objective in that case. At location Z, Player 1
then correctly guesses whether C1 is zero or not, by appropriately choosing one
of the locations Checkc1=0 or Checkc1 6=0. Again, Player 2 has the possibility to

check if Player 1’s guess is correct by visiting widgets W=0
1 and W 6=0

1 ; however,
Player 1 will achieve his objective here as well. Now consider the case that Player
1 made a mistake: if he did not spend the right amount of time in `k+1 and T2,
then Player 2 has the opportunity to punish him through the widgets WI and
WZ; if he made a wrong guess regarding C1 being zero or non-zero, then again
Player 2 has a possibility to punish him through the widgets W=0

1 and W 6=0
1 .

Correctness of the construction. On entry into the location `n (for the
HALT instruction), we reset clock x1 to 0; `n has cost 1, and the edge coming
out of `n goes to a Goal location, with constraint x1 6 18.

1. Assume that the two counter machine halts. If Player 1 simulates all the
instructions correctly, he will incur a cost 6 18, by either reaching the goal
location after `n, or by entering a widget (the second case only occurs if
Player 2 decides to check whether Player 1 simulates the machine faithfully.
If Player 1 makes an error in his computation, Player 2 can always enter
an appropriate widget, making the cost greater than 18. In summary, if the
two counter machine halts Player 1 has a strategy to achieve his goal (i.e.,
reaching a target location with a cost at most 18).

2. Assume that the two counter machine does not halt.
– If Player 1 simulates all the instructions correctly, and if Player 2 never

enters a check widget, then Player 1 incurs cost∞ as the path is infinite.
Notice that even in this case, the total time needed for the computations
will be less than 1, due to the strictly decreasing sequence of times chosen
for simulating successive instructions. In this case, Player 2 will never
want to enter a widget, since he gets a higher payoff.

– Suppose now that Player 1 makes an error. In this case, Player 2 always
has the possibility to reach a target set with a cost greater than 18.

In summary, if the two counter machine does not halts Player 1 does not
have a strategy to achieve his goal.

Thus, Player 1 incurs a cost at most 18 iff he chooses the strategy of faithfully
simulating the two counter machine, when the machine halts. When the machine
does not halt, the cost incurred by Player 1 is greater than 18 if Player 1 made
a simulation error and Player 2 entered a widget. Otherwise, if a widget is not
entered, then the run does not end and cost is +∞. ut

52

Shorthand and Longhand notations used in the proof : Note that in the
shorthand notation used in widgets WI>1 and WI<1 ,
– we never have consecutive locations with price-rates different from 0;
– on entering any location, there is a “free” clock with value 0;
– further, all guards are of the form x = c with reset of x on all edges.

The time elapsed at a location is captured in the “free” clock which had value
0 while entering that location. Consider, for example two consecutive locations
`1 and `2 where `1 has price f > 0, `2 has price 0, with an edge between `1 and
`2 with guard x = c and reset of x. Let y = 0 on entering `1. If t units of time
was spent at `1, we get y = t, x = 0, and the rest of the clocks are incremented
by t. A cost of ft is incurred. This can be replaced by a series of 2f − 1 blocks,
where a block looks like this: The first block contains a copy `11 of `1 and some
dummy location d1; `11 has price 1, d1 has price 0, and there is an edge from
`11 to d1 with guard x = c, and reset of x. A cost t is incurred. In the second
block, all locations have price 0. The second block begins from d1 and ends in
the second copy `12 of `1. The price of all copies of `1 is same as that of `1.
In the second block, the clock values are adjusted to be the same as they were,
when they first entered `1. The third block begins with `12, and is like the first
block: it ends in a dummy location d2. d2 has price 0. The fourth block begins
with d2, and is like the second block: it ends in the 3rd copy `13 of `1 and so on.
The 2f − 1th block will end in location d2f−3, with price 0. The valuations of
all clocks on entering d2f−3 is the same as what they were on entering `2, in the
original transition from `1 to `2. With no time elapse in d2f−3, we go to `2.

The total cost incurred across the 2f − 1 blocks is ft. If the time t elapsed
at `1 is such that dte = r, then the total time elapsed across the 2f − 1 blocks is
6 fr: t time elapsed in the odd numbered blocks, and r−t in the even numbered
blocks, to restore clock values. The point to note is that, as long as there are
sufficiently many clocks, the above trick can be done.

