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Abstract. Dry-snow slab avalanches are generally caused by

a sequence of fracture processes including (1) failure initi-

ation in a weak snow layer underlying a cohesive slab, (2)

crack propagation within the weak layer and (3) tensile frac-

ture through the slab which leads to its detachment. During

the past decades, theoretical and experimental work has grad-

ually led to a better understanding of the fracture process in

snow involving the collapse of the structure in the weak layer

during fracture. This now allows us to better model failure

initiation and the onset of crack propagation, i.e., to esti-

mate the critical length required for crack propagation. On

the other hand, our understanding of dynamic crack propa-

gation and fracture arrest propensity is still very limited.

To shed more light on this issue, we performed numeri-

cal propagation saw test (PST) experiments applying the dis-

crete element (DE) method and compared the numerical re-

sults with field measurements based on particle tracking. The

goal is to investigate the influence of weak layer failure and

the mechanical properties of the slab on crack propagation

and fracture arrest propensity. Crack propagation speeds and

distances before fracture arrest were derived from the DE

simulations for different snowpack configurations and me-

chanical properties. Then, in order to compare the numeri-

cal and experimental results, the slab mechanical properties

(Young’s modulus and strength) which are not measured in

the field were derived from density. The simulations nicely

reproduced the process of crack propagation observed in field

PSTs. Finally, the mechanical processes at play were ana-

lyzed in depth which led to suggestions for minimum column

length in field PSTs.

1 Introduction

Dry-snow slab avalanches result from the failure of a weak

snow layer underlying cohesive slab layers. The local dam-

age in the weak layer develops into a crack which can expand

if its size exceeds a critical length or if the load exceeds a crit-

ical value. Finally, crack propagation leads to the tensile frac-

ture of the slab and ultimately, avalanche release (McClung,

1979; Schweizer et al., 2003). During the past decade, our

understanding of the fracture process in snow has gradually

evolved through the development of new theories as well as

various field observations and experiments. The propagation

saw test (PST), concurrently developed in Canada (van Her-

wijnen and Jamieson, 2005; Gauthier and Jamieson, 2006)

and Switzerland (Sigrist and Schweizer, 2007), consists in

isolating a snow column and initiating a crack of increas-

ing length in the weak layer with a snow saw until the onset

of rapid self-propagation of the crack. The PST allows ob-

servers to determine the critical crack length and evaluate

crack propagation propensity. This field method has high-

lighted the importance of slab bending (due to the collapsi-

ble nature of weak snow layers) on crack propagation (e.g.

van Herwijnen et al., 2010; van Herwijnen and Birkeland,

2014). On the other hand, theoretical and numerical mod-

els, based on fracture mechanics or strength of material ap-

proaches, were developed to investigate crack propagation

and avalanche release (McClung, 1979; Chiaia et al., 2008;

Heierli et al., 2008; Gaume et al., 2013, 2014b). While sub-

stantial progress has been made, application with regard to

avalanche forecasting or hazard mapping is still hindered in
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1916 J. Gaume et al.: Modeling of crack propagation

Figure 1. (a) Typical slab – weak layer configuration suitable for

avalanche release. The weak layer is composed of surface hoar

which is intact on the right and partially ruptured on the left.
©ASARC from Jamieson and Schweizer (2000). (b) Zoom on a

surface hoar crystal ©ASARC.

part by our lack of understanding of the dynamic phase of

crack propagation. For instance, based on practitioners’ ex-

perience, it is not uncommon to perform PST field measure-

ments with widespread crack propagation in 1 day, while a

few days later, with seemingly very few changes in snowpack

properties, cracks will no longer propagate (Gauthier and

Jamieson, 2008). Thus far, there is no clear theoretical frame-

work to interpret such observations, and it is not clear how

and which snowpack properties affect dynamic crack propa-

gation. This limitation is due to the complex microstructure

of snow and its highly porous character (Fig. 1) which are

not taken into account in the continuous approaches previ-

ously mentioned.

In this paper, numerical experiments of the propagation

saw test (PST) are performed by applying the discrete ele-

ment (DE) method which allows us to mimic the high poros-

ity of snow. The goal is to investigate the influence of weak

layer failure and the mechanical properties of the slab on

crack propagation. In the first section, field data as well as

the proposed model are presented. Then, crack propagation

speed and distance before fracture arrest are derived from

the DE simulations using the same method as for the field

experiments (particle tracking). In a parametric analysis, we

show the influence of single system parameters on the crack

propagation speed and distance. Finally, the interdependence

of snowpack properties is accounted for in order to compare

numerical and experimental results and the mechanical pro-

cesses leading to fracture arrest are analyzed.

2 Data and methods

2.1 PST field data

Since the winter of 2004–2005, we collected data from 121

PST experiments at 46 different sites in Canada, USA and

Switzerland (van Herwijnen and Jamieson, 2005; van Her-

wijnen and Heierli, 2009; van Herwijnen et al., 2010; Bair

et al., 2012; van Herwijnen and Birkeland, 2014; Birkeland

et al., 2014). At each site, we collected a manual snow pro-

Figure 2. Schematic drawing and picture of the propagation saw

test (PST). The black dots are markers used for particle tracking in

order to measure the displacement of the slab. The column length is

denoted L. Adapted from van Herwijnen et al. (2010).

file and conducted one or several PSTs according to the pro-

cedure outlined in Greene et al. (2004). In many cases we

used longer (than standard) columns to allow us to better in-

vestigate crack propagation. After column preparation, we

inserted black plastic markers into the pit wall and used a

digital camera on a tripod to make a video recording of the

PST (Fig. 2). We used a particle tracking velocimetry (PTV)

algorithm to analyze the motion of the markers and thus the

displacement of the snow slab above the weak layer (Crocker

and Grier, 1996). In this way, the position of the markers in

each video frame can be determined with a mean accuracy of

0.1 mm. The displacement of a marker is then defined as the

movement relative to its initial position, that is, the average

position of the marker prior to movement. For propagating

cracks, there is a delay between the vertical displacement of

subsequent markers. A typical displacement-time evolution

for a propagating crack is shown in Fig. 3 for four slab mark-

ers. As explained in van Herwijnen and Jamieson (2005), the

time delay between the onset of movement between markers

is proportional to the distance between the markers and was

used to calculate the propagation speed c of the fracture (see

also Appendix A).

2.2 Discrete element model

2.2.1 Motivation and objectives

Discrete element (DE) modeling (Cundall and Strack, 1979)

allows computing the motion of a large number of small

grains by solving dynamic equations for each and defining

a contact law between the grains. In addition, the DE method

allows assessing mechanical quantities such as stress, dis-

placement, deformation rate, porosity, etc., computed over

representative elementary domains at each material point

within the sample. Experimentally, this would be an impos-

sible task. Hence, using DE, the mechanical and rheologi-

cal behavior of the material can be explored locally, regard-

less of the spatial heterogeneities possibly displayed by the

structure of the material and its mechanical quantities. This

method can thus help to better understand physical processes

The Cryosphere, 9, 1915–1932, 2015 www.the-cryosphere.net/9/1915/2015/
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Figure 3. Temporal evolution of the measured vertical displacement

1y for a slab density of ρ = 240 kg m−3 obtained through PTV

analysis of the marker’s displacement from a field experiment. The

different curves correspond to different horizontal positions in the

slab, from the left-end (x = 0.1 m) to the right-end (x = 2.1 m).

at play in granular assemblies. The DE method has been

widely used to study the flow of granular materials within

industrial (e.g. Chaudhuri et al., 2006; Sarkar and Wassgren,

2010) or environmental applications such as avalanche dy-

namics (e.g. Rognon et al., 2008; Faug et al., 2009). How-

ever, to our knowledge, discrete elements have never been

used to model crack propagation in layered systems or to de-

scribe slab avalanche release processes. The latter processes

are generally modeled under a continuum mechanics frame-

work, using methods such as finite elements (Podolskiy et al.,

2013, and references therein). These methods can be used to

assess the stability of a layered snow cover, i.e., determine

the conditions of failure occurrence and the onset of crack

propagation. However, they are less suited to study what oc-

curs after failure, i.e., during the dynamic phase of crack

propagation, due to a lack of relevant constitutive models for

the WL, including softening which induces a loss of objec-

tivity with respect to the mesh in dynamic problems.