Consider the paths ρ1 and ρ2 in Figure 16. As explained above, the “free”
clock with value 0 is b. Here f is 2 and t = 1 − v where v is the value of clock
x2. Clearly, the cost accumulated in path ρ1 upon reaching I is 2 ∗ (1− v). The
clock values upon entering F1 of path ρ2 are x2 = v and b = 0. Upon entering
G1 the values are x2 = 0 and b = 1 − v. Thus upon entering F2, x2 = v and
b = 0 and so on. The costs incurred in this path are 1 − v at F1 and 1 − v at
F2. Hence total cost accumulated is 2 ∗ (1− v) upon reaching I.

C.4 Repeated reachability

Lemma 11. The existence of a strategy for the repeated reachability objective
RReach(η), for any η ∈ R>0 is undecidable for PTGs with 3 clocks or more.

Proof. We prove the existence of a strategy with a repeated reachability objective
ensuring the cost is within an interval [−η, η] is undecidable, for any choice of
η > 0. In order to obtain the undecidability result, we use a reduction from the
halting problem of 2 counter machines. Our reduction uses a PTG with 3 clocks,
and arbitrary location prices, but no edge prices.

53

0

`k

0

Check

[x3 = 0]

`k+1

−1

A

4

B

−3

C

0

D

0

E

0

F

x3 = 0

x161

{x3} {x2}

x2=1

{x2}
x1=2

{x1}
x1=1

{x1}
x2=2

{x2}
x3=3

{x3}W
D

1

Fig. 19. RReach(η): Simulation to decrement counter C1

We specify a module for each instruction of the two counter machine. On
entry into a module, we have x1 = 1

5c17c2 ,x2 = 0 and x3 = 0, where c1, c2 are
the values of counters C1, C2. We construct a PTG whose building blocks are
the modules for instructions. The role of Player 1 is to faithfully simulate the
two counter machine, by choosing appropriate delays to adjust the clocks to
reflect changes in counter values. Player 2 will have the opportunity to verify
that Player 1 did not cheat while simulating the machine. We shall now present
modules for increment, decrement and zero check instructions.

Simulation of decrement instruction. : The module to simulate the decre-
ment of counter C1 is given in Fig. 19. We enter location `k with x1 = 1

5c17c2 , x2 =
0 and x3 = 0. Lets denote by xold the value 1

5c17c2 . To correctly decrement C1,
Player 1 should choose a delay of 4xold in location `k. At location Check, there
is no time elapse. Player 2 has two possibilities : (i) to go to `k+1, or (ii) to
enter the widget WD1. If Player 1 makes an error, and delays 4xold + ε at `k
(ε 6= 0)then Player 2 can enter the widget WD1 and punish Player 1. When we
enter WD1 for the first time, we have x1 = xold + 4xold + ε, x2 = 4xold + ε and
x3 = 0. In WD1, the cost of going from location A to F is ε. Also, when we
get back to A after going through the loop once, the clock values with which we
entered WD1 are restored; thus, each time, we come back to A, we restore the
starting values with which we enter WD1. The third clock is really useful for
this purpose only.

Since all locations in WD1 are Player 2 locations, Player 2 can continue
taking this loop as long as he pleases; each time incurring a cost ε. Thus, for
any choice of η, Player 2 can incur a cost that is not in [−η, η] by taking the
loop from A to F a large number of times. Note however that when ε = 0, then
Player 1 will always achieve his objective: he will visit F infinitely often with a
cost 0 ∈ [−η, η] for any choice of η.

Simulation of increment instruction.: The module to increment C1 is given
in Fig. 20. Again, we start at `k with x1 = 1

5c17c2 , x2 = 0 and x3 = 0. Again,
call 1

5c17c2 as xold. A time of 1− xold is spent at `k. Let the time spent at I be
denoted xnew. To correctly increment counter 1, xnew must be xold

5 . No time is
spent at Check. Player 2 can either continue simulation of the next instruction,
or can enter the widget WI1 to verify if xnew is indeed xold

5 . Fig. 20 gives a table
detailing the values of clocks, time elapsed and cost incurred at each location

54

0

`k

0

I

0

Check

[x3 = 0]