The objective of the proposed approach is to use the dis-

crete element method (DE) to study the dynamic phase of

crack propagation in a weak snowpack layer below a cohe-

sive slab. The DE method is adequate for our purpose be-

cause (1) no assumption needs to be made about where and

how a crack forms and propagates, and (2) the model mate-

rial is inherently discontinuous and well adapted to dynamic

issues. We will show that this method allows us to capture

all the main physical processes involved in the release of

dry-snow slab avalanches, namely the complex mechanical

behavior of the weak layer and the interplay between basal

crack propagation, slab bending, and slab fracture.

However, an important preliminary issue to address con-

cerns the scale of the considered model. In the weak layer,

we intend to represent, through a simplified description, the

particular collapsible and highly porous microstructure of the

snow in order to be able to reproduce the main features of

the failure envelope of this material. As will be shown, we

achieve this by using triangular shapes of centimeter size.

To account for the possible breakage of these elements, they

consist of small cohesive grains of size rwl. In the slab, on the

contrary, due to computational costs, it would be completely

unrealistic to try to account for the complete microstructure

of the snow at the scale of a real slope or even at the scale of a

field test such as the PST. The slab is thus modeled as a con-

tinuous material with an elastic-brittle constitutive behavior.

Yet, similar to what is classically done for concrete (Meguro

and Hakuno, 1989; Kusano et al., 1992; Camborde et al.,

2000; Hentz et al., 2004), the response of this layer to the

dynamic propagation of failure in the WL is also computed

with the DE method. In that case, however, the considered

elements (grains of size r) have no physical meaning and

should only be regarded as entities of discretization similar

to the mesh size in FE models. The contact parameters need

to be properly calibrated (through classical biaxial tests, for

instance) in order to recover the correct macroscopic proper-

ties of the material. Other continuous methods, such as FE,

could have been used to simulate the slab, but – apart from

avoiding the non-trivial issue of coupling DE and FE regions

– the use of DE is well suited to represent the large deforma-

tions involved in the bending of the slab and the spontaneous

formation of the tensile crack.

To summarize, we contend that, unlike in other DE appli-

cations which are at the scale of the microstructure (e.g. Cun-

dall (1989); Iwashita and Oda (2000) for frictional granular

materials or Hagenmuller et al. (2015) for snow), the grains

involved in the DE model developed in this study should not

be regarded as snow grains, and that both rwl and r are only

discretization scales whose choice will result from a com-

promise between resolution and computational cost as classi-

cally done to model concrete fracture (Hentz et al., 2004). We

consider here a meter-scale model where the advantage of the

DE method is its ability to mimic the poorly known mechani-

cal response of the weak layer and to account for the different

modes of failure displayed by snow (shear, compression, ten-

sion). The only microstructural scale directly accounted for

is the size of the triangular elements in the weak layer, which

are on the same order as the weak layer thickness, since it

is a necessary ingredient for reproducing the particular me-

chanical behavior of this layer.

2.2.2 Formulation of the model

Software

The discrete element simulations were performed using the

commercial software PFC2D (by Itasca), which implements

the original soft-contact algorithm described in Cundall and

Strack (1979).

www.the-cryosphere.net/9/1915/2015/ The Cryosphere, 9, 1915–1932, 2015



1918 J. Gaume et al.: Modeling of crack propagation

Figure 4. (a) Simulated system of the propagation saw test (PST) composed of a slab, a weak layer and a rigid (fixed) substratum. The

column is 2 m long. (b) Zoom on the weak layer structure. The blue lines represent the weak layer bonds.

Table 1. Mechanical parameters used in the simulations for the con-

tact law. kn: normal contact stiffness; ks: tangential contact stiffness;

µ: intergranular friction; e: normal restitution coefficient.

kn (N m−1) kn/ks µ e

1× 104 2 0.5 0.1

Simulated system

The simulated system (see Fig. 4a) is two dimensional and is

composed of a completely rigid (fixed) basal layer, a WL of

thickness Dwl and a slab of thickness D which were varied

in the simulations. The slab is composed of grains of radius

r = 0.01 m with a primitive square packing. The porosity of

the slab is equal to 21 %. Hence the density of the slab ρ

can be adjusted by changing the grain density ρp, s (varied

in the simulations). The WL is composed of grains of ra-

dius rwl = r/2 with a complex packing of collapsible trian-

gular forms (see Fig. 4b) aimed at roughly representing the

porous structure of persistent WLs such as surface hoar or

depth hoar. The porosity of the WL is 70 % and the density

of the WL grains is ρp, wl = 400 kg m−3, leading to a WL

density ρwl = 120 kg m−3. The length of the system (column

length) is L= 2 m and the slope angle is denoted ψ . As men-

tioned above, the numerical grains are not intended to repre-

sent the real snow grains which are obviously smaller and

have a different density. Nevertheless, as will be shown, this

set up allows to capture the main features observed in field

PSTs.

Loading

The loading is applied by gravity and by advancing a “saw”

(in red on Fig. 4a) at a constant velocity vsaw = 2 m s−1

through the weak layer. This saw is composed by rigid

walls and has approximately the same thickness as field saws

hsaw = 2 mm. The saw velocity was chosen relatively high to

decrease the computational time, but lower than the lowest

crack propagation speed observed in the field so as to cor-

rectly distinguish crack propagation from saw movement.

Table 2. Mechanical parameters used in the simulations for the co-

hesive law. kn: bond normal stiffness; ks: bond shear stiffness. σt:

macroscopic tensile strength; σs: macroscopic shear strength.

kn (N m−1) kn/ks σt (kPa) σt/σs

slab 1× 103
− 1.5× 106 2 0–20 2

WL 8× 105 2 0.6 2

Contact law

The cohesive contact law used in the simulations is the PFC

parallel bond model represented schematically in Fig. 5a.

The cohesive part acts in parallel to the classical linear con-

tact law (Radjai et al., 2011; Gaume et al., 2011). For the

linear component (in grey in Fig. 5a), the normal force is the

sum of a linear elastic and of a viscous contribution (spring-

dashpot model), and the tangential force is linear elastic with

a Coulombian friction threshold. The corresponding mechan-

ical parameters, namely the normal and shear stiffness kn and

ks (elasticity parameters), the restitution coefficient e (vis-

cous parameter) and the friction coefficient µ are summa-

rized in Table 1. The value of the normal stiffness kn was

chosen in such a way that the normal interpenetration at con-

tacts are kept small, i.e., to work in the quasi-rigid grain limit

(da Cruz et al., 2005; Roux and Combe, 2002). Concern-

ing the normal restitution coefficient e, we verified that the

results presented below, and more generally all the macro-

scopic mechanical quantities obtained from the simulations,

are actually independent of this parameter (in the range 0.1–

0.9). This is due to the presence of the cohesive part of the

contact law (see details below). Indeed, the restitution co-

efficient might have a strong influence for cases in which

new contacts and collisions occur. In our case, the results are

mostly driven by bond breaking which explains why e has no

influence on the results.

The cohesive component (in black in Fig. 5a) can be en-

visioned as a point of glue with constant normal and shear

stiffness kn and ks acting at the contact point. This bond has

a specified shear and tensile strength σ bs and σ bt . The max-

imum tensile and shear stresses σmax and τmax at the bond

The Cryosphere, 9, 1915–1932, 2015 www.the-cryosphere.net/9/1915/2015/
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Figure 5. (a) Schematic representation of the parallel bond contact model which is used. The bonded part is represented in black while the

unbonded part is represented in grey. (b) Bond normal force Fn as a function of normal interpenetration δn between two grains. (c) Bond

shear force ||Fs|| as a function of tangential interpenetration δs between two grains. (d) Bond bending moment ||M|| as a function of bending

rotation θ between two grains.

periphery are calculated via beam theory according to:

σmax =−
Fn

A
+
||M||rb

I
(1)

τmax =
||Fs||

A
, (2)

where Fn and Fs are the bond normal and shear forces, M is

the bending moment, rb the bond radius, A= πr2
b the bond

area and I = πr4
b/4 its moment of inertia. If the tensile stress

exceeds the bond tensile strength, the bond breaks and both

the normal and shear contact forces are set to zero (Fig. 5b).

If the shear stress exceeds the bond shear strength, the bond

also breaks (Fig. 5c) but the contact forces are not altered,

provided that the shear force does not exceed the friction

limit, and provided that the normal force is compressive. The

bond can also break if the bending moment exceeds σ b
t I/rb

(Fig. 5d). The ranges of parameters used for the bond model

are summarized in Table 2.

As the two components are acting in parallel, the total stiff-

ness of the bonded contact is equal to the sum of the contact

stiffness kn and the bond stiffness kn:

ktot = kn+ kn. (3)

Finally, in our case of a square grain assembly, the Young’s

modulus can be derived analytically from kn and kn accord-

ing to:

E =
1

πrb

(
kn+ kn

)
. (4)

The contact stiffness kn was kept constant at 1× 104 N m−1

and kn was varied between 1×103 and 1.5×106 N m−1 (for

the slab) leading to realistic values of the Young’s modu-

lus E between 0.35 and 50 MPa. It was verified from biax-

ial tests that the macroscopic (bulk) Young’s modulus of the

slab effectively follows this relationship due to the specific

(squared) structure of the slab.

Figure 6. Failure envelope of the modeled WL obtained from

mixed-mode shear-compression loading tests. The angle repre-

sented next to the data points is the slope angle, σWL
t and σWL

c

are the tensile and compressive strengths, respectively.

Time step and elastic waves

The time step was computed classically as a function of the

grain properties according to 1t =
√
m/k ≈ r

√
ρ/E where

m, ρ and r are the smallest grain mass, density and radius

and k and E the largest contact/bond stiffness and Young’s

modulus, respectively. The choice of this time step insures

the stability of the algorithm and that the crack propagation

speed is lower than the speed of the elastic waves in the sam-

ple. The order of magnitude of the speed of elastic waves in

the sample is ce
≈
√
E/ρ.

2.2.3 Simulation protocol and illustration

First, the macroscopic properties of the slab have to be de-

termined as a function of the microscopic properties of the

bond. For the slab, bi-axial tests were carried out which al-

lowed to validate that for a squared assembly, the macro-

www.the-cryosphere.net/9/1915/2015/ The Cryosphere, 9, 1915–1932, 2015



1920 J. Gaume et al.: Modeling of crack propagation

Figure 7. Snapshots of a PST numerical experiment. (a) Initial sys-

tem t = 0.1 s, (b) onset of crack propagation t = 0.26 s, (c) dynamic

propagation t = 0.28 s; (d) complete failure of the WL t = 0.45 s.

scopic (bulk) Young’s modulus depends on bond stiffness ac-

cording to Eq. (4).

For the weak layer, similarly, simple loading tests were

carried out to compute the macroscopic failure criterion

(mixed-mode shear-compression) of the WL as a function

of the bonds of WL grains (Gaume et al., 2014a). The fail-

ure envelope of the WL is strongly anisotropic as shown in

Fig. 6. This failure envelope shows, for realistic values of

the slope angle, a much lower strength in shear than in com-

pression as well as a decrease of the shear strength with in-

creasing normal stress. This type of behavior is similar to

that reported in recent laboratory (Reiweger et al., 2015) and

field (Chandel et al., 2014) experiments on persistent weak

snow layers. Hence, the chosen WL structure allows to have

different modes of failure (tension, shear, compression and

mixed-mode) such as observed in real weak layers and thus

has the essential characteristics to model the processes of

slab avalanche release.

Then, PST simulations were performed. An illustration of

a simulation result highlighting the displacement wave of the

slab is shown in Fig. 7 and the associated vertical displace-

ment 1y is represented in Fig. 8. The critical length is de-

noted ac and corresponds to the translation length of the saw

required to obtain a self-propagating crack.

In order to determine the crack propagation speed, purely

elastic simulations (infinite tensile and shear strength of the

bonds between slab grains) were carried out. The propaga-

tion speed was computed using the same method as for field

PSTs by analyzing the vertical displacement wave of the slab

Figure 8. Temporal evolution of the modeled vertical displacement

1y of the slab for a slab density ρ = 250 kg m−3.The different

curves correspond to different horizontal positions of the slab, from

the left-end (x = 0 m) to the right-end (x = 2 m).

Figure 9. Snapshot of a PST with fracture arrest due to tensile crack

opening in the slab induced by slab bending.

(van Herwijnen and Jamieson, 2005). This procedure is pre-

sented in more detail in Appendix A.

The propagation distance was computed by taking into ac-

count the possible failure of the slab by setting finite values

to the tensile and shear strength of the slab (σt, σs). We define

the propagation distance as the distance between the left wall

of the system and the location where the tensile crack opens

at the slab surface, as shown in Fig. 9. This measure of the

propagation distance differs from that defined by Gauthier

and Jamieson (2006) who defined it as the distance between

the point of onset of crack propagation in the WL and the

point of slab failure. However, we argue that the propagation

distance, as we define it, is a more suitable measure since

this is the one that influences the stresses in the slab and thus

fracture arrest propensity. Similarly, for a real avalanche, the

important distance for the bending induced stress and for the

avalanche release size is the distance from the very first fail-

ure initiation point (whatever the nature of the initial trigger),

to the location of the slab tensile failure, and not from the

crack tip at the moment of the onset of crack propagation.