`k+1

x1=1

{x1}
x161

{x3}

{x2}

5

A

1

B

−5

C

0

D

0

E

0

F

x3 = 0

x1=1

{x1}
x2=2

{x2}
x2=1

{x2}
x1=2

{x1}
x3=3

{x3}W
I 1

Let xn = xnew and xo = xold

Loc → `k I Check `k+1

x1 on entry xo 0 xn xn
x2 on entry 0 1− xo 1− xo + xn 0

x3 on entry 0 1− xo 0 0

Time elapsed 1− xo xn 0 0

Cost incurred 0 0 0 0

Loc → A B C D E F

x1
on entry

xn 0 xo 1 + xo 0 xn

x2
on entry

1− xo + xn 2− xo 0 0 1− xo 1− xo + xn

x3
on entry

0 1− xn 1− xn + xo 2− xn + xo 3− xn 0

Time
elapsed

1− xn xo 1 1− xo xn 0

Cost
incurred

in one pass
5− 5xn xo -5 0 0 0

Total cost - - - - -

xn = xo
5

+ ε
one pass

= −5xn + xo
= −5ε

after i passes
= −i× 5× ε
Total cost

= 0 if ε = 0
> η if ε < 0
< −η if ε > 0

Fig. 20. RReach(η): Simulation to increment counter C1

55

0

`k

[x3 = 0]

0

Checkc2=0

W=0
2

0

Checkc2 6=0

W6=0
2

0

`1k+1

0

`2k+1

x3 = 0
x3 = 0

x3 = 0

x3 = 0

Fig. 21. RReach(η): Widget WZ2 simulating zero-check for C2

of the main module, as well as WI1. It can be seen that the total cost incurred
in one pass from location A to F is xold − 5xnew, which is 0 iff xold = 5xnew.
As seen in the case of decrement, here also, each time we come back to A, we
restore the clock values with which we enter WI1; clearly, if Player 1 makes an
error of the form xnew = xold

5 + ε, the cost incurred in one pass from A to F is
−5ε. If ε > 0, then Player 2 can bring the cost less than −η for any choice of η
by taking the loop between A and F a large number of times. Similarly, if ε < 0,
a cost > η can be incurred for any choice of η.

Simulation of Zero-check.: Fig. 21 gives the module for zero-check instruction
for counter C2. `k is a no time elapse location, from where, Player 1 chooses one
of the locations Checkc2=0 or Checkc2 6=0. Both these are Player 2 locations, and
Player 2 can either continue the simulation, or can go to the check widgets W=0

2

or W 6=0
2 to verify the correctness of Player 1’s choice.

The widgets W=0
2 and W 6=0

2 are given in Fig. 22 and 23 respectively.

– Consider the case when Player 1 guessed that C2 is zero, and entered the
location Checkc2=0 in Fig. 21. Let us assume that Player 2 verifies Player
1’s guess by entering W=0

2 (Fig. 22). No time is spent in the initial location
A of W=0

2 . We are therefore at B with x1 = 1
5c17c2 = xold and x2, x3 = 0. In

case c1 = c2 = 0, we can directly go to the F state, and stay there forever,
incurring cost 0. If that is not the case, Player 1 has to prove his claim
right, by multiplying x1 with 5 repeatedly, till x1 becomes 1; clearly, this is
possible iff c2 = 0. The loop between B and Check precisely does this: each
time Player 1 spends a time xnew in B, Player 2 can verify that xnew = 5xold
by going to WD1, or come back to B. No time is elasped in Check. Finally,
if x1 = 1, we can go to F , and Player 1 achieves his objective. However, if
C2 was non-zero, then x1 will never reach 1 after repeatedly multiplying x1
with 5; in this case, at some point, the edge from Check to C will be enabled.
In this case, the infinite loop between C and T , incurs a cost +∞.

– Consider now the case when Player 1 guessed that C2 is non-zero, and hence
entered the location Checkc2 6=0 in Fig. 21. Let us assume now that Player 2

56

enters W6=0
2 (Fig. 23) to verify Player 1’s guess. Similar to W=0

2 , no time is

spent at location A of W6=0
2 , and the clock values at B are x1 = 1

5c17c2 = xold
and x2, x3 = 0. If c1 = c2 = 0, then x2 = 1, in which case, the location D is
reached, from where, the loop between D,T is taken incurring a cost +∞.
There are two possibilities now: (i) B can go to C or (ii) to Checkc1 . In case
B goes to Checkc1 , then Player 1 repeatedly multiplies x1 by 5 till we obtain
x1 as 1

7c2 . Note that mistakes committed by Player1 in the multiplication by
5, can always be caught by Player 2 via WD1.
If c1 = 0 already, then we can straightaway go to C spending no time at B,
if c2 6= 0. In this case, Player 1 has to compulsorily go to Checkc2 from C
atleast once, since the edge from C to F is not enabled. The loop between
C and Checkc2 results in Player 1 multiplying x1 of the form 1

7c2 till x1
becomes 1. Here again, if Player 1 commits a mistake during multiplication
by 7, Player 2 can catch Player 1 by entering the widget WD2. Otherwise,
when x1 reaches 1, Player 1 can go from C to F achieving his objective.