For the parametric analysis (Sect. 3.2), we performed sim-

ulations for which only one system parameter was modified

while the other parameters were kept constant. The param-

The Cryosphere, 9, 1915–1932, 2015 www.the-cryosphere.net/9/1915/2015/
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eters used are described in Table 3. However to apply these

results to slab avalanche release and in order to compare our

results to field data (Sect. 3.3), existing relations between

snowpack properties were taken into account. Hence, sim-

ulations were performed for different slab densities with the

Young’s modulus varying according to an empirical expo-

nential fit to the data reported by Scapozza (2004):

E = 1.873× 105e0.0149ρ, (5)

and with a tensile strength varying according to a power-law

fit to the data reported by Sigrist (2006):

σt = 2.4× 105

(
ρ

ρice

)2.44

(6)

with ρice = 917 kg m−3.

3 Results

3.1 Displacement of the slab

The evolution of the vertical displacement 1y of the slab is

represented in Fig. 8. In this figure together with the illustra-

tion of the displacement wave of the slab (Fig. 7), one can

clearly observe the different processes acting before, during

and after crack propagation. First, slab bending occurs prior

to the onset of crack propagation and the dynamic propaga-

tion phase. These distinct phases (stable bending of the slab

and crack propagation) are also clearly visible in the verti-

cal displacement 1y, as shown in Fig. 8 for four different

horizontal positions in the slab.

Between 0 and 0.1 s nothing happens, then as the saw

advances, the vertical displacement slowly increases. This

phase corresponds to the bending of the under-cut part of the

slab. Then, for t = 0.25 s approximately, the critical length ac

was reached and the displacement increases abruptly, even

beyond the saw, corresponding to the dynamic crack prop-

agation phase. After t = 0.3 s, the slab made contact with

the broken WL at the left-end of the slab for x = 0 m. Af-

ter 0.32 s, the entire WL has collapsed leading to a con-

stant vertical displacement of the slab approximately equal

to 1y = 1.8 cm. This displacement is not perfectly equal to

the WL thickness because of the grains remaining in the WL.

The peak in the displacement around t = 0.38 s is an arte-

fact associated with the movement of the saw after the crack

has propagated which does not affect the results that we will

present.

3.2 Parametric analysis

3.2.1 Crack propagation speed

For all the simulations carried out, the crack propagation

speed varied between 5 and 60 m s−1. Figure 10a shows that

the crack propagation speed c strongly increases with the

Figure 10. Crack propagation speed c (continuous lines) and speed

of elastic waves in the slab ce/10 (dotted lines) as a function of

(a) the Young’s modulus of the slab E, (b) slab thickness D and

WL thicknessDwl, (c) slab density ρ, (d) slope angle ψ and (e) WL

compressive strength σWL
c . The parameters used for these figures

are given in Table 3.

Young’s modulus E of the slab, from less than 5 m s−1 for

very soft slabs (E < 1 MPa) to 40 m s−1 for an almost rigid

slab (E ≈ 50 MPa) where the increase levels off. The prop-

agation speed c also strongly and linearly increases with the

thickness of the slab D (Fig. 10b), from almost zero for a

slab thickness lower than 10 cm to 60 m s−1 for a thickness

of 80 cm. Similar to the thickness influence, the propagation

speed increases almost linearly with the density of the slab

ρ (Fig. 10c) and the slope angle ψ (Fig. 10d). The propaga-

tion speed seems not to be influenced by the thickness of the

WL (Fig. 10b) as soon as the failure occurs under the same

conditions (same critical length). Furthermore, the propaga-

tion speed decreases with increasing WL strength (Fig. 10e).

This suggests that the crack propagation speed is mostly in-

fluenced by the failure conditions (load due to the slab and

WL strength) rather than structural parameters such as the

WL thickness.

Finally, the speed of the elastic waves in the slab (ce) is

always substantially higher (by about a factor of 10) than the

crack propagation speed (Fig. 10). In addition, we can ob-
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Table 3. Table of the parameter values used for Figs. 10 and 11. The symbol “–” means that the associated parameter was varied. The symbol

∗ means that the WL failure envelope was calibrated to obtain a constant critical length ac = 15 cm.

ρ E σ slab
t D Dwl ψ σWL

c

Fig. 10a 300 kg m−3 – Inf. 20 cm 4 cm 0◦ 750 Pa

Fig. 10b 100 kg m−3 4 MPa Inf. –/20 cm 4 cm/– 0◦ 750 Pa/∗

Fig. 10c – 4 MPa Inf. 20 cm 4 cm 0◦ 750 Pa

Fig. 10d 100 kg m−3 4 MPa Inf. 20 cm 4 cm – 750 Pa

Fig. 10e 300 kg m−3 4 MPa Inf. 20 cm 4 cm 0◦ –

Fig. 11a 300 kg m−3 – – 20 cm 4 cm 0◦ 750 Pa

Fig. 11b 300 kg m−3 4 MPa – 20 cm – 0◦ ∗

Fig. 11c 150 kg m−3 4 MPa – 20 cm 4 cm – 750 Pa

Fig. 11d – 4 MPa 2 kPa 20 cm 4 cm 0◦ 750 Pa

Fig. 11e 100 kg m−3 4 MPa 1.5 kPa – 4 cm 0◦ 750 Pa

Fig. 11f 300 kg m−3 4 MPa 2 kPa – 4 cm 0◦ –

Figure 11. Crack propagation distance l∗ as a function of the tensile strength σt and the Young’s modulus E of the slab (a1–a2), the tensile

strength σt and the WL thickness Dwl (b1–b2), the tensile strength σt and the slope angle ψ (c1–c2), slab density ρ (d), slab thickness D

(e) and WL compressive strength σWL
c (f). ac denotes the critical cut length for crack propagation. The parameters used for these plots are

given in Table 3.

serve that the speed of the elastic waves in the slab is not

a good proxy to explain the trends in the crack propagation

speed as shown for instance by the opposite trends with den-

sity (Fig. 10c).

3.2.2 Propagation distance

Figure 11 shows propagation distance as a function of differ-

ent system parameters. Fig. 11a1, b1 and c1 show the increase

of the propagation distance with increasing tensile strength

of the slab σt. This result was expected since a stronger slab

requires a larger tensile stress in order to fracture and thus

a larger propagation distance is required to obtain sufficient

tensile stresses in the slab (induced by bending or by the

shear component of the slab’s weight additionally in case of

ψ 6= 0).

The influence of the Young’s modulus E of the slab is

shown in Figs. 11a1 and a2. Overall, propagation distance de-

creases with increasing Young’s modulus. Hence, the softer

the slab, the lower the fracture arrest propensity. For a ten-

sile strength of 2 kPa (Fig. 11a2), the propagation distance

l∗ sharply decreases from 2 m (column length) to an ap-

proximately constant value l∗ = 0.5 m for E ≈ 2 MPa. Also,

Fig. 11a1 shows that for higher Young’s modulus, larger ten-

sile strength values are required to obtain full propagation.

The critical length ac for crack propagation was also repre-

sented in Fig. 11a2 to show that the tensile failure across the

slab always occurred (in this case) after the onset of crack

propagation.
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Then, the influence of WL thickness Dwl is shown in

Fig. 11b1 and b2. The WLs have different thickness but the

contact properties were calibrated to obtain the same critical

length ac which is equal to 15 cm in this case. The propaga-

tion distance l∗ decreases with increasing WL thickness. For

low values of the tensile strength of the slab, the propagation

distance is small and almost independent of the WL thickness

whereas an important decrease is observed for larger values

of the tensile strength. In other words, thicker weak layers re-

sult in more slab bending so that slab failure becomes more

likely due to high tensile (bending) stress.