Correctness of the construction. On entry into the location `n (for HALT
instruction), we reset clock x1 to 0; from `n, we go to a state F with price 0,
with a self loop x1 = 0.
1. Assume that the two counter machine halts. If Player 1 simulates all the

instructions correctly, he will incur a cost = 0, by either reaching the F after
`n, or by entering a widget (the second case only occurs if Player 2 decides to
check whether Player 1 simulates the machine faithfully. If Player 1 makes an
error in his computation, Player 2 can always enter an appropriate widget,
making the cost as large or as small, so as to not fit in [−η, η] for any choice
of η. In summary, if the two counter machine halts Player 1 has a strategy
to achieve his goal (visiting F with a cost 0 ∈ [−η, η] for any η > 0.)

2. Assume that the two counter machine does not halt.
– If Player 1 simulates all the instructions correctly, and if Player 2 never

enters a check widget, then Player 1 incurs cost ∞ as we never reach F .
In this case, Player 2 will never want to enter a widget, since he gets a
higher payoff.

– Suppose now that Player 1 makes an error. In this case, Player 2 always
has the possibility to enter a loop, where Player 1 will incur cost ∞ or
−∞.

In summary, if the two counter machine does not halts Player 1 does not
have a strategy to achieve his goal.

Thus, Player 1 incurs a cost in [−η, η] for any η iff he chooses the strategy of
faithfully simulating the two counter machine, when the machine halts. When
the machine does not halt, the cost incurred by Player 1 is not in [−η, η] for any
chosen η if Player 1 made a simulation error and Player 2 entered a widget. Else
if a widget is not entered then the run does not reach F and cost is +∞. ut

57

0

A

0

B

0

Check

[x3=0]

WD1

1

C

0

T

0

F

x2=0

{x3}

x161, {x2}

x1=1
∧x2 = 0

x2 = 0

x1>1 {x2}

0<x2<1

{x2}

Let α = 1
5c17c2

Location → A B Check C T F

x1
on entry

α

5i × α
loop

B → Check
taken
i times

5i × α+ k
k = 4(5i × α) + ε

> 1
5i × α > 1
c2 6= 0

-
1

5i × α = 1
i = c1 ∧ c2 = 0

x2
on entry

0 0 k 0 p > 0 0

x3
on entry

0 0 0 - - 0

Time
elapsed

0 k 0 p 0 0

Cost
incurred

in one pass
0 0 0 p 0 0

Total cost - - - > η - 0

Fig. 22. RReach(η): Widget W=0
2 . Delay at B is k = 4(5i×α)+ε = 4(5i× 1

5c17c2
)+ε .

If ε 6= 0 then Player 2 will enter the widget WD1 and where the cost incurred 6∈ [−η, η]
if ε 6= 0.

58

0

A

0

B

0

Checkc1

[x3=0]

WD1

1

D

0

T

0C 0

Checkc2

[x3=0]

WD2

0

F

x2=0

{x3}

x161, {x2}

x1=1
∧x2 = 0

0<x2<1{x2}

x1<1
∧x2 = 0

{x3}

x161, {x2}

x1=1
∧x2 = 0

x2 = 0

Let α = 1
5c17c2

Loc → A B D T C F

x1
on entry

α

5i × α
loop

B → Check
taken
i times

1
5i × α = 1

i = c1 ∧ c2 = 0
-

7j × 1
7c2

loop
C → Check

taken
j times

1
7j × 5i × α = 1

i = c1∧
j = c2 > 0

x2
on entry

0 0 0 p > 0 0 0

Time
elapsed

0 4(5i × α) + ε p 0 6(7j × 1
7c2

) + ε 0

Cost
incurred

in one pass
0 0 p 0 0 0

Total cost - - > η - - 0

Fig. 23. RReach(η): Widget W 6=0
2 . Widget WD2 following Checkc2 is similar to WD1

shown earlier, except that the prices are adjusted to verify decrement of counter C2.

59

	Adding Negative Prices to Priced Timed Games
	Introduction
	Reachability-cost games on priced game graphs
	Priced timed games
	Undecidability results
	One-clock bi-valued priced timed games
	Reduction to region-uniform strategies
	Reduction to convergent strategies
	Finite abstraction of 1BPTGs

	Conclusion
	Motivation: A case-study from Project Cassting
	Detailed decidability proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of the infinite case of Corollary 1

	Detailed undecidability proofs
	Counter machines
	Constrained-price reachability
	Bounded-time reachability objective
	Repeated reachability