Figure 11c1 and c2 show the influence of slope angle ψ on

propagation distance. Similarly to WL thickness, slope angle

seems to have no influence on the propagation distance for

low values of the tensile strength. However, for larger val-

ues of σt (σt > 4 kPa), the propagation distance strongly in-

creases with increasing slope angle ψ . Hence, fracture arrest

propensity decreases with slope angle for large values of the

tensile strength of the slab, typically higher than 4 kPa. This

result is not trivial, since as the slope angle increases, there

is a competition between the decreasing slab bending which

results in a decrease of the tensile stresses in the slab and an

increase of the tensile stresses due to the weight of the slab

in the slope parallel direction. Hence, this result suggests that

slab bending is the primary process influencing tensile failure

of the slab (for homogeneous properties of the system).

Crack propagation distance slightly decreases with slab

density as shown in Fig. 11d. For very low slab densities,

the critical length ac is relatively high and thus the tensile

failure across the slab occurs before the critical length is

reached. Then, as the density of the slab increases, the crit-

ical length decreases and the propagation distance stabilizes

around 0.4 m.

Whereas slab density ρ and slab thickness D have a simi-

lar influence on the stability of the system, on the crack prop-

agation speed (Fig. 10b and c) and on the onset of crack prop-

agation, as suggested by the decrease of the critical length

ac with both ρ and D (Fig. 11d and e), their influence on

fracture arrest propensity differs. Indeed, in contrast to the

influence of slab density, the propagation distance strongly

increases with increasing slab thickness (Fig. 11e). Hence,

the thicker the slab, the lower the fracture arrest propensity.

This result can be easily explained using beam theory (Tim-

oshenko and Goodier, 1970) to express the maximum tensile

stress in a bending slab which is inversely proportional to the

slab thickness D (see Sect. 3.4 or Schweizer et al., 2014).

Finally, crack propagation distance decreases with WL

strength (Fig. 11f) for low WL strength values for which the

system is close to the overall failure (the critical length is

close to zero). However, for higher values of the WL strength,

the propagation distance is almost unaffected by this property

of the WL.

Table 4. Average slab thickness as a function of slab density for

PST field data.

ρ (kg m−3) 100 150 200 250 300

D (cm) 30 40 50 65 80

3.3 Comparison with field data

The results of the previous parametric analysis should be in-

terpreted with care since for snow, several of the system pa-

rameters are inter-related leading to more complex interac-

tions. For instance, the result about the influence of Young’s

modulus on the propagation distance might seem contradic-

tory to avalanche observations. Indeed, taken as it is, this

result would imply that it is easier to trigger a tensile fail-

ure in stiff and thus hard snow than in soft snow. Conse-

quently, hard slabs would result in smaller release areas than

soft slabs which is clearly in contradiction with avalanche ob-

servations (van Herwijnen and Jamieson, 2007). Hence, even

if the result behind Fig. 11a2 is consistent, from a mechan-

ical point of view, it cannot be directly applied to dry-snow

slab avalanche release. To do so, one should take into ac-

count the relations between slab density ρ, Young’s modulus

E and tensile strength σt according to Eqs. (3) and (4). Sim-

ulations were performed for slab densities ranging from 100

to 300 kg m−3, corresponding to a Young’s modulus E of the

slab between 0.8 and 16 MPa [Eq. (3)] and a tensile strength

σt between 1 and 16 kPa [Eq. (4)].

In order to compare our numerical model to PST field data,

we selected two simulation cases to show the overall trend of

the propagation speed and distance with density, rather than

simulating precisely each of the PSTs individually (which

are prone to some variability) by using the available initial

conditions from the field.

In the following, we distinguish two simulation cases:

– Case #1 corresponds to simulations with a constant slab

thicknessD = 20 cm, slope angleψ = 0◦ and WL prop-

erties (σWL
c = 750 Pa);

– Case #2 corresponds to a case with a slope angle ψ =

23◦ which is the average slope angle of our field PSTs

and a slab thickness D which is also a function of den-

sity according to field data (Table 4). In addition, we

calibrated the strength of the WL bonds in order to

have the same critical length for the different densi-

ties. This ensured we observed crack propagation and

avoided the global and simultaneous failure of the en-

tire WL. Indeed, as density increases, the critical length

ac decreases and tends to zero (Fig. 11d) leading to the

instability of the system without cutting the WL.

A similar choice was made by Gaume et al. (2015) who

computed the tensile failure probability for two cases (con-

stant depth or constant load) with similar trends in the results.
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3.3.1 Displacement of the slab

Our numerical results (Fig. 8) obtained for a slab density

ρ = 250 kg m−3 are in very good agreement with experi-

mental results (Fig. 3) obtained for a similar density of

ρ = 240 kg m−3. Indeed, the same phases in the displace-

ment curves, corresponding to slab bending and crack propa-

gation, were observed in the measurements. Furthermore, the

amount of slope normal displacement prior to crack propaga-

tion as well as the fracture time, defined as the time it takes

for the slab to come into contact with the broken weak layer,

were very similar. Finally, we would like to point out that

the total slope normal displacement after crack propagation

in our experimental results was not the same for all markers

(Fig. 3), which has often been observed in previous studies

(van Herwijnen et al., 2010; Bair et al., 2014), whereas it is

approximately the same in the numerical simulations if no

fracture arrest occurred (Fig. 8). This difference is presum-

ably due to 3-D and edge effects such as wall friction at the

right side of the column.

3.3.2 Crack propagation speed

The crack propagation speed c obtained in field PSTs and

from the simulated PSTs is represented as a function of slab

density in Fig. 12. Overall, the propagation speed obtained

from field PSTs increases from 10 to 50 m s−1 as the den-

sity of the slab increased from 140 to 300 kg m−3. The gray

squares represent the cases with fracture arrest due to ten-

sile fracture of the slab (SF) for which the crack propagation

speed is not very accurate and generally lower than the ve-

locity measured when the slab did not fracture (END: open

squares for full propagation).

Overall, both simulation cases #1 and #2 reproduce the

magnitude of the propagation speed c and the increasing

trend with increasing slab density ρ. The case #2 model (re-

lation between slab density, Young’s modulus, thickness and

slope angle) slightly overestimates the average propagation

speed but provides good estimates for densities higher than

250 kg m−3.

Furthermore, the simulations of case #2 were done for the

same conditions of failure initiation, i.e., the strength of the

WL bonds was calibrated in order to have the same critical

length for the different densities. However, for the experi-

ments, the critical length generally increases with increasing

density due to the settlement which induces an increase of

Young’s modulus and a strengthening of the WL (Zeidler and

Jamieson, 2006a, b; Szabo and Schneebeli, 2007; Podolskiy

et al., 2014). In contrast, for case #1, a decrease in slab thick-

ness and slope angle induces a decrease in the crack propa-

gation speed (Fig. 10), explaining why the speeds for case #1

(ψ = 0◦ and D = 20 cm) are lower. In addition, for case #1,

the WL properties were kept constant, which together with

the increase of the Young’s modulus (less bending) with den-

sity resulted in an increase of the critical length with density.

Figure 12. (a) Boxplot of the propagation speed c versus slab den-

sity for all field experiments. The data were grouped by slab density

classes of 50 kg m−3. The red line represents the median value, the

edges of the box are the 25th and 75th percentiles, the whiskers

extend to the most extreme data points without considering the out-

liers, and outliers are plotted individually as a cross. (b) Crack prop-

agation speed c vs. slab density ρ. The open squares correspond to

field PSTs with full propagation (END) and the solid squares corre-

spond to PSTs with fracture arrest (SF). The black line corresponds

to the result of the DE model taking into account the relation be-

tween slab density, Young’s modulus for a slope angle ψ = 0◦ and

a slab thicknessD = 20 cm (case #1). The gray continuous line cor-

responds to the result of the DE model taking into account the re-

lation between slab density, Young’s modulus and thickness for a

slope angle ψ = 23◦ (case #2). The red lines represent the median

values of the density classes (same as in a). The data consist of

N = 121 PST experiments.

This is in agreement with field observations which might ex-

plain the better quantitative agreement with the experiments.

Finally, for a low slab density ρ = 100 kg m−3 (E =

0.83 MPa), the speed of the elastic waves in the slab ce

is about 90 m s−1, whereas the crack propagation speed is

around 15 m s−1. For a high density ρ = 300 kg m−3 (E =

16 MPa), ce
≈ 230 m s−1, whereas the crack propagation

speed is around 45 m s−1.

3.3.3 Propagation distance

The proportion between the number of experiments for

which fracture arrest was observed NSF and the total number

of experiments NSF+NEND decreases with increasing slab

density ρ (Fig. 13a). This figure highlights the important de-

crease of fracture arrest propensity with slab density. For slab

densities higher than 300 kg m−3 the number of experiments

with slab fracture is very small (NSF < 20 %).

The crack propagation distance l∗ is represented as a func-

tion of slab density in Fig. 13b. Only cases with slab fracture
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Figure 13. (a) Proportion between the number of experiments with

slab fractureNSF and the total number of experimentsNSF+NEND

for different classes of density. (b) Propagation distance l∗ vs. slab

density ρ only for cases with fracture arrest (SF). The red line cor-

responds to case #1 and the gray line corresponds to case #2. The

dashed line corresponds to the column length L= 2 m in the PST

simulations.

(SF) are represented. Overall, the propagation distance ob-

tained from field PSTs increased with slab density and varies

approximately from 0.4 to 2.1 m as the density increased

from 140 to 300 kg m−3. This trend is well reproduced by

the discrete element simulations for both cases, but with a

better qualitative agreement for case #1. For case #1 and for

densities higher than about 300 kg m−3, no fracture arrest is

observed resulting in full propagation of the crack in the WL

over the entire column length (END). For case #2, this tran-

sition occurs already for a density of about 200 kg m−3. Be-

sides, we would like to point out that field PSTs were not

made systematically for the same column lengths. However,

we checked numerically that, as soon as fracture arrest occurs

within the column, the crack propagation distance is almost

independent of the column length. For instance, if a propa-

gation distance of 0.7 m is observed for a column length of

1.5 m, it will be the same for a column of 2.5 m. This is true

as soon as the column length is higher than the length over

which edge effect are observed (length typically lower than

1 m, Gaume et al., 2013).

The experiments and the simulations confirm that dense

and hard snow slabs are more prone to wide-spread crack

propagation than soft slabs.

3.4 Mechanical processes of fracture arrest

In order to better understand the underlying mechanical pro-

cesses of fracture arrest in the slab, the normal stresses in

the slab σxx have to be compared with its tensile strength

σt. The normal stresses in the slab were computed for each

grain from contact forces using the classic Love homogeniza-

tion formula (Cambou and Jean, 2001). A tensile crack in the

slab occurs when the maximum normal stress σm
xx exceeds

the tensile strength. Hence, we analyzed the evolution of nor-

mal stresses in the slab during the process of crack propaga-

tion for case #1 with a slab density ρ = 250 kg m−3 leading

to a tensile strength σt = 10 kPa [Eq. (4)]. First, before the

onset of crack propagation, an increase of tensile stress oc-

curs at the top of the slab close to the crack tip of the WL

(Fig. 14). The bottom of the slab is subjected to an increase

in compression (σxx < 0). This increase of tensile stress is

due to the bending of the slab and increases with increasing

crack length (Timoshenko and Goodier, 1970).

Then, once the critical length is reached, the crack be-

comes self-propagating. The crack length increase leads to

an increase of the tensile stresses in the slab. Note that the

maximum tensile stress σm
xx is always located at the top sur-

face of the slab, not directly at the vertical of the crack tip but

slightly shifted to the right above the undamaged weak layer

(Fig. 14). At one point the maximum tensile stress meets the

tensile strength of the slab (σt = 10 kPa) which leads to the

opening of a tensile crack and fracture arrest. This fracture

arrest leads to the unloading of the slab where the stresses

become close to zero everywhere, except at the position of

the saw where some small local bending effects still occur.

In order to better understand why fracture arrest does not

occur anymore for high densities, as shown in Fig. 13, we

then analyzed the maximum tensile stress σm
xx as a function of

slab density in the case of a purely elastic slab for which the

Young’s modulus was varied according to Eq. (3; case #1).

The DE results were then compared to those predicted by the

static beam theory. According to beam theory (Timoshenko

and Goodier, 1970), the maximum theoretical tensile stress

in a beam of length l, thicknessD embedded on its right side

and subjected to gravity, with an angle ψ (with regards to the

horizontal) is equal to

σ th
xx = ρgl sinψ +

3ρg cosψl2

D
. (7)

As we have seen before in Fig. 14, the tensile stress in the

slab increases during propagation due to an increase of the

crack length. However, this length is limited by the height

of collapse hc of the WL (Fig. 15a). Indeed, once the left

part of the slab comes into contact with the broken WL, the

tensile stress reaches a maximum value and does not increase

anymore (see also Fig. 7c). The length l0 (already introduced

by Heierli et al., 2008) required to come into contact with the

broken WL can be obtained analytically by computing the

vertical displacement of the slab according to beam theory

and is equal to

l0 =

(
2ED2hc

3ρg cosψ

)1/4

. (8)

www.the-cryosphere.net/9/1915/2015/ The Cryosphere, 9, 1915–1932, 2015



1926 J. Gaume et al.: Modeling of crack propagation

Figure 14. Evolution of the normal stress σxx in the slab during the process of crack propagation for a case #1 simulation and a density of

250 kg m−3 with a tensile strength of 10 kPa. The normal stress σxx was calculated for each grain from contact forces according the Love

homogenization formula and linearly interpolated between grains. The dashed lines represent the position of the crack tip in the WL.

Hence, the overall maximum theoretical tensile stress

σ
m, th
xx = σ th

xx(l0) is found by replacing l by l0 in Eq. (7).

For low values of slab density (ρ < 180 kg m−3, Fig. 15b),

the maximum tensile stress increases with increasing den-

sity and the DE model results are very well reproduced by

beam theory. In addition, the maximum tensile stress is al-

ways higher than the tensile strength of the slab, leading to

systematic fracture arrest for these low-density values. How-

ever, for higher densities, beam theory predicts a strong in-

crease of the maximum tensile stress with density, so that

the stress would always be higher than the tensile strength of

the slab. This would lead to systematic fracture arrest for any

value of the density which is in contrast to the results of both

field and numerical PSTs. The DE model results, in particu-

lar, show that for a slab density higher than about a threshold

density ρ′ = 180 kg m−3, the maximum tensile stress starts

to decrease with increasing density. Ultimately, for a density

of approximately 280 kg m−3, the maximum tensile stress

becomes lower than the strength, leading to full propagation

of the crack in the WL, in agreement with Fig. 13 (case #1).

This result highlights the limits of the static beam theory

and thus the need to take into account dynamic effects when

addressing fracture arrest propensity issues. Indeed, we sup-

pose that the reason of this sudden decrease is due to the

crack propagation speed which becomes higher as slab den-

sity increases and induces a loss of support in the slab where

stresses do not have time to establish. In other words, the dis-

placement of the slab due to gravity is too slow to establish

a mechanical equilibrium between bending and gravity. For

instance, if we assume that the crack would propagate at an

infinite speed, then the tensile stresses in the slab would not

increase after reaching the critical length. The maximum ten-

sile stress in the slab would thus be the one obtained at the

moment of the onset of crack propagation. Obviously, the

propagation speed is not infinite but limits the establishment

of the stresses in the slab.

Using the theoretical relationships for ρ < ρ′ (σm
xx = σ

th
xx)

and an empirical (exponential) fit to the data for ρ > ρ′

(σm
xx = σ

dyn
xx ), one can compute the theoretical propagation

distance l∗th by solving

σm
xx(l
∗

th)= σt. (9)

The theoretical propagation distance l∗th was represented in

Fig. 15c for both zones (l∗th = l
∗

bt for ρ < ρ′ and l∗th = l
∗

dyn

ρ > ρ′) as well as the characteristic distance l0. Again the

beam theory reproduces the results for low densities well.

For these low densities, the tensile failure in the slab occurs

even before the onset of crack propagation due to the low

value of the associated tensile strength. However, the impor-

tant increase of the propagation distance for densities higher

than ρ′ is not reproduced by beam theory. On the other hand,

using the empirical relation (exponential fit of the maximum

tensile stress in Fig. 15b), the strong increase of the prop-

agation distance is well reproduced. After a certain value

of the density ρEND
= 280 kg m−3, the propagation distance

l∗dyn becomes higher than l0 which is technically not possi-

ble since the maximum tensile stress is obtained exactly for

l = l0 and cannot increase above l0. Hence the only solution

is that no fracture arrest occurs for ρ > ρEND. In fact, for

a density of 300 kg m−3 no fracture arrest was observed us-

ing the DE model (Fig. 13). Simulations were also performed

with longer column lengths L up to 10 m which did not affect

the full propagation. The corresponding maximum propaga-

tion distance for this case is about 2.3 m (for l∗dyn = l0), in
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Figure 15. (a) Illustration of the characteristic length l0 required for the slab to be in contact with the broken WL. hc represents the collapse

height. (b) Maximum tensile stress σm
xx as a function of slab density for the discrete element model σDEM

xx , with a purely elastic slab and case

#1, according to beam theory σ th
xx(l0) and from an empirical (exponential) fit σ

dyn
xx (l0). The tensile strength of the slab σt is also represented

as a function of slab density ρ. (c) Propagation distance for the same cases as in (b) plus l0 as a function of slab density.

agreement with field data for which the maximum propaga-

tion distance recorded was l∗ = 2.15 m (Fig. 13b).

Obviously, the density ρEND which was 280 kg m−3 in our

simulations, will vary depending on the geometry and ma-

terial properties of the snowpack. For the cases presented

in Fig. 15b and c, the Young’s modulus was derived from

density [Eq. (3)], the slab thickness D was constant equal

to 20 cm, the slope angle ψ = 0◦ (case #1). This set of pa-

rameters resulted in a density ρEND
= 280 kg m−3. However,

for a slope angle of 23◦ and taking into account the depen-

dence of slab thickness with slab density (Table 4), ρEND

would be even less than 200 kg m−3, as shown in Fig. 13b

(case #2) since the transition between a regime of fracture

arrest and full propagation is between 150 and 200 kg m−3.

Furthermore, as the propagation distance is also strongly in-

fluenced by the WL thicknessDwl (Fig. 11b), we assume that

ρEND increases withDwl as the maximum tensile stress in the

slab increases with Dwl.

4 Discussion

In this study, a numerical model based on the discrete el-

ement method was developed in order to perform numeri-

cal PST simulations and study the mechanical processes in-

volved. Despite the apparent simplicity of the proposed DE

model and of the structure of the simulated WL, we were

able to quantitatively address the issue of the dynamic phase

of crack propagation as well as fracture arrest propensity and

to reproduce PST field data.

First, a parametric analysis was conducted to study the in-

fluence of snowpack properties on crack propagation speed

and distance. It was shown that the propagation speed in-

creases with increasing slab density ρ, slab Young’s modu-

lus E, slab thickness D and slope angle ψ . The propagation

speed was almost not influenced by WL thickness. The in-

crease of crack propagation speed with slab density is not

compatible with the expression for crack propagation speed

proposed by Heierli (2008) for which the speed decreases

with increasing slab density ρ (for a constant value of the

Young’s modulus of the slab), as for a crack in a homoge-

neous material (Auld, 1973). However, this is obviously not

the case here, since the crack propagates through the under-

lying WL. Therefore, the propagation speed is likely to de-

crease with increasing WL density (and thus to increase with

increasing WL porosity) but to increase with slab density, as

shown by our results.

In addition, it was shown that the tensile fracture of the

slab always starts from the top surface of the slab. The prop-

agation distance l∗ increases with increasing tensile strength

of the slab σt, slab thickness D and slope angle ψ . The latter

result suggests that slab bending is the primary process influ-

encing the tensile failure of the slab which corroborates the

conclusions of van Herwijnen et al. (2010). In contrast, the

propagation distance decreases with increasing slab Young’s

modulus E, slab density ρ and WL thickness Dwl. These re-

sults are in agreement with Gaume et al. (2015) who showed
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that the tensile failure probability (fracture arrest propensity)

decreased with increasing tensile strength σt of the slab, in-

creased with increasing Young’s modulus E of the slab and

decreased with increasing slab thicknessD. This latter model

is based on the finite element method and takes into account

the weak layer strength heterogeneity, stress redistributions

by elasticity of the slab, the possible tensile failure of the

slab as well as dynamic effects. However, the weak layer was

modeled in their approach as an interface and the bending of

the slab induced by the collapse of the weak layer was not

accounted for.

Furthermore, by accounting for the relation between the

mechanical properties of the snowpack, the increase of crack

propagation speed and distance with increasing slab density

was well reproduced. The slight overestimation of the prop-

agation speed for low densities might be due to the fact that,

to compute the propagation speed, the slab was considered

as purely elastic and possible plastic effects in the slab that

might induce energy dissipation were disregarded.

The in-depth analysis of the mechanical processes in-

volved in fracture arrest showed that after a certain slab den-

sity value ρ′, the evolution of the maximum tensile stress in

the slab with slab density diverged from the static beam the-

ory. This is due to dynamic effects during crack propagation

that induce a loss of support of the slab where the stresses do

not have time to establish. Ultimately, for a density ρEND, the

maximum tensile stress in the slab decreases below its tensile

strength leading to full propagation without fracture arrest.

Consequently, for large densities, mechanical properties of

the snowpack only marginally affect crack propagation dis-

tance. In that case, terrain characteristics and snowpack spa-

tial variability will play a crucial role in the definition of the

release area.

In addition, interestingly, in very few simulations both

fracture arrest by tensile failure of the slab and full propa-

gation was observed. In these cases, a portion of the WL on

the right-side of the slab tensile crack was damaged over a

sufficient length to exceed the critical length leading again

to crack propagation. This process repeated itself until the

end of the system leading to so-called “en-echelon” fractures

(van Herwijnen, 2005; van Herwijnen et al., 2010; Gauthier

and Jamieson, 2010). This is likely to happen for very un-

stable conditions (very low critical length) but for a slab of

intermediate density, not too dense so fracture arrest can oc-

cur and not too loose so that the crack can still propagate.

Concerning the limitations of the model, we recall that

the triangular shape of the WL structure is highly idealized

and that more complex and more realistic geometries might

have an influence on the presented results. In the future, the

micro-structure of the WL could be derived from micro-

tomographic images (Hagenmuller et al., 2014) in order to

perform more realistic simulations. In addition, whereas we

applied our model for cases for which the bending of the slab

is important, our approach could still be used for cases with

thinner weak layers and thus much lower height of bending.

Moreover, we would like to recall that the crack propa-

gation speed was computed from the vertical displacement

wave of the slab. However, for high values of the slope angle

ψ , the collapse only constitutes a secondary process and the

tangential displacement during propagation becomes higher

than the vertical displacement. Typically, for ψ > 40◦, it is

not possible to compute the propagation speed using the pre-

sented approach as the height of collapse becomes too low.

An analysis of the tangential displacement revealed that the

crack propagation speed on slopes where the shear compo-

nent of the slab weight is very important (ψ > 40◦) might

be significantly higher than the propagation speed on gen-

tle slopes. This analysis suggested propagation speeds up to

150 m s−1, similar to those reported for real-scale avalanches

by Hamre et al. (2014). However, they considered avalanches

triggered artificially by explosives leading to even more com-

plex interactions due to the propagation wave of the blast.

With regards to practical applications, the results of our

study can help to choose the size of the column length in

field PSTs. Indeed, we showed that the maximum length for

which snowpack properties might affect the propagation dis-

tance is around 2 m, in agreement with the study of Bair

et al. (2014). However, this result does not mean that all PSTs

should be 2 m long. The chosen column length can be eval-

uated from slab thickness and density. As shown in Figs. 11

and 13, slab Young’s modulus and tensile strength which are

related to slab density, as well as slab thickness strongly af-

fect the propagation distance. Hence, for soft and relatively

thin slabs, the standard column length of 1.2 m might be suf-

ficient. However, for very strong and thick slabs, the column

length should not be lower than 2 m in order to be able to

still observe a possible arrest of the fracture due to slab ten-

sile failure. If slab fracture is not observed in a PST for a

column length of 2 m, fracture arrest is likely to be mainly

driven by terrain and snowpack spatial variability and a 3D-

terrain model including the snowpack might be required to

evaluate where fracture arrest might occur (Veitinger et al.,

2014).

5 Conclusions

We proposed a new approach to characterize the dynamic

phase of crack propagation in weak snowpack layers as well

as fracture arrest propensity by means of numerical PST sim-

ulations based on the discrete element method with elastic-

brittle bonded grains.

This model allowed us to compute the crack propagation

speed from slab vertical displacement as a function of snow-

pack properties. Furthermore, crack propagation distance

was computed by taking into account the tensile strength of

the slab. A parametric analysis provided the crack propaga-

tion speed and distance as a function of the different snow-

pack properties. We showed that the propagation speed in-

creases with increasing Young’s modulus of the slab, slab
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depth, slab density and slope angle but decreases with in-

creasing weak layer strength. The propagation distance de-

creases with increasing Young’s modulus of the slab, slab

density and weak layer thickness but increases with increas-

ing slab tensile strength, slab depth, weak layer strength and

slope angle.

Then, the existing relationship between slab thickness,

Young’s modulus and tensile strength with density was im-

plemented. Accounting for this relationship, modeled prop-

agation speed and distances were found in good agreement

with those obtained from field measurements with the prop-

agation saw test. In particular, for densities ranging from

100 to 300 kg m−3, the propagation speed increased from ap-

prox. 10 to 50 m s−1 and the propagation distance was found

to increase from approximately 0.4 to 2 m (column length).

Concerning the mechanical processes, the static beam theory

predicts an increase of the maximum tensile stress with in-

creasing density. However, we show that dynamic effects of

crack propagation induce a loss of support of the slab which

increases with increasing crack propagation speed and thus

slab density. This produces a decrease of the maximum stress

with density which ultimately becomes lower than the tensile

strength of the slab for a critical density ρEND leading to the

absence of slab tensile fracture and thus wide-spread crack

propagation. According to our simulations, this critical den-

sity depends mostly on slab and WL thicknesses and slope

angle. It decreases with slab depth and slope angle but in-

creases with WL thickness.

For slab layers denser than ρEND, the slab tensile fracture

in the field and thus the potential release area will mostly

be controlled by topographical and morphological features

of the path such as ridges, rocks, trees, terrain breaks, etc.

but also by the spatial heterogeneity of the snow cover. In

addition, we showed that the maximum propagation distance

associated with the density ρEND was around 2 m, justifying

why the column length of a propagation saw test should not

be lower than 2 m for hard snow slabs, in order to be able to

observe fracture arrest. This result is in agreement with the

recent study of Bair et al. (2014) about PST edge effects.

In the future, an in-depth analysis of crack propagation

speeds for large slope angles will be carried out in order to

distinguish the speed associated with the collapse wave of

the slab and the speed associated to its tangential displace-

ment. Finally, different and more complex structures for the

WL will also be implemented with the long-term objective

to model the structure of the WL directly from segmented

micro-tomographic images (Hagenmuller et al., 2013, 2015).
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Appendix A: Evaluation of the crack propagation speed

Figure A1. Propagation speed as a function of the vertical displacement threshold s. The insets represent the crack tip position as a function

of time for three vertical displacement thresholds. The lines correspond to a linear fit. (a) simulation for ρ = 250 kg m−3, E = 4 MPa,

D = 20 cm, ψ = 0◦; (b) simulation for ρ = 250 kg m−3, E = 7.8 MPa, D = 20 cm, ψ = 0◦ (c) experiment for a density ρ = 240 kg m−3.

The method to derive the crack propagation speed from

the evolution of the vertical displacement of the slab in field

and simulated PSTs is the same as that described in van

Herwijnen and Jamieson (2005). This appendix provides de-

tails about this procedure and its application for two sim-

ulation and one experiment examples. The first example is

a simulation for a density ρ = 250 kg m−3 and a Young’s

modulus E = 4 MPa (Fig. A1a) and the second example is

a simulation for the same density but with a Young’s mod-

ulus derived from density according to Scapozza (2004),

E = 7.8 MPa (Fig. A1b) corresponding to the displacement

evolution shown in Fig. 6. The third case (Fig. A1c) cor-

responds to an experiment with a density ρ = 240 kg m−3.

In detail, for each simulation or experiment, a vertical dis-

placement threshold s is defined that allows to evaluate the

position x of the crack tip as a function of time (see insets

of Fig. A1). A linear fit to these curves allows to evalu-

ate the propagation speed as a function of the vertical dis-

placement threshold s (Fig. A1). Then, the crack propaga-

tion speed is taken as the average propagation speed (over

the displacement threshold s) during the dynamic propaga-

tion phase where the propagation speed appears to be stable

with the displacement threshold (average between s1 and s3).

Note that different methods could have been used to com-

pute the propagation speed but we wanted to have exactly the

same procedure for both the experiments and the numerical

simulations for the sake of the comparison.
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